
SAPIEN: a SimulAted Part-based Interactive ENvironment
Supplementary Material

Fanbo Xiang1 Yuzhe Qin1 Kaichun Mo2 Yikuan Xia1 Hao Zhu1

Fangchen Liu1 Minghua Liu1 Hanxiao Jiang3 Yifu Yuan5 He Wang2 Li Yi4

Angel X. Chang3 Leonidas Guibas2 Hao Su1

1UC San Diego 2Stanford University 3Simon Fraser University 4Google Research 5UC Los Angeles
Website: https://sapien.ucsd.edu

Video Demo: https://youtu.be/K2yOeJhJXzM

Figure 1: Diverse manipulation tasks supported by SAPIEN

https://sapien.ucsd.edu
https://youtu.be/K2yOeJhJXzM

Table of Contents
• Appendix A Details on PartNet-Mobility Annotation

System.

• Appendix B Experiment details on movable part seg-
mentation and motion recognition tasks.

• Appendix C Terminologies

Appendix A: Annotation System
We developed a web interface (Figure 2) for mobility

annotation. This tool is a question answering (QA) sys-
tem, which proposes questions based on current stage of
annotation. It exploits the hierarchical structures of PartNet
to propose objects without relative mobility, and generates
new questions based on past annotations. Using this tool,
annotators will not miss any movable parts if they answer
every question correctly, and they will not face any redun-
dant questions by design. The output mobility annotations
are guaranteed to satisfy tree properties suitable for simula-
tion.

The annotation procedure has the following steps:

• We start with a PartNet semantic tree, and traverse the
tree nodes. Annotators are prompted with questions
asking if current subtree has relative motion. If it does
not, all parts in this tree will be fixed together; oth-
erwise, the same question is asked again on the child
nodes of this subtree.

• When the PartNet semantic tree traversal is finished,
annotators are asked to choose parts that are fixed to-
gether.

• Next, annotators are asked to choose parts that are con-
nected with a hinge (rotational) joint. They will then
choose parent-child relation, and annotate axis posi-
tion/motion limit with our 3D annotation tool.

• Next, annotators are asked to choose parts that are con-
nected with a slider (translational) joint. They will
similarly choose motion parameters and decide if this
axis also bears rotation (screw joint).

• Finally, annotators will annotate each separate object
in the scene as “fixed base”, “free””, or “out lier”.

The procedure is summarized in the following pseudo-code
block.

Appendix B: Movable Part Segmentation and
Motion Recognition
Movable Part Segmentation: complete results

Table 1 shows the movable part segmentation results for all
categories in PartNet-Mobility dataset.

Annotating PartNet-Mobility dataset
1: Propose fixed parts based on PartNet tree
2: for There are parts can be fixed together do
3: Select a group of relatively fixed parts
4: end for
5: for Rotation relationship exists do
6: Select parent and child
7: Pick rotation axis
8: Input motion range
9: end for

10: for Translation relationship exists do
11: Select parent and child
12: Pick translation axis
13: Input motion range / whether it can also rotate
14: end for
15: Choose whether root nodes are fixed/free

Motion Recognition: experiment details

For this task, we normalize the [0, 2π] hinge joint range to
[0, 1]. For sliders, we normalize by the maximum motion
range over the dataset to make the motion range prediction
within [0, 1].

Algorithm. The baseline algorithm we use is a a
ResNet[1] classification and Regression network. The in-
put is the ground truth RGB-D image and the segmentation
mask for the target movable part. The output has 7 terms:
T̂r ∈ {0, 1}, whether this part has a rotational joint.
T̂t ∈ {0, 1}, whether this part has a translational joint.
p̂r ∈ R3, pivot of a predicted rotational axis.
d̂r ∈ [−1, 1]3, direction of a predicted rotational axis.
d̂t ∈ [−1, 1]3, direction of a predicted translational axis.
x̂door ∈ [0, 1], predicted joint position for a door.
x̂drawer ∈ [0, 1], predicted joint position for a drawer.

In the following, letters without hat indicates their corre-
sponding ground-truth labels.

In our experiment, we modify the input layer of a
ResNet50 network to accept 5 channels, and output layer
to output 13 numbers. In addition, we apply tanh activa-
tion to produce d̂r, d̂t, and sigmoid activation to produce
x̂door, x̂drawer. The loss has 7 terms:
Axis alignment loss, measured by cosine distance:

Ldr =
∑
Tr=1

1−| dr · d̂r

||dr||||d̂r||
| Ldt =

∑
Tt=1

1−| dt · d̂t

||dt||||d̂t||
|

Pivot loss, measured by the distance from predicted pivot
to ground truth joint axis:

Lp =
∑
Tr=1

||p̂r − pr − ((p̂r − pr) · dr)dr||22

Figure 2: Annotation interface. 1) Part Tree: PartNet semantic tree that proposes fixed parts. 2) Motion tree: annotated
movable parts. 3) Question: auto-generated exhaustive questions. 4) Visualization for current question and for motion axis
annotation.

Joint type prediction loss:

LTr
= −

∑
Tr log T̂r + (1− Tr) log(1− T̂r)

LTt
= −

∑
Tt log T̂t + (1− Tt) log(1− T̂t)

Joint position loss, L2 loss between predicted position
and ground truth position.

Ldoor =
∑

valid hinge

(xdoor − x̂door)
2

Ldrawer =
∑

valid slider

(xdrawer − x̂drawer)
2

The final loss is a summation of all the losses above:

L = Ldr + Ldt + Lp + LTr
+ LTt

+ Ldoor + Ldrawer

This objective is optimized on mini-batches using proper
masking based on H and S values.

We repeat this experiment with PointNet++[4] operating
on 3D RGB-point cloud produced by the same images. For
each image, we sample 10,000 points from the partial point
cloud (create random copies if the total number of points is
less than 10,000). Figure 3 shows the network structure for
the motion recognition tasks.

Appendix C: Terminology
SAPIEN Engine

• Articulation: An articulation is composed of a set
of links connected together with transnational or ro-
tational joints [3]. The most common articulation is a
robot.

• Kinematic/Dynamic joint system: Both joint sys-
tems are an assembly of rigid bodies connected by
pairwise constraints. Kinematic system does not re-
spond to external forces while dynamic objects do.

• Force/Joint/Velocity Controller: Controller which
can control the force/position/velocity of one or multi-
ple joints at once. Like real robot, controller may fail
depending on whether the target is reachable.

• Inertial Measurement Unit(IMU): A sensor which
can measure the orientation, acceleration and angular
velocity of the mounted link.

• Trajectory Controller: A controller which receive
trajectory command and execute to move through the
trajectory points. Note that trajectory consist of a se-
quence of position, velocity and acceleration, while
path is simply a set of points without a schedule for
reaching each point [2].

• End-effector: End-effector is a manipulator that per-
forms the task required of the robot, The most common

Bottle Box Bucket Cabinet Camera Cart Chair
Algorithm Setting tr. lid body rot. lid rot. lid body handle body door body door drawer lens button body knob wheel body wheel seat leg

Mask- RGB 0.0% 57.4% 69.3% 49.3% 65.7% 2.7% 91.7% 62.0% 94.2% 27.7% 66.4% 26.7% 20.9% 79.0% 4.8% 54.6% 95.6% 25.1% 97.0% 88.3%
RCNN RGB-D 13.9% 68.3% 67.8% 51.5% 66.5% 1.6% 100.0% 61.7% 93.0% 26.3% 63.0% 26.4% 17.0% 92.6% 8.1% 55.3% 93.9% 23.1% 99.0% 85.2%
PartNet XYZ 24.5% 47.7% 53.5% 27.6% 46.2% 63.4% 99.7% 20.6% 65.9% 9.8% 35.1% 17.0% 0.0% 51.4% 0.0% 6.2% 71.7% 1.2% 93.0% 86.4%
InsSeg XYZRGB 5.9% 41.3% 54.8% 24.2% 36.8% 60.7% 98.9% 17.4% 64.3% 5.0% 23.6% 10.5% 0.0% 46.1% 1.0% 9.4% 77.3% 1.9% 95.7% 89.2%

Chair Clock CoffeeMachine Dishwasher Dispenser Display Door
Algorithm Setting knob caster lever hand body button lid body lever knob container rot. Door body lid body rot. screen base button frame rot. door

Mask- RGB 0.0% 2.5% 20.0% 11.4% 61.4% 14.7% 73.4% 65.7% 0.0% 43.0% 100.0% 70.4% 90.0% 74.9% 90.1% 74.4% 34.7% 0.0% 39.4% 40.7%
RCNN RGB-D 0.0% 3.6% 13.4% 12.5% 68.3% 10.4% 61.4% 67.4% 1.0% 35.6% 98.0% 66.8% 87.8% 73.2% 88.1% 71.3% 33.4% 0.0% 35.7% 54.6%
PartNet XYZ 0.0% 1.0% 0.0% 0.0% 77.0% 0.0% 43.6% 62.4% 0.0% 0.0% 94.0% 50.5% 67.0% 49.1% 57.6% 66.1% 37.1% 0.0% 49.2% 35.3%
InsSeg XYZRGB 0.0% 1.0% 0.0% 0.0% 79.4% 0.0% 81.2% 45.8% 0.0% 0.0% 85.1% 58.2% 73.3% 27.4% 39.5% 58.2% 39.1% 0.0% 34.6% 24.6%

Eyeglasses Fan Faucet FoldingChair Globe Kettle Keyboard KitchenPot Knife
Algorithm Setting leg body rotor frame switch base spout seat leg sphere frame lid body base key lid body blade body blade

Mask- RGB 51.2% 85.2% 54.4% 67.5% 52.5% 47.9% 99.7% 90.6% 46.1% 98.0% 71.1% 75.2% 99.4% 15.0% 17.5% 99.0% 94.5% 11.7% 88.5% 33.4%
RCNN RGB-D 49.2% 84.9% 39.4% 67.4% 52.1% 55.8% 98.9% 93.8% 47.2% 96.0% 69.6% 94.1% 100.0% 8.8% 5.1% 100.0% 95.0% 10.0% 77.8% 34.5%
PartNet XYZ 62.1% 93.8% 50.9% 74.8% 34.4% 55.9% 64.2% 91.2% 79.4% 83.0% 77.6% 71.1% 74.1% 6.8% 1.0% 94.6% 94.4% 3.1% 80.1% 9.4%
InsSeg XYZRGB 80.6% 92.4% 42.0% 63.5% 29.9% 64.1% 78.0% 86.3% 75.6% 79.0% 82.0% 87.2% 90.7% 4.0% 1.0% 93.5% 95.0% 5.0% 82.7% 10.1%

Lamp Laptop Lighter Microwave Mouse Oven
Algorithm Setting base rot. bar head base screen wheel button body rot. lid door body button button wheel body door knob body tr. tray button

Mask- RGB 54.6% 14.6% 64.5% 51.9% 93.1% 35.0% 80.8% 96.8% 97.0% 53.8% 94.0% 0.0% 0.0% 46.5% 98.0% 54.0% 49.9% 86.8% 1.0% 0.0%
RCNN RGB-D 48.8% 10.8% 69.5% 47.2% 92.8% 57.2% 94.1% 89.2% 92.1% 49.5% 97.1% 0.0% 1.0% 45.3% 95.2% 53.4% 42.3% 93.3% 1.0% 0.0%
PartNet XYZ 51.8% 8.8% 38.5% 93.0% 97.7% 1.0% 0.0% 77.4% 80.9% 25.9% 45.8% 0.0% 1.0% 0.0% 76.0% 23.1% 0.0% 36.6% 1.0% 0.0%
InsSeg XYZRGB 50.6% 9.3% 39.7% 89.8% 96.1% 9.5% 61.4% 82.5% 84.9% 24.3% 48.7% 0.0% 1.0% 1.0% 61.1% 26.9% 0.0% 49.1% 0.0% 0.0%

Pen Phone Pliers Printer Refrigerator Remote Safe Scissors Stapler
Algorithm Setting cap body button button base leg button body body door button base knob button body door leg body lid base

Mask- RGB 94.1% 91.0% 52.8% 18.4% 51.4% 79.9% 2.8% 87.1% 83.0% 60.7% 35.6% 75.2% 34.1% 0.0% 88.5% 68.5% 34.2% 32.1% 60.2% 84.6%
RCNN RGB-D 94.1% 96.2% 57.6% 12.8% 50.2% 78.7% 1.5% 72.3% 81.2% 55.0% 25.6% 78.2% 24.5% 0.0% 92.1% 74.6% 57.4% 33.6% 75.0% 90.5%
PartNet XYZ 67.9% 98.0% 53.0% 1.0% 38.0% 37.9% 0.0% 34.8% 30.0% 16.2% 1.0% 63.2% 0.0% 0.0% 40.5% 30.5% 20.6% 31.7% 49.2% 76.7%
InsSeg XYZRGB 15.0% 96.2% 25.4% 0.0% 27.0% 46.0% 0.0% 48.5% 40.2% 27.7% 1.0% 75.9% 0.0% 0.0% 60.8% 42.3% 36.4% 28.5% 83.3% 89.5%

Suitcase Switch Table Toaster Toilet
Algorithm Setting rot. handle body tr. handle wheel caster frame lever button slider drawer body wheel door caster knob slider body button lever lid

Mask- RGB 25.5% 81.7% 74.3% 6.2% 0.0% 85.9% 24.3% 73.6% 60.8% 54.3% 88.0% 3.4% 6.3% 0.0% 40.1% 39.0% 90.1% 5.9% 51.6% 98.3%
RCNN RGB-D 36.4% 97.3% 70.0% 18.1% 0.0% 74.0% 26.0% 65.8% 22.8% 58.6% 89.9% 1.4% 13.2% 0.0% 40.6% 33.0% 94.1% 4.0% 36.4% 98.0%
PartNet XYZ 3.7% 53.7% 63.6% 1.4% 0.0% 52.3% 2.3% 4.9% 1.0% 15.7% 71.3% 1.7% 1.0% 0.0% 0.0% 9.9% 79.3% 0.0% 0.0% 69.3%
InsSeg XYZRGB 4.3% 53.2% 64.5% 2.0% 0.0% 53.5% 1.0% 2.1% 1.7% 16.4% 81.8% 1.3% 2.0% 1.0% 2.6% 20.3% 72.9% 0.0% 0.0% 89.6%

Toilet TrashCan USB WashingMachine Window All
Algorithm Setting body lid seat button pad lid body door wheel rotation body lid door knob button body window frame mAP

Mask- RGB 95.3% 64.3% 61.1% 8.9% 43.4% 68.1% 85.6% 35.9% 73.7% 59.8% 65.7% 71.3% 52.0% 6.8% 4.4% 53.5% 55.9% 12.2% 53.0%
RCNN RGB-D 91.8% 64.4% 62.5% 3.0% 37.1% 69.7% 84.9% 29.7% 69.3% 74.4% 62.8% 68.6% 41.4% 4.0% 0.0% 73.3% 48.7% 13.4% 52.8%
PartNet XYZ 83.2% 17.6% 1.4% 0.0% 12.7% 67.1% 57.7% 12.1% 5.5% 30.0% 27.1% 22.2% 22.4% 0.0% 0.0% 30.5% 22.6% 83.5% 36.1%
InsSeg XYZRGB 86.5% 25.1% 5.2% 0.0% 21.8% 75.4% 73.5% 3.9% 5.0% 23.9% 42.9% 12.2% 14.5% 0.0% 0.0% 22.9% 24.0% 85.2% 37.1%

Table 1: Movable part segmentation results for all categories

Figure 3: Vision Tasks. Show 2 vision task definitions: inputs + outputs.

end-effector is gripper.

• Inverse Kinematics: Determine the joint position cor-
responding to a given end-effector position and orien-
tation [5].

• Inverse Dynamics: Determining the joint torques
which are needed to generate a given motion. Usualy,
the input of inverse dynamics is the output of inverse
kinematics or motion planning.

SAPIEN Renderer

• GLSL is OpenGL’s shading language with describes
how the GPU draws visuals.

• Rasterization is the process of converting shapes to
pixels. It is the pipeline used by most real-time graph-
ics applications.

• Ray tracing is a rendering technique by simulating
light-rays, reflections, refractions, etc. It can achieve
physically accurate images at the cost of rendering
time. OptiX is Nvidia’s GPU based ray-tracing frame-
work.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 2

[2] Seth Hutchinson, Gregory D Hager, and Peter I Corke. A
tutorial on visual servo control. IEEE transactions on robotics
and automation, 12(5):651–670, 1996. 3

[3] Nvidia. PhysX physics engine. https://www.geforce.
com/hardware/technology/physx. 3

[4] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems, pages 5099–5108, 2017. 3

[5] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and
Giuseppe Oriolo. Robotics: modelling, planning and control.
Springer Science & Business Media, 2010. 5

https://www.geforce.com/hardware/technology/physx
https://www.geforce.com/hardware/technology/physx

