
A. ELBO derivation
We provide the full derivation of our model and losses

from Equation (3). We start with our goal of finding model
parameters θ that maximize the following probability for all
videos and all t:

pθ(δt, xt−1;xT )

∝pθ(δt|xt−1;xT )

=

∫
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pθ(δt|zt, xt−1;xT )p(zt)dzt.

We use variational inference and introduce an approxi-
mate posterior distribution qφ(zt|δt, xt−1;xT ) [32, 63, 64].

∫

zt

pθ(δt|zt, xt−1;xT )p(zt)dzt

=

∫

zt

pθ(δt|zt, xt−1;xT )p(zt)
qφ(zt|δt, xt−1;xT )

qφ(zt|δt, xt−1;xT )
dzt

∝ log

∫

zt

pθ(δt|zt, xt−1;xT )p(zt)
qφ(zt|δt, xt−1;xT )

qφ(zt|δt, xt−1;xT )
dzt

= log

∫

zt

pθ(δt|zt, xt−1;xT )p(zt)

qφ(zt|δt, xt−1;xT )
qφ(zt|δt, xt−1;xT )dzt

= logEz∼qφ(zt|δt,xt−1;xT )

[
pθ(δt|zt, xt−1;xT )p(zt)

qφ(zt|δt, xt−1;xT )

]
. (8)

We use the shorthand zt ∼ qφ for z ∼ qφ(zt|δt, xt−1;xT ),
and apply Jensen’s inequality:
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whereKL[·||·] is the Kullback-Liebler divergence, arriving
at the ELBO presented in Equation (5) in the paper.

Combining the first term in Equation (5) with our image
likelihood defined in Equation (1):
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giving us the image similarity losses in Equation (6). We
derive LKL in Equation (6) by similarly taking the loga-
rithm of the normal distributions defined in Equations (2)
and (4).

B. Network architecture
We provide details about the architecture of our recurrent

model and our critic model in Figure 11.

C. Human study
We surveyed 150 human participants. Each participant

took a survey containing a training section followed by 14
questions.

Calibration: We first trained the participants by showing
them several examples of real digital and watercolor paint-
ing time lapses.

Evaluation: We then showed each participant 14 pairs of
time lapse videos, comprised of a mix of watercolor and
digital paintings selected randomly from the test sets. Al-
though each participant only saw a subset of the test paint-
ings, every test painting was included in the surveys. Each
pair contained videos of the same center-cropped painting.
The videos were randomly chosen from all pairwise com-
parisons between real, vdp, and ours, with the ordering
within each pair randomized as well. Samples from vdp
and ours were generated randomly.

Validation: Within the survey, we also showed two re-
peated questions comparing a real video with a linearly in-
terpolated video (which we described as interp in Table 2 in
the paper) to validate that users understood the task. We did
not use results from users who chose incorrect answers for
one or both validation questions.

D. Additional results
We include additional qualitative results in Figures 12

and 13. We encourage the reader to view the supplementary
video, which illustrates many of the discussed effects.

We examine failure cases from the proposed method in
Figure 14, such as making many fine or disjoint changes in a
single time step and creating an unrealistic effect. We show
the effect of increasing the number of samples k in Figure
15.
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Figure 11: Neural network architecture details. We use an encoder-decoder style architecture for our model. For our critic,
we use a similar architecture to StarGAN [10], and optimize the critic using WGAN-GP [19] with a gradient penalty weight
of 10 and 5 critic training iterations for each iteration of our model. All strided convolutions and downsampling layers reduce
the size of the input volume by a factor of 2.
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(a) The proposed method paints similar regions to the artist. Red arrows in the second row show where unet adds fine details everywhere
in the scene, ignoring the semantic boundary between the rock and the water, and contributing to an unrealistic fading effect. The video
synthesized by vdp produces more coarse changes early on, but introduces an unrealistic-looking blurring and fading effect on the rock (red
arrows in the third row). Blue arrows highlight that our method makes similar painting changes to the artist, filling in the base color of the
water, then the base colors of the rock, and then fine details throughout the painting.
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(b) The proposed method identifies appropriate colors and shape for each layer of paint. Red arrows indicate where the baselines fill
in details that the artist does not complete until much later in the sequence (not shown in the real sequence, but visible in the input image).
Blue arrows show where our method adds a base layer for the vase with a reasonable color and shape, and then adds fine details to it later.

Figure 12: Videos synthesized from the watercolor paintings test set. For the stochastic methods vdp and ours, we
examine the nearest sample to the real video out of 2000 samples. We discuss the variability among samples from our
method in Section 5, and in the supplementary video.



(a) The proposed method paints using coarse-to-fine layers of different colors, similarly to the real artist. Red arrows indicate where
the baseline methods fill in details of the house and bush at the same time, adding fine-grained details even early in the painting. Blue arrows
highlight where our method makes similar painting changes to the artist, adding a flat base color for the bush first before filling in details,
and using layers of different colors.
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(b) The proposed method synthesizes watercolor-like effects such as paint fading as it dries. Red arrows indicate where the baselines
fill in the house and the background at the same time. Blue arrows in the first two video frames of the last row show that our method uses
coarse changes early on. Blue arrows in frames 3-5 show where our method simulates paint drying effects (with the intensity of the color
fading over time), which are common in real watercolor videos.

Figure 13: Videos synthesized from the watercolor paintings test set. For the stochastic methods vdp and ours, we show
the nearest sample to the real video out of 2000 samples.
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(a) The proposed method does not always synthesize realistic changes for fine details. Blue arrows highlight
frames where the method makes realistic painting changes, working in one or two semantic regions at a time. Red
arrows show examples where our method sometimes fills in many details in the frame at once.

Input Synthesized

(b) The proposed method sometimes synthesizes changes in disjoint regions. Red arrows indicate where the method
produces painting changes that fill in small patches that correspond to disparate semantic regions, leaving unrealistic
blank gaps throughout the frame. This example also fills in much of the frame in one time step, although most of the
filled areas in the second frame are coarse.

Figure 14: Failure cases. We show unrealistic effects that are sometimes synthesized by our method, for a watercolor
painting (top) and a digital painting (bottom).



(a) Digital paintings test set.

(b) Watercolor paintings test set.

Figure 15: Quantitative measures. As we draw more samples from each stochastic method (solid lines), the best video
similarity to the real video improves. This indicates that some samples are close to the artist’s specific painting choices. We
use L1 distance as the metric on the left (lower is better), and change IOU on the right (higher is better). Shaded regions show
standard deviations of the stochastic methods. We highlight several insights from these plots. (1) Both our method and vdp
produce samples that are comparably similar to the real video by L1 distance (left). However, our method synthesizes painting
changes that are more similar in shape to those used by artists (right). (2) At low numbers of samples, the deterministic unet
method is closer (by L1 distance) to the real video than samples from vdp or ours, since L1 favors blurry frames that average
many possibilities. (3) Our method shows more improvement in L1 distance and painting change IOU than vdp as we draw
more samples, indicating that our method captures a more varied distribution of videos.


