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1. Structure of Our Model
In this section, we provide the detailed structure of our

model, including the structure of our generators, our dis-
criminators and adaptive identity modulation module in our
generator.

Table 1. The architecture of the generator for CompCars dataset.
The size of the input image is 3× 224× 224.

Layer #Channels Kernel size Stride Padding
Conv1 32 3 1 1
Conv2 64 4 2 1
Conv3 128 4 2 1
Conv4 128 4 2 1
Conv5 256 4 2 1
Conv6 256 4 2 1
Conv7 512 3 2 1
Conv8 512 4 1 0
DConv1 512 4 1 0
DConv2 256 3 2 1
DConv3 256 4 2 1
DConv4 128 4 2 1
DConv5 128 4 2 1
DConv6 64 4 2 1
DConv7 32 4 2 1
DConv8 3 1 1 0

1.1. Generator on CompCars Dataset

The generator on CompCars dataset is composed of an
encoder and a decoder. Given an image of size 224 × 224,
the encoder maps the image to a vector of identity with size
512 × 1. Then the identity feature vector is concatenated
with an attribute condition code C with size 5 × 1 and a
random noise vector z with size 128 × 1, to form a latent
vector. The latent vector is then decoded by the decoder
with several deconvolution layers. Each convolution layer is
followed by a batch normalization layer and a Leaky ReLU
layer [1], except Conv1, Conv8, DConv1 and DConv8 lay-
ers. We use Tanh function in the final layer. We use con-

strained nonalignment connection to link feature maps of
Conv4 and DConv4, which have a spatial size of 28× 28 or
feature maps of Conv3 and DConv5, which have a spatial
size of 56 × 56. The detailed structure of the generator for
CompCars dataset is present in Table 1.

1.2. Discriminator on CompCars Dataset

The discriminator used on CompCars dataset has a sim-
ilar architecture as the encoder of our generator. It is com-
posed of several convolution layers, followed by a global
average pooling layer and two classification layers. Each
convolution layer is followed by a batch normalization layer
and a Leaky ReLU layer, except Conv1 layer. The detailed
structure is shown in Table 3.

1.3. Generator on Multi-PIE Dataset

Regarding the generator on Multi-PIE dataset, for a fair
comparison, we take the architecture of DR-GAN [3] as our
basic architecture. The generator takes a 96 × 96 image, a
random noise with size 128 × 1, and a viewpoint condi-
tion code with size 9 × 1 as input, and outputs a 96 × 96
image. The only difference from the original DR-GAN is
that we do not take illumination as a condition. We use the
same setting for DR-GAN in our experiments. We apply
our proposed constrained nonalignment connection method
to link feature maps with a spatial size of 24× 24. We also
modulate the feature maps in the decoder with the identity
feature.

1.4. Discriminator on Multi-PIE Dataset

For a fair comparison, we use a similar discriminator ar-
chitecture for Multi-PIE dataset as that used by DR-GAN
[3]. The only difference is that we do not classify the illu-
mination of the images. Such a setting is kept the same for
DR-GAN when we compare our model with DR-GAN.

1.5. Adaptive Identity Modulation

In this paper, we propose an adaptive identity modula-
tion (AIM) method, to integrate identity information into



Table 2. Identity preservation experiment results with different radius of our model (vanilla+CNC(28)) on CompCars dataset. Experiments
are carried out with 20, 50, 80, 120 and 200 categories from the standard set. We report both top-1 and top-5 accuracies. % is omitted for
convenience.

model 20c-top1 20c-top5 50c-top1 50c-top5 80c-top1 80c-top5 120c-top1 120c-top5 200c-top1 200c-top5
CNC, r=3 52.34 75.93 38.49 59.34 29.66 50.80 23.09 43.02 18.51 35.81
CNC, r=7 55.05 80.16 42.24 63.49 34.68 56.09 26.50 46.44 22.70 40.56
CNC, r=11 53.70 78.88 39.62 60.68 32.48 54.40 26.11 46.71 20.27 38.16
CNC, r=14 53.12 77.08 38.30 59.12 30.40 52.13 23.82 44.01 18.13 34.84

Table 3. The architecture of the discriminator for CompCars
dataset. The size of the input image is 3× 224× 224.

Layer #Channels Kernel size Stride Padding
Conv1 32 4 2 1
Conv2 64 4 2 1
Conv3 128 4 2 1
Conv4 256 4 2 1
Conv5 256 4 2 1
GAP - - - -
Linear 1181 - - -
Linear 5 - - -

the convolutional feature blocks in a more effective way.
Here we provide the detailed structures of the sub-modules
in AIM. First, the attention vector attB is obtained by map-
ping the average feature Bf with an attention layer. The
attention layer is composed of a linear layer with Cid out-
put nodes and a Sigmoid function, where Cid is the number
of feature points in the identity feature fid. Second, after
we obtain the attended identity feature fattid = fid � attB ,
we need to map it to γ and β. Specifically, we map fattid to γ
by a multi-layer perceptron (MLP) of two layers, where the
hidden layer has 256 nodes with ReLU activation function,
and the last layer is a linear layer without any activation
function. Similarly, we map fattid to β with another two-
layer MLP with the same configuration. These two MLPs
do not share weights. Third, we use the modulated γ and
β to re-scale the normalized feature map B̂i, to obtain the
final feature map B̃i = γ(fid, Bi)B̂i + β(fid, Bi).

2. Ablation Study on Radius r in CNC

In the identity preservation experiment on CompCars
with Nc classes, where Nc = 20, 50, 80, 120, 200, we set
the radius of our proposed constrained nonalignment con-
nection (CNC) r to be 3, 7, 11 and 14 on model “vanilla +
CNC(28)”. Note that when r = 14, our CNC model de-
grades to the Global-NC version, as when calculating the
non-local attention, it searches over all possible locations in
the key space. The classification results are shown in Table
2. From the results, we conclude that r plays a key role in
our model and has a significant influence on the final per-
formance. When r = 3, the structure of our CNC module is
close to the traditional skip-connection. In such a situation,

Figure 1. Two examples of learned attention weights on Comp-
Cars dataset. In each example, the images in the left and right are
input image and output image, respectively. We select a pixel in
the output image (indicated by the white point) and visualize the
learned constrained attention for this pixel, as shown in the left
image. Specifically, the left image shows the salient locations (in-
dicated by the white regions) of the input image attended by the
selected pixel in the output image. The yellow rectangle refers
to the neighborhood region that the selected pixel needs to attend.
The green arrows denote the constrained nonalignment connection
that links the attended pixels in the input image with the pixel in
the output image.

the feature in the decoder matches only very few feature
points in the encoder feature, ignoring the global dependen-
cies. As such, the model with r = 3 fails to capture suf-
ficient contextual details from the encoder feature. On the
contrary, our model with r = 14 matches the feature point
in the decoder to all locations of the encoder feature, which
does not achieve the best performance. The reason may be
that matching over all locations in the encoder feature can
be difficult to optimize, and is vulnerable to the noise in the
feature map. Results in Table 2 show that when r = 7, our
model achieves the best performance.

3. Attention Visualization
In this section, we visualize the attention learned by the

generators on CompCars dataset. In Fig. 1, we show the



Figure 2. Distribution of images generated by our model (top) and
DR-GAN (bottom), visualized with t-SNE. Our model produces
samples with more evident cluster property.

attention map learned for a fixed point in the output image.
From the figures, pixel of the bumper in the output image
can attend to the pixels of the bumper in the input image.
Pixel of the frontal tier in the output image can correctly
attend to regions around the tier in the input image. Results
demonstrate that the attention can be well learned so that
the pixel in the output image can correctly attend to regions
in the input image that are relevant to the output pixel.

4. Visualization of Data Distribution (t-SNE)

We further compare each model by visualizing the t-
Distributed Stochastic Neighbor Embedding (t-SNE) [2]
plot of their generated images from CompCars dataset. We
only compare our model with DR-GAN, since it has the
best identity preservation ability among all the models we
have compared. We generate images of 10 classes with our
model/DR-GAN and use the resnet18 model to extract fea-
tures of each image, then plot the images. As can be seen
from Fig. 2, our model can generate categorical data with
smaller intra-class variance and larger inter-class variance
compared to DR-GAN, further demonstrating the superior-
ity of our model on identity preservation.

Figure 3. Failure cases of our model on CompCars and Multi-PIE
datasets. Top: input images, bottom: generated images.

5. More Results on Multi-PIE

In this section, we show more images generated from the
test set of Multi-PIE dataset. As shown in Fig. 4, faces gen-
erated by our model look more similar to the input face and
the ground-truth face in terms of identity, while faces gen-
erated by the existing models differ from the input face both
in the overall identity and in many specific details, such as
the shape of the jaw, hair style, mouth. The results are con-
sistent with the classification performance of each model.
Note that in some examples, the image generated with the
same viewpoint as the input image may not be exactly the
same as the input image. The results of our model is rea-
sonable, as in our task, we do not expect the output image
to reconstruct the input image. Our model allows for di-
versity of images while preserving the identity so that the
generated images can better augment the dataset.

6. Failure Cases

In this section, we show several failure cases of our
model on CompCars and Multi-PIE datasets. As shown in
Fig. 3 (a), on CompCars, our model fails to maintain some
important details of the input image, such the frontal lights
and the logos. The failure may be due to the difficulty of
our task. Cars in our task contain many fine-grained details,
making the task very challenging. Moreover, the images in
our dataset are not well-aligned. On Multi-PIE, as shown
in the first column of Fig. 3 (b), there are slight distortions
on the contour of the face. In the second column of Fig. 3
(b), the jaw shape of the generated face does not highly ac-
cord with the input face. In the third column of Fig. 3 (b),
our model is able to generate a visually-pleasing face with a
pair of glasses, but the glasses exhibit a different style from
the input image. In these cases, the faces are not generated
perfectly. However, our model can still generate visually
pleasing faces that look similar to the input face. The re-
sults on both datasets indicate that although our model does
not succeed in preserving all the essential identity informa-
tion in challenging situations, it is still able to capture most
of the contextual details. In the future, we will continue to
improve the model to maintain more identity-related details.



Figure 4. More results generated by different models on Multi-PIE dataset. From left to the right: input image, generated images with 9
different viewpoints and a frontal ground-truth face of the input face. Please pay attention to the overall identity of the generated faces as
well as specific details such as jaw shape, hair, mouth and moustache which are important to identity preservation.
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