A PROOF OF THEOREM 1

Theorem 1. Let fi and fo are two models such that for any fixed label y € Y, Uy, (xps,y) >
Uf2 (xnsa y) Then, SKL(p(XS‘:% xns)prl (Xs|y7 xns)) Z SKL(p(XS|ya xns)prz (Xsly> xns))

Proof. We can expand the KL divergence Dki. (p(Xs|y, ns)| s, (Xs|y, Tns) as follows.

DKL(p(XS|yaxns)||pf1 (Xs|y7$ns)) (1)
= EXNp(XS\y,zns) [IOgP(XskU, xns)] - ]EXNp(X5|y,:rns) [logpfl (Xs‘y; mns)] (2)
Thus,
DKL(p(XS|y7 xns)||pf1 (Xs‘:% xns)) - DKL(p(Xs|y7 xns)”pfz (Xs‘ya xns)) (3)
= EXNp(XS|y,xn5)[10gpf2 (Xs‘ya mns) - logpfl (X8|ya xns)] (4)
Xs7xns Xs Tns : Xs; Tns Xs Tns
= 3 p(Xuly, 20s) (lo P (Yl IP(Xs|zns) log pr (Yl )p(Xs| )) 5)
- Prs(Ylzns) Pf (Y] Tns)
= ZP(XJ%!EM) ((Ingfz (y|Xsa xns) - Ingfz (y|xn5))
x
- (Ingfl (y|X5, xns) - 10gpf1 (ylxns))) (6)
= Ufz (xnw y) - Uf1 (J?ns, y) <0 (7N
O]

B EXPERIMENTAL DETAILS

B.1 NETWORK ARCHITECTURE

The GAN architectures for the GMI attacks without auxiliary knowledge, with corrupted private
image, and with blurred private image, are shown in Figure([T] [2] and 3] respectively. Moreover, in the
experiments, we use the same GAN architectures for the PII baseline and the GMI attacks.
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Figure 1: The GAN architecture for the attack without auxiliary knowledge.

The detailed architecture designs of the two encoders, the decoder of the generator, the local discrimi-
nator, and the global discriminator are presented in Table[T] Table 2] Table[3] Table[d] and Table[5]
respectively.

The information of some network architectures used in the experiment section but not covered in
the main text is elaborated as follows: (1) LeNet adapted from (Lecun et al.| [1998)), which has
three convolutional layers, two max pooling layers and one FC layer; (2) SimpleCNN, which has
five convolutional layers, each followed by a batch normalization layer and a leaky ReLU layer; (3)
SoftmaxNet, which has only one FC layer.

B.2 THE DETAILED SETTING OF THE EXPERIMENTS ON “ATTACKING DIFFERENTIALLY
PRIVATE MODELS”

We split the MNI ST dataset into the private set used for training target networks with digits 0 ~ 4
and the public set used for distilling prior knowledge with digits 5 ~ 9. The target network is
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Figure 2: The GAN architecture for the attack with the auxiliary knowledge of a corrupted private

image.
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Figure 3: The GAN architecture for the attack with the auxiliary knowledge of a blurred private

image.

Table 1: When the auxiliary knowledge is a corrupted private image, the upper encoder of the generator
takes as input the corrputed RGB image and the binary mask. When the auxiliary knowledge is a
blurred private image, the upper encoder only takes an image as input.

Type Kernel Dilation Stride Outputs
conv. 5x5 1 1x1 32
conv. 3x3 1 2x2 64
conv. 3x3 1 1x1 128
conv. 3x3 1 2x2 128
conv. 3x3 1 1x1 128
conv. 3x3 1 1x1 128
conv. 3x3 2 1x1 128
conv. 3x3 4 1x1 128
conv. 3x3 8 1x1 128
conv. 3x3 16 1x1 128

Table 2: The lower encoder of the generator that takes as input the latent vector.

Type Kernel Stride Outputs
linear 8192
deconv. 5x5 1/2x1/2 256
deconv. 5x5 12x1/2 128

implemented as a Multilayer Perceptron with 2 hidden layers, which have 512 and 256 neurons,
respectively. The evaluation classifier is a convulutional neural network with three convolution layers,



Table 3: The decoder of the generator.

Type Kernel Stride Outputs
deconv. 5x5 12x1/2 128
deconv. 5x5 1/2x1/2 64
conv. 3x3 1x1 32
conv. 3x3 1x1 3

Table 4: The global discriminator.

Type Kernel Stride Outputs
conv. 5x5 2x2 64
conv. 5x5 2x2 128
conv. 5x5 2x2 256
conv. 5x5 2x2 512
conv. 1x1 4x4 1

Table 5: The local discriminator. This discriminator only appears in the attack with the knowledge of
a corrupted image.

Type Kernel Stride Outputs
conv. 5x5 2x2 64
conv. 5x5 2x2 128
conv. 5x5 2x2 256
conv. 1x1 4x4 1

followed by two fully-connected layers. It is trained on the entire MNIST training set and can achieve
99.2% accuracy on the MNIST test set.

Differential privacy of target networks is guaranteed by adding Gaussian noise to each stochastic
gradient descent step. We use the moment accounting technique to keep track of the privacy budget
spent during training (Abadi et al.,[2016). During the training of the target networks, we set the batch
size to be 256. We fix the number of epochs to be 40 and clip the L2 norm of per-sample gradient to
be bounded by 1.5. We set the ratio between the noise scale and the gradient clipping threshold to
be 0,0.694,0.92, 3, 28, respectively, to obtain the target networks with € = 00,9.89,4.94,0.98,0.10
when ¢ = 10~5. For model with ¢ = 0.1, we use the SGD with a small learning rate 0.01 to ensure
stable convergence; otherwise, we set the learning rate to be 0.1.

The architecture of the generator in Section [B.1]is tailored to the MNIST dataset. We reduce the
number of input channels, change the size of kernels, and modify the layers of discriminators to be
compatible with the shape of the MNIST data. To train the GAN in the first stage of our GMI attack,
we set the batch size to be 64 and use the Adam optimizer with the learning rate 0.004, 5; = 0.5,
and B2 = 0.999 (Kingma and Ba, 2014). For the second stage, we set the batch size to be 64 and
use the SGD with the Nesterov momentum that has the learning rate 0.01 and momentum 0.9. The
optimization is performed for 3000 iterations.
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