Supplementary Materials for
GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet

A. Details of evolutionary searching in Section 4.2

We present the details of our adopted NSGA-II [[1]] evolutionary algorithm in the following Algorithm[3] In our experiment,
population size N, = 50 and number of generations T' = 20.

Algorithm 3 Evolutionary Architecture Search

Input: supernet N\, candidate pool P, population size Npop, number of generations 7', validation data D,,4;, constraints C.
Output: architecture with highest validation accuracy under constraints.

1: Initialize populations Py with P so that | Py| = N, and P, satisfies constraints C.

22 E=10; # evaluation set E/ which stores all evaluated architectures with accuracy

3: fori=0,1,....T — 1 do

4 Q; = make—new—pop(P;);

generate offspring population); using binary tournament selection, recombination, and mutation operators

55 Ri=PFUQy:;

6: F; = fast-non—dominated—sort(R;); # generate all nondominated fronts of R;

7. Pyi=0andj=0;

8: while [P 1|+ |F;| < Ny do
9

: crowding—distance—assignment(F;); # calculate crowding-distance in F);
10: Pi+1:.PZ'+1UF';
11: j=3+1
12: end while
13: E; = evaluation—architecture(F;, Dyq,C); # evaluate architecture with constraints and validation data
14 FEF=FUE; #extend F; to
15: Sort(Fj, E;); # sort in descending order using E;
16: Piy1 = Pip1 UF;[1: (Npop — |Pit1]))s # choose the first (Npop — |P;+1|) elements of F)
17 Qit1 = make—new—pop(P;y1); # make new population with constraints
18: end for

19: return architecture with highest accuracy in

B. More Experimental Results
B.1. Details of (augmented) search space

The macro-structure of supernet is presented in Table [5]
where each operation choice for Choice Block is attached
in Table [6l

Table 5: Macro-structure of supernet. “input” indicates the
size of feature maps for each layer, and “channels” means
for the number of output channels. “repeat” is for the num-
ber of stacking same blocks, and “stride” is for the stride
of first block when stacked for multiple times. “MB1_K3”
refers to Table[6]

input block channels | repeat | stride
2247 x 3 3 x 3 conv 32 1 2
1122 x 32 MB1_K3 16 1 1
1122 x 16 | Choice Block 32 4 2
562 x 32 | Choice Block 40 4 2
282 x 40 | Choice Block 80 4 2
142 x 80 | Choice Block 96 4 1
142 x 96 | Choice Block 192 4 2
72 x 192 | Choice Block 320 1 1
72 % 320 1 x 1 conv 1280 1 1
72 x 1280 | global avgpool - 1 -

1280 FC 1000 1 -

Table 6: Operation choices for each MobileNetV2-based
Choice Block in Table [5] where ID means for an identity

mapping.

block type expansion ratio | kernel | SE
MB1.K3 1 3 no
1D - - -

MB3_K3 3 3 no
MB3_K5 3 5 no
MB3_K7 3 7 no
MB6_K3 6 3 no
MB6_K5 6 5 no
MBG6_K7 6 7 no
MB3_K3_SE 3 3 yes
MB3_K5_SE 3 5 yes
MB3_K7_SE 3 7 yes
MB6_K3_SE 6 3 yes
MB6_K5_SE 6 5 yes
MB6_K7_SE 6 7 yes

B.2. Calculating corrected #optimization in Table 1

In our GreedyNAS, when equipped with the stopping
principle of candidate pool, the supernet training is stopped
at approximately 46-th epoch. Thus the accumulated num-
ber of examples calculated for a whole optimization step is
equal to

#optimization=1.23M x 46,

where 1.23M refers to the quantity of training dataset. As
for the path filtering, we evaluate 10 paths based on 1000
validation images, and select 5 paths for training, whose
batch size is 1024. In this way, the number of images for
evaluation amounts to

1000 10
#evaluation = 1.23M x —— X — x 4
evaluation 3M x 1024 X 5 X 46,
= 2.40M x 46.

Given our empirical findings that the cost of a whole opti-
mization step is approximately 3.33 times larger than that
of a forward evaluation, the corrected #optimization is thus

corrected #optimization = #optimization + #evaluation/3.33,
= 1.23M x 46 + 2.40M x 46/3.33,
= 89.7M.

B.3. Details of rank correlation coefficient

In ablation study 5.3.1, we use two Spearman rho [3]] and
Kendall tau [2] rank correlation coefficient to evaluate the
correlation of two path orderings, which are generated by
ranking the evaluation results using 1000 and 50K valida-
tion images, denoted as r and s, respectively. Basically, we
aim to calculate the correlation of = and s.

For Spearman rho rank correlation coefficient, it is sim-
ply the Pearson correlation coefficient between random
variable r and s, if we regard r and s as two observation
vectors of random variable r and s, i.e.,

covlr,s
,0317(’),

Or0s
where cov(-,-) is the covariance of two variables, and
o, (0s) is the standard deviations of r (s). Based on ob-
servation vectors, it can be more efficiently calculated as

6> 1 (ri — 8:)
1- 9
n(n? —1)

ps =

where n = 1000 in our experiment.

For Kendall tau rank correlation coefficient, it focuses on
the pairwise ranking performance. For any pair (r;, ;) and
(si,84), it is said to be concordant if r; > r; and s; > s;
hold simultaneously, or also for r; < 7; and s; < s;. Oth-
erwise, it will be called disconcordant. Then the coefficient
is calculated as

#concordant pairs - #disconcordant pairs

PK =

)

#all pairs

where #all pairs = C?2 refers to the total number of pairs. In
this way, if two rankings r and s are exactly the same, px
will be 1 while if the two are completely different (i.e., one

ranking is the reverse of the other), px will be -1. Accord-
ing to the definition, it can also be calculated in a closed-
form as

2 . :
Pr =) 2 (s —),

where sign(-) is the sign function.

B.4. More ablation studies
B.4.1 Performance of trained supernet

To further investigate the performance of the trained super-
net, we implement two different searching methods (ran-
dom search and evolutionary search) on various trained su-
pernet, i.e., greedy supernet, uniform supernet (full train-
ing) and uniform supernet-E (same training cost with Gree-
dyNAS). The results can be regarded as supplementary for
Table 1.

Table 7: Comparison of performance on ImageNet dataset
of searched architectures w.r.t. different supernets under
same search space.

supernet searcher Top-1 (%) | FLOPs
uniform random 74.07 321M
uniform-E random 73.88 320M
greedy random 74.22 321M
uniform evolutionary 74.50 326M
uniform-E | evolutionary 74.17 320M
greedy evolutionary 74.85 320M

From Table [/, we can see that a greedy supernet im-
proves consistently the classification accuracy in terms of
different searchers. This validates the superiority of our
greedy supernet since it helps searchers to probe better ar-
chitectures. Moreover, to comprehensively investigate the
effect of supernets, we implement systematic samplingﬂto
sample 30 paths from 50 x 20 = 1000 paths, which are dis-
covered by the evolutionary algorithms and ranked accord-
ing to the accuracy on supernet. Then we retrain these 30
paths from scratch, and report their distribution histogram
in Figure 5}

As shown in Figure 5] we can see that on average, paths
searched with our greedy supernet have higher retraining
Top-1 accuracy than that with uniform supernet. This im-
plies that our greedy supernet serves as a better performance
estimator, so that those good paths can be eventually identi-
fied and searched.

https://en.wikipedia.org/wiki/Systematic_
sampling

o
'S
(4]

o
~
T

[greedy supernet
[Juniform supernet

Frequency
o o
o o w
N (4] w (4]
) | |

o
o
o

o
e
T

o

=)

a
T

i

73.5 74 74.5
Top-1 ACC (%)

o

Figure 5: Top-1 accuracy histogram of 30 systematically
sampled paths from 1000 paths searched by evolutionary
algorithm after trained from scratch.

B.5. Visualization of searched architectures

We visualize the searched architectures by our Greedy-
NAS method in Figure[6]

References

[1] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT
Meyarivan. A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. [EEFE transactions on evolutionary compu-
tation, 6(2):182-197, 2002.

[2] Maurice G Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81-93, 1938.

[3] W Pirie. S pearman rank correlation coefficient. Encyclopedia
of statistical sciences, 2004.

https://en.wikipedia.org/wiki/Systematic_sampling
https://en.wikipedia.org/wiki/Systematic_sampling

MB3_K3_SE

MB3_K3_SE

MB3_K7_SE

MB3_K3_SE

MB3_K3_SE

MB3_K7_SE

MB3_K7_SE
MB3_K7_SE
MB3_K3_SE

MB3_K3_SE

MB3_K7_SE MB3_K7_SE

MB3_K7_SE |

MB6_K7_SE MB3_K7_SE

MB3_K3_SE MB3_K7_SE
MB6_K3_SE MB3_K7_SE

MB6_K7_SE MB6_K7_SE

MB6_K7_SE

(a) GreedyNAS-A (b) GreedyNAS-B (c) GreedyNAS-C

Figure 6: Visualization of searched architectures by GreedyNAS in Table 2.

