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1. Implementation

Training Sequence. For the 7Scenes [8] and Cam-
bridge datasets [6]], we adopt the officially released train-
ing sequences to train our networks. While for the Robot-
Car benchmark [7]], we follow the train/test split utilized in
MapNet [[1] and LsG [9]]. The training and testing sequences
along with their descriptions are demonstrated in Table
Although VidLoc [2] and ADPoseNet [3] also report results
on the Oxford RobotCar dataset [7], they use the different
sequences for training and testing. Therefore, we compare
our method against PoseNet [6], MapNet [[1], and LsG [9]
on this dataset.

Network. The structure details of our GNN blocks for
pose estimation, message generation, and node updating are
shown in Fig. [T} Fig. 2] and Fig. [3] respectively. In or-
der to simultaneously process the topological relationships
of multiple frames and extract valuable visual clues from
these images, we retain the spatial connections of image
features, enabling the information of different frames to be
propagated along edges effectively in the formulation of 3D
tensors. Additionally, such design enhances the stability of
GNNs by discarding fully-connected layers in the regular
framework and facilitates the cooperation between GNNs
and CNNs in processing unstructured inputs with high di-
mensions.

2. Experimental Results
2.1. Influence of Sequence Length

The number of frames NV, have direct influence on both
the accuracy and timing. Since images are processed highly
parallel in CNNs and GNNs, our model achieves 130, 110,
100fps for 8, 10, and 15 frames on an 1080TT GPU. We
also find the accuracy goes higher as N, increases since
more information is introduced to each view. While it has
an upper bound as enough overlapped content is necessary.
Studying the influence of IV,, on both accuracy and timing
is really interesting and deserves further exploration.

Sequence | Tag |[Train|[Test|
- 2014-06-26-08-53-56 | overcast | v
- 2014-06-26-09-24-58 | overcast | v
LOOP1 | 2014-06-23-15-41-25| sun v
LOOP2 | 2014-06-23-15-36-04 |  sun v

- 2014-11-28-12-07-13 | overcast | v
- 2014-12-02-15-30-08 | overcast | v/
FULLI | 2014-12-09-13-21-02 | overcast v
FULL2 | 2014-12-12-10-45-15 | overcast v

Table 1: Sequences and their descriptions on the Oxford
RobotCar dataset [7]. We adopt the same train/test split as
PoseNet [6, 14, 5], MapNet [1], and LsG [9].
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Figure 1: Pose estimator. Features at four levels are
first passed through the 1x1 convolutional layer and GAP
(global pooling layer) and then concatenated along the
channel dimension and finally fed into two FC (fully-
connected) layers to regress position and orientation, re-
spectively.

2.2. Results on the RobotCar Dataset

Robustness to Extremely Challenging Conditions.
We further evaluate the performance of our system in han-
dling day-night changes, various weather and season condi-
tions, and dynamic objects (e.g., pedestrians, moving cars,
and road works) on the Oxford RobotCar dataset [7]] (sam-
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Figure 2: Multi-level message generation. The message generation functions incorporated in GNN blocks share the similar

structure with individual parameters.
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Figure 3: Multi-level node updating. Similar to message generation, the node updating functions in four GNN blocks share

the same structures with individual parameters.

ple images can be seen in Fig. ). Table[2]demonstrates that
our network outperforms previous PoseNet [6]], MapNet [1],
and LsG [9]] consistently. Fig. 5] and Fig. [f] show the ac-
cumulative position and orientation errors. The significant
improvements suggest that our graph modeling exploits the
benefit of multiple frames more effectively in enhancing re-
localization accuracy, especially in dealing with challenging
conditions.

Attention Maps. We visualize the attention maps of
PoseNet, MapNet, LsG, and our model on image samples of
the RobotCar dataset. Interestingly, PoseNet, MapNet, and
LsG concentrate on small local areas of the road in front of
the car. While our model perceives much larger areas es-
pecially distributed at regions with rich structures (Fig. [7a]
and[7¢). Additionally, our method can effectively deal
with dynamic objects (Fig. [7b) and over-exposure (Fig. [7d)
by focusing on more meaningful objects (e.g., buildings).
Unfortunately, previous algorithms usually fail in these sce-
narios. We believe that the graph formulation boosts ability
of the feature extractor in learning more global representa-
tion of the scene.

—

(c) Dec., snowy

(d) Dec., night

(e) Feb., roadworks (f) Feb., moving car

Figure 4: Sample images captured under various season,
weather, and illumination conditions in the Oxford Robot-
Car dataset [7].

2.3. Results on the 7Scenes Dataset

Fig.[8} 0] and [T0|show the recovered trajectories and ori-
entation error distributions of PoseNet [6} 4} [5]], MapNet [1]],



Description Method

Sequence Tag PoseNet [6} 4] 5] MapNet [L]] LsG [9] Ours
2014-12-05-11-09-10  overcast, rain | 104.41m, 20.94°  73.74m, 21.06° 57.54m, 8.49° 44.20m, 6.88°
2015-02-03-08-45-10 SNOW 125.22m, 21.61° 139.75m, 29.02° 71.42m, 12.92° 51.42m, 6.76°

2015-02-24-12-32-19 roadworks, sun | 132.86m, 32.22° 157.64m, 33.88° 81.92m, 16.79°  60.96m, 12.41°
2014-12-17-18-18-43 night, rain 471.89m, 82.11° 430.49m, 85.15° 430.54m, 72.35° 236.00m, 44.02°
Avg - 208.60m, 34.22° 200.41m, 42.28° 160.36m, 27.64° 98.15m, 17.52°

Table 2: Mean position and orientation errors of PoseNet [6} 4} 5], MapNet [1]], LsG [9], and our method on the Oxford
RobotCar dataset [7]. These sequences contain day-night changes, different weather and season conditions, and dynamic
objects(e.g., pedestrians, moving cars, construction, and roadworks). The best results are highlighted.

— PoseNet
0.8{ — MapNet
— LG
— ours

—— PoseNet
—— MapNet
061 — LsG
— ours

— PoseNet
—— MapNet
— LG
— ours

0 5 10 15 20 25 30 35 ac 0 5 10 15 20 25 30 35 ac 0 5 10 15 20 25 30 35 ac o 5 10 15 20 25 30 35 40
Translation Error (m) Translation Error (m) Translation Error (m) Translation Error (m)

Figure 5: Cumulative distribution of the mean position errors of PoseNet [6], MapNet [1]], LsG [9]], and our method on the
Oxford RobotCar [7] of sequences 2014-12-05-11-09-10, 2015-02-03-08-45-10, 2015-02-24-12-32-19, and 2014-12-17-18-
18-43 (from left to right).
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Figure 6: Cumulative distribution of the mean orientation errors of PoseNet [6], MapNet [[L], LsG [9], and our method on the

Oxford RobotCar [7] of sequences 2014-12-05-11-09-10, 2015-02-03-08-45-10, 2015-02-24-12-32-19, and 2014-12-17-18-
18-43 (from left to right).
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Figure 7: Attention maps for PoseNet [6} 4, [5]] (1st row), MapNet [1]] (2nd row), LsG [9] (3rd row), and our model (4th row)
on the Oxford RobotCar dataset [7]]. Compared with PoseNet, MapNet, and LsG, which concentrate on a local area in front
of the car, our method focus mainly on global structure of the whole scene, leading to larger perception areas. Moreover, our
model performs more effectively in handling challenging conditions, e.g., dynamic objects and over-exposure.
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Figure 8: Raw images and recovered trajectories (red line) of PoseNet [6] [4, [5]], MapNet [1]], and our method on the 7Scenes
dataset [8]. The green lines are the ground-truth trajectories. These sequences (from top to bottom) are heads-01, chess-03,

chess-05, fire-03, fire-04, and office-02.
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Figure 9: Raw images and recovered trajectories (red line) of PoseNet [6] 4, [5]], MapNet [[I]], and our method. The green
lines are the ground-truth trajectories. These sequences (from top to bottom) are office-06, office-07, office-09, pumpkin-01,
pumpkin-07, and redkitchen-03.



1510 05 o
x(m

m 0% 10 g5 00

2im)
2im)

150
125
100 100
075 = 075 %
050
025
000
16
00 0r00mn it 0002 5agq 0510
" 10-1214 -6 " ximp*® 1012 1.4 -os" Y
[ ] | TTwW T
0 s0 100 15 200 250 300 350 400 0 50 100 15 200 250 300 350 400
10
0s
0s
04 E g
02
00
-0z

02 g1
00 o1 _
xim) %2 =03 0

[ L S IENTET 2 T .
0 50 100 150 200 250 300 350 400

0 50 100 150  20f 0 400

0 250 300 354
Raw image oseNet [6} 4} 3]

15 10
05 00 _
xim 05 =10 15 0.0

zim)

00-02.04 g o
my T

-12.34

0 50 100 150 200 250 300 350 400

2(m)

i
Y,
0509 v

00
“o1 —
Xim) -02 o3 -07

0 50 100 150 200 250 300 350 400

Ours

Figure 10: Raw images and recovered trajectories (red line) of PoseNet [6} 4 3], MapNet [1]], and our method. The green
lines are the ground-truth trajectories. These sequences (from top to bottom) are redkitchen-04, redkitchen-06, redkitchen-12,

redkitchen-14, stairs-01, and stairs-04.



