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1. FLAIR Reconstruction

OursGT Ours w/o PriorWang DeepCas RefGAN

Figure 1: Comparison of reconstructions using radial trajectory at an acceleration rate R = 5.
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Figure 2: Reconstruction results from Cartesian/Radial/Spiral trajectory at under-sampling rate R = 5. The sampling pattern
mask and difference images are shown on the second, fourth, and sixth row. Red boxes illustrate the enlarged views on
details. The SSIM is indicated on the bottom left of the image.



Table 1: Quantitative comparison of FLAIR reconstructions from different undersampling patterns and methods at R = 5.
Best results with and without T1 prior are marked in red and blue, respectively.

Cartesian ZP GRAPPA[1] TV[2] Wang[5] DeepCas[4] RefGAN[3] Ours w/o Prior Ours
PSNR [dB] 20.110 22.737 21.373 23.275 27.853 27.991 29.063 30.562

SSIM 0.608 0.733 0.696 0.772 0.864 0.868 0.889 0.914
MSE(×102) 1.241 0.701 0.949 0.682 0.217 0.201 0.165 0.106

Radial ZP GRAPPA TV Wang DeepCas RefGAN Ours w/o Prior Ours
PSNR [dB] 20.178 24.920 23.685 29.201 32.955 32.04 35.834 36.369

SSIM 0.522 0.742 0.699 0.879 0.922 0.919 0.943 0.951
MSE(×102) 1.268 0.541 0.561 0.108 0.038 0.071 0.028 0.026

Spiral ZP GRAPPA TV Wang DeepCas RefGAN Ours w/o Prior Ours
PSNR [dB] 22.602 29.324 32.836 34.987 40.287 36.881 43.740 43.988

SSIM 0.737 0.896 0.917 0.922 0.971 0.963 0.983 0.987
MSE(×102) 0.857 0.291 0.064 0.048 0.011 0.021 0.005 0.004
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