Learning to Cluster Faces via Confidence and Connectivity Estimation
Supplementary Material

Lei Yang1, Dapeng Chen2, Xiaohang Zhan1, Rui Zhao2, Chen Change Loy3, Dahua Lin1
1The Chinese University of Hong Kong
2SenseTime Group Limited, 3Nanyang Technological University
\{y1016, zx017, dhlin\}@ie.cuhk.edu.hk, \{chendapeng, zhaorui\}@sensetime.com, ccloy@ntu.edu.sg

1. Pseudo-code of the proposed algorithm

We provide a pseudo-code to illustrate the steps of the proposed method.

\begin{algorithm}[H]
\caption{Clustering via Confidence and Connectivity Estimation}
\textbf{Input:} Graph G, portion of vertices using GCN-E ρ, number of connections M, cut-off threshold τ
\textbf{Output:} Clusters C
1: Vertex confidence $V = \text{GCN-E}(G)$
2: $S = \text{getCandidateSet}(V)$
3: $H = \text{getHighConfidenceVertexSet}(V, \rho)$
4: for $i \in H$ do
5: \hspace{1em} Edge connectivity $E_i = \text{GCN-E}(S_i, M)$
6: end for
7: for $i \in V \setminus H$ do
8: \hspace{1em} Edge connectivity $E_i = \text{Max}(E(S_i), M)$
9: end for
10: Clusters $C = \text{connectToClusters}(E, \tau)$
11: return C
\end{algorithm}

2. Detailed settings of compared methods

(1) \textbf{K-means} \cite{2}, minimizes the total intra-cluster variance with a given number of clusters. For $N = 584K$ of MS-Celeb-1M or DeepFashion, we employ K-means by adopting the ground-truth number of clusters. For $N \geq 1.74M$, we use mini-batch K-means with batch size 1,000.

(2) \textbf{HAC} \cite{6}, adopts \textit{single} strategy for bottom-up merging in our experiments. The distance threshold is set to 0.72 for different scale of MS-Celeb-1M. For DeepFashion, we tune the distance threshold from 0.1 to 0.9 with a step 0.1 and find 0.4 gives the best result.

(3) \textbf{DBSCAN} \cite{3}, has two important hyper-parameters, namely, radius and minPts. For higher efficiency, we apply KNN DBSCAN, which only considers its K nearest neighbors for density computation. We set $K = 80, \text{radius} = 0.25, \text{minPts} = 1$ for $584K, 1.74M$ and $2.89M$ of MS-Celeb-1M. When the number of unlabeled images is larger than 4.05M, we have to decrease the distance threshold τ from 0.25 to 0.2, otherwise the pairwise precision will go down to 1.46\%. For DeepFashion, we set $K = 4, \text{radius} = 0.1, \text{minPts} = 2$.

(4) \textbf{MeanShift} \cite{2}, fails to yield results in a reasonable time even on $584K$ of MS-Celeb-1M. Therefore, we only apply the approach in DeepFashion. We tune the bandwidth from 0.1 to 0.9 and find 0.5 gives the best result.

(5) \textbf{Spectral} \cite{5}, has $N \times N$ space complexity, incurring excessive memory demands even on the smallest setting of MS-Celeb-1M ($584K$). We employ spectral clustering on DeepFashion by setting the number of clusters to 3,991, which is the ground-truth number of clusters.

(6) \textbf{ARO} \cite{1}, depends on the number of nearest neighbors K. For the reported results of MS-Celeb-1M, we use $K = 80$ for all scales. When increasing K to 500, it takes 21h to yield $F_p = 54.47$ on $584K$ of MS-Celeb-1M. For DeepFashion, we vary K from 5 to 30 and the best result appears when $K = 10$.

(7) \textbf{CDP} \cite{9}, adopts a dynamic threshold algorithm to partition the affinity graph efficiently, which relies on an initial threshold τ, a threshold step $\Delta \tau$, maximum size of clusters s_{max} and K for constructing KNN affinity graph. For all scales of MS-Celeb-1M, we set $\tau = 0.7, \Delta \tau = 0.05, s_{max} = 300$ and $K = 80$. For DeepFashion, we set $\tau = 0.5, \Delta \tau = 0.05, s_{max} = 200$ and $K = 2$.

(8) \textbf{L-GCN} \cite{7}, adopts the pseudo label propagation algorithm of CDP. In addition to $\tau, \Delta \tau$ and s_{max}, it requires K at each hop K_h to construct instance pivot graph and active connections c for aggregating the predictions. For $584K$ and $1.74M$ of MS-Celeb-1M, we set $K_0 = 80, K_1 = 10, c = 10, \tau = 0.6, \Delta \tau = 0.05$ and $s_{max} = 300$. For $N \geq 2.89M$, we increase τ to 0.7 and s_{max} to 900, while keeping other hyper-parameters the same. For DeepFashion, we set $K_0 = 5, K_1 = 5, c = 5, \tau = 0.5, \Delta \tau = 0.05$ and $s_{max} = 300$.

(9) \textbf{LTC} \cite{8}, for $N = 584K$ of MS-Celeb-1M, we adopt the same strategy of LTC, which sets different K and τ.

generating a large number of proposals iteratively. For \(N \geq 1.74M \), to control the computational budget, we set \(K = 80, s_{\text{max}} = 300, \Delta \tau = 0.05 \) and generate cluster proposals using 5 thresholds ranging from 0.55 to 0.75 with a step of 0.05, without resorting to the iterative scheme. For DeepFashion, we set \(K = 5, s_{\text{max}} = 100, \tau = [0.55, 0.6] \). Adding proposals generated with \(\tau = [0.65, 0.7] \) only increases the \(F_P \) from 29.14 to 29.5, while increasing the runtime from 13s to 27s.

(10) **Ours (V)**, the proposed method mainly relies on two hyper-parameters, namely \(K \) and cut off threshold \(\tau_c \). For all settings, we set \(\tau_c = 0.8 \). To construct the \(K\)NN graph, we set \(K = 80 \) for MS-Celeb-1M and \(K = 5 \) for DeepFashion, respectively. For GCN-V, one hidden layer is adopted with a hidden dimension of 512.

(11) **Ours (V + E)**, introduces GCN-E module to select top \(\rho \) vertices for connectivity estimation and top-\(M \) prediction for connection. For both MS-Celeb-1M and DeepFashion, we set \(\rho = 0.7 \) for training and \(\rho = 0.8 \) for inference. \(M \) is set to 1 for all settings. To better evaluate the neighborhood of each vertex, we can use different \(K \) nearest neighbors for GCN-V and GCN-E. For MS-Celeb-1M, we use \(K = 80 \) for both GCN-V and GCN-E. For DeepFashion, we use \(K = 5 \) for GCN-V and \(K = 80 \) for GCN-E.

References

