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A. Additional experiments
In this supplementary material, we report additional qual-

itative results of our approach (Sec. A.1), additional details
about the experiments in our paper (Sec. A.2), and also con-
duct further ablation studies (Sec. A.3).

A.1. Qualitative results

Figure 1 shows qualitative results for semantic segmenta-
tion (on Cityscapes) while Figure 2 and 3 show qualitative
results for instance segmentation (on COCO).

A.2. Additional experimental details

A.2.1 Datasets

Cityscapes: Cityscapes [6] has densely annotated semantic
labels for 19 categories in urban road scenes, and contains
a total of 5000 finely annotated images, divided into 2975,
500, and 1525 images for training, validation and testing
respectively. We do not use the coarsely annotated data
in our experiments. The images of this dataset have a high
resolution of 1024×2048. Following the standard evaluation
protocol [6], the metric of mean Intersection over Union
(mIoU) averaged over all classes is reported.

COCO: COCO 2017 [18] consists of 80 object classes with
a training set of 118,000 images, a validation set of 5000
images, and a test set of 2000 images. We follow the standard
COCO evaluation metrics [19] to evaluate the performance
of object detection and instance segmentation, employing
the metric of mean average-precision (mAP) at different box
and mask IoUs respectively.

A.2.2 Semantic segmentation on Cityscapes

For the semantic segmentation task on Cityscapes, we follow
[31] and use a polynomial learning rate decay with an initial
learning rate of 0.01. The momentum and the weight decay
are set to 0.9 and 0.0001 respectively. We use 4 Nvidia
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V100 GPUs, batch size 8 and train for 40000 iterations
from an ImageNet-pretrained model. For data augmenta-
tion, random cropping with a crop size of 769 and random
mirror-flipping are applied on-the-fly during training. Note
that following common practice [31, 30, 32, 25] we used
synchronised batch normalisation for better estimation of
the batch statistics for the experiments on Cityscapes. When
predicting dynamic filter weights, we use the grouping pa-
rameter G = 4. For the experiments on Cityscapes, we use
a set of the sampling rates of ϕ = {1, 6, 12, 24, 36}.

A.2.3 Object detection and instance segmentation on
COCO

Our models and all baselines are trained with the typical
“1x” training settings from the public Mask R-CNN bench-
mark [21] for all experiments on COCO. More specificially,
the backbone parameters of all the models in the experiments
are pretrained on ImageNet classification. The input images
are resized such that their shorter side is of 800 pixels and
the longer side is limited to 1333 pixels. The batch size is set
to 16. The initial learning rate is set to 0.02 with a decrease
by a factor of 0.1 after 60000 and 80000 iterations, and fi-
nally terminates at 90000 iterations. Following [21, 11], the
training warm-up is employed by using a smaller learning
rate of 0.02 × 0.3 for the first 500 iterations of training. All
the batch normalisation layers in the backbone are “frozen”
during fine-tuning on COCO.

When predicting dynamic filter weights, we use the group-
ing parameter G = 4. For the experiments on COCO, a set
of the sampling rates of ϕ = {1, 4, 8, 12} is considered. We
train models on only the COCO training set and test on the
validation set and test-dev set.

A.3. Additional ablation studies

Effectiveness of different training and inference strate-
gies. When evaluating models for the Cityscapes test set, we
followed common practice and employed several comple-
mentary strategies used to improve performance in seman-
tic segmentation, including Online Hard Example Mining
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OHEM Multi-grid MS mIoU (%)
FCN w/ DGMN 8 8 8 79.2
FCN w/ DGMN 4 8 8 79.7
FCN w/ DGMN 4 4 8 80.3
FCN w/ DGMN 4 4 4 81.1

Table 1: Ablation studies of different training and inference strate-
gies. Our method (DGMN w/ DA+DW+US) is evaluated under
single scale mIoU with ResNet-101 backbone on Cityscapes vali-
dation set.

(OHEM) [26, 23, 15, 30, 28], Multi-Grid [2, 10, 4] and Multi-
Scale (MS) ensembling [1, 3, 31, 30, 7]. The contribution of
each strategy is reported in Table 1 on the validation set.

Inference time We tested the average run time on the
Cityscapes validation set with a Nvidia Tesla V100 GPU.
The Dilated FCN baseline and the Non-local model take
0.230s and 0.276s per image, respectively, while our pro-
posed model uses 0.253s, Thus, our proposed method is
more efficient than Non-local [27] in execution time, FLOPs
and also the number of parameters.

Effectiveness of different sampling rate ϕ and group
of predicted weights G (Section 3.3 and 3.4 in main
paper). For our experiments on Cityscapes, where are
network has a stride of 8, the sampling rates are set to
ϕ = {1, 6, 12, 24, 36}. For experiments on COCO, where
the network stride is 32, we use smaller sampling rates of
ϕ = {1, 4, 8, 12} in C5. We keep the same sampling rate in
C4 when DGMN modules are inserted into C4 as well.

Unless otherwise stated, all the experiments in the main
paper and supplementary used G = 4 groups as the default.
Each group of C/G feature channels shares the same set of
filter parameters [5].

The effect of different sampling rates and groups of pre-
dicted filter weights are studied in Table 2, for semantic
segmentation on Cityscapes, and Table 3, for object detec-
tion and instance segmentation on COCO.

Effectiveness of feature learning with DGMN on
stronger backbones. Table 4 of the main paper showed
that our proposed DGMN module still provided substantial
benefits on the more powerful backbones such as ResNet-101
and ResNeXt 101 on the COCO test set. Table 4 shows this
for the COCO validation set as well. By inserting DGMN
at the convolutional stage C5 of ResNet-101, DGMN (C5)
outperforms the Mask R-CNN baseline with 1.6 points on
the APbox metricand by 1.2 points on the APmask metric.
On ResNeXt-101, DGMN (C5) also improves by 1.5 and
0.9 points on the APbox and the APmask, respectively.

A.4. State-of-the-art comparison on COCO

Table 5 shows comparisons to the state-of-the-art on the
COCO test-dev set. When testing, we process a single
scale using a single model. We do not perform any other
complementary performance-boosting “tricks”. Our DGMN
approach outperforms one-stage detectors including the most
recent CornerNet [14] by 2.1 points on box Average Preci-
sion (AP). DGMN also shows superior performance com-
pared to two-stage detectors including Mask R-CNN [12]
and Libra R-CNN [22] using the same ResNeXt-101-FPN
backbone.



DA DW DS mIoU (%)

Dilated FCN 8 8 8 75.0
+ DGMN (ϕ = {1}) 4 8 8 76.5
+ DGMN (ϕ = {1}) 4 4 8 79.1
+ DGMN (ϕ = {1, 1, 1, 1}) 4 4 4 79.2
+ DGMN (ϕ = {1, 6, 12}) 4 4 4 79.7
+ DGMN (ϕ = {1, 6, 12, 24, 36}) 4 4 4 80.4

Table 2: Quantitative analysis on different sampling rates of our dynamic sampling strategy in the proposed DGMN model on the Cityscapes
validation set. We report the mean IoU and use a ResNet-101 as backbone. All methods are evaluated using a single scale.

DA DW DS APbox APmask

Mask R-CNN baseline 8 8 8 37.8 34.4
+ DGMN (ϕ = {1, 4, 8, 12}, G = 0) 4 8 8 39.4 35.6
+ DGMN (ϕ = {1, 4, 8, 12}, G = 0) 4 8 4 39.9 35.9
+ DGMN (ϕ = {1, 4, 8}, G = 2) 4 4 4 39.5 35.6
+ DGMN (ϕ = {1, 4, 8}, G = 4) 4 4 4 39.8 35.9
+ DGMN (ϕ = {1, 4, 8, 12}, G = 4) 4 4 4 40.2 36.0

Table 3: Quantitative analysis on different numbers of filter groups (G) and sampling rates (ϕ) for the proposed DGMN model on the
COCO 2017 validation set. All methods are based on the Mask R-CNN detection pipeline with a ResNet-50 backbone, and evaluated on the
COCO validation set. Modules are inserted after all the 3× 3 convolution layers of C5 (res5) of ResNet-50.

Model Backbone APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Mask R-CNN baseline
ResNet-101

40.1 61.7 44.0 36.2 58.1 38.3
+ DGMN (C5) 41.7 63.8 45.7 37.4 60.4 39.8
Mask R-CNN baseline

ResNeXt-101
42.2 63.9 46.1 37.8 60.5 40.2

+ DGMN (C5) 43.7 65.9 47.8 38.7 62.1 41.3

Table 4: Quantitative results via applying the proposed DGMN module into different strong backbone networks for object detection and
instance segmentation on the COCO 2017 validation set.

Backbone APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

One-stage detectors
YOLOv3 [24] Darknet-53 33.0 57.9 34.4 - - -
SSD513 [20] ResNet-101-SSD 31.2 50.4 33.3 - - -
DSSD513 [9] ResNet-101-DSSD 33.2 53.3 35.2 - - -
RetinaNet [17] ResNeXt-101-FPN 40.8 61.1 44.1
CornerNet [14] Hourglass-104 42.2 57.8 45.2
Two-stage detectors
Faster R-CNN+++ [13] ResNet-101-C4 34.9 55.7 37.4 - - -
Faster R-CNN w FPN [16] ResNet-101-FPN 36.2 59.1 39.0 - - -
R-FCN [8] ResNet-101 29.9 51.9 - - - -
Mask R-CNN [12] ResNet-101-FPN 40.2 61.9 44.0 36.2 58.6 38.4
Mask R-CNN [12] ResNeXt-101-FPN 42.6 64.9 46.6 38.3 61.6 40.8
Libra R-CNN [22] ResNetX-101-FPN 43.0 64.0 47.0 - - -
DGMN (ours) ResNeXt-101-FPN 44.3 66.8 48.4 39.5 63.3 42.1

Table 5: Object detection and instance segmentation performance using a single-model on the COCO test-dev set. We use
single scale testing.



Figure 1: Qualitative results of the Dilated FCN baseline [29] and our proposed DGMN model on the Cityscapes dataset.
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Figure 2: Qualitative examples of the instance segmentation task on the COCO validation dataset. The odd rows are the results
from the Mask R-CNN baseline [21, 12]. The even rows are the results from our DGMN approach. Note how our approach
often produces better segmentations and fewer false-positive and false-negative detections.
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Figure 3: More qualitative examples of the instance segmentation task on the COCO validation dataset. The odd rows are the
results from the Mask R-CNN baseline [21, 12]. The even rows are the detection results from our DGMN approach. Note how
our approach often produces better segmentations and fewer false-positive and false-negative detections.
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