
Appendix A. Quantization Error Measurement
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Considering Equation. 4 in Equation. 3 , we have md
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Appendix B. Quantification Method
A fixed-point number consists of a sign bit, (n−1)-bit integer, and a global quantization resolution r relating to fixed-point

position s. Before quantization, the maximum absolute data is Z. The representation data range, bit-width and quantization

resolution are inter-dependent, as Range ≈ r × 2n. The quantization resolution is calculated as in Table. 1 column 2.

Suppose Fx is the floating point representation of x and Ix is the fixed-point representation of x, and F̂x is the approximation

of Fx, as F̂x1
= Ix1

× r1, F̂x2
= Ix2

× r2, the multiplication between numbers becomes:
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Table 1: Quantization method

Quantization Function Quantization Resolution Fixed-Point Data Range

Ix = round(Fx

r ) r = 2s = 2
ceil(log2(

Z

2n−1−1
))

[−r(2n−1), r(2n−1 − 1)]

Appendix C. Observations on Other Network

(a) Activation gradient distribution.
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(b) Activation gradient evolution.
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(c) Training curve of AlexNet.

Figure 1: Observations on ResNet34.

As shown in Figure. 1, for ResNet34 int8 is enough to quantify the activation gradient of g3b2c2, g2b5c1 and g3b2c1,

however, int8 for fc and conv0 either not converges or introduces accuracy drop, conv0 and fc have large variance. These

observations are consistent with the observation on AlexNet. In conclusion, data with large variance requires large bit-width,

thus the quantization parameters should be dynamically determined by the data distribution.

Appendix D. Extra Evaluation of Error Measurement
Figure. 2 shows the linear correlation between ResNet50 accuracy and several error metrics. Our proposed quantization

error measurement M1 has the highest correlation score (0.85 for ResNet50) with the network-level accuracy.
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Figure 2: Correlation between ResNet50 accuracy a and quantization error measurement M .

Appendix E. Adaptive Bit-width for Weight and Activation
Here we show the results of adaptive lower bit-width (i.e., int4) for forward-pass. All the data of AlexNet and ResNet18 are

quantified into int4 at start. Then, the bit-width of different layer is automatically increased by the proposed QEM and QPA.

As shown in Table. 2, 62.5% of linear layers of AlexNet and 36.3% of linear layers of ResNet18 involve int4 multiplication 1.

1Weight of conv0, fc0, fc2 on AlexNet are int4, activation of conv0, conv1, conv2 on AlexNet are int4. Weight of conv1, res2a 1, res2b 2a, res2b 2b on

ResNet18 are int4, activation of conv1, res2b 2a, res2b 2b, res3a 1, res3a 2a, res3a 2b, fc on ResNet18 are int4.
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The final mixed precision models have small accuracy losses (0.3%˜0.9%). Quantify the back propagation is our primary

pursuit, but the proposed QEM and QPA can also be extended to low-bit inference (e.g., binary or ternary), which will be our

future work.

Table 2: 4-bit fine-tuning

Classification Baseline(float32) Adaptive Weight Bit-width Activation Bit-width
Network top1 accuracy top1 accuracy int4 int8 int4 int8

AlexNet 58.0 57.7 37.5% 62.5% 50% 50%

ResNet18 67.3 66.4 19% 81% 33.3% 66.7%

Appendix F. Training loss convergence
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Figure 3: Training loss curve for MobileNet v2.
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Figure 4: Training loss curve for ResNet50.

The training loss curves of for Mobilenet v2 and ResNet50 are shown in Figure. 3 and Figure. 4. Adaptive Fixed-Point

Training has the same convergence speed as float32 training.

Appendix G. Speedup over int16
There is 1.3 times speedup over int16 on CPU for AlexNet (1.13 times speedup for backward and 1.7 times speedup for

forward). The int16 x int8 in our method is implemented as int16 x int16 on Xeon Gold 6154. With flexible arithmetic

operations like int16 x int8 on future hardware, higher training speedup is promising.
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