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1. Full Network Architecture

As a supplement to the main paper, we detail the param-
eters of the layers of SCoordNet and OFlowNet used for
training 7scenes in Table 5 at the end of the supplementary
material.

2. Supplementary Derivation of the Bayesian
Formulation

This section supplements the derivation of the distribu-
tions 8 & 9 in the main paper.

Let us denote the bivariate Gaussian distribution of the
latent state @, and the innovation e; conditional on Z;_ as
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where Y15 = Eng. Based on the multivariate statistics
theorems [ 1], the conditional distribution of 8; given e; is
expressed as (0¢|es, Zy—1) ~

N(py + 12255 (er — py), T11 — T12355 Bo1), (2)
and similarly, (e;|0:,Z;—1) ~
Ny + Z01 217 (0r — 1), Bz — i 211 Tz). - (3)

Conversely, if Eq. 2 holds and (04|Z;—1) ~ N(uq,X11),
Eq. 1 will also hold according to [I]. Since we have had
(0,]Z;_1) ~ N(, ,R,) in Eq. 4 of the main paper, we can
note that

w, =0,, and 1, =R, 4)
Recalling Eq. 7 of the main paper, we already have
(e:|0:,Zi—1) ~ N(8, — 6, ,V,). (5)
Equalizing Eq. 3 and Eq. 5, we have
Mo = 03
39 =39 = Ry, (6)
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Figure 1: (a) The confusion matrix of 19 scenes given by our un-
certainty predictions. The redder a block (i, j), the more likely it
is that the images of the j-th scene belong to the i-th scene. (b)
The CDFs of scene coordinate errors given by SCoordNet and
OFlowNet with or without uncertainty modeling.

Substituting the variables of Eq. 4 & 6 into Eq. | & 2, we
have reached the distributions 8 & 9 in the main paper.

3. Ablation Study on the Uncertainty Modeling

The uncertainty modeling, which helps to quantify the
measurement and process noise, is an indispensable compo-
nent of KFNet. In this section, we conduct ablation studies
on it.

First, we run the trained KFNet of each scene from
7scenes and I2scenes over the test images of each scene
exhaustively and visualize the median uncertainties as the
confusion matrix in Fig. 1(a). The uncertainties between
the same scene in the main diagonal are much lower than
those between different scenes. It indicates that meaningful
uncertainties are learned which can be used for scene recog-
nition. Second, we qualitatively compare SCoordNet and
OFlowNet against their counterparts which are trained with
L2 loss without uncertainty modeling. The cumulative dis-
tribution functions (CDFs) of scene coordinate errors tested
on 7scenes and 12scenes are shown in Fig. 1(b). The uncer-



Downsample | Receptive Layers (kernel, stride)

Rate field L7 [ L8 [ L9 JLIOJLII [LI2
8 29 L2 1,1 (1,1 ]1,1]1,1]11
8 45 32 (L, L1 |1, | 1,1 |11
8 61 32 (31,1 |L,1|L,1]|1,1
8 93 3,213, 1(3,1]31]|1,1| 11
8 125 3,2 13,1(3,1]3,1|3,1]3,1
8 157 3,2 (3,1 |51|51]31]3,1
8 189 3,2 (3,1 |51|51|51]5,1
8 221 3,2 (3,1 |7,1|7,1]51]5,1
4 93 3,1 3,1 |51]|51]31]3,1
8 93 3,2 (3,1 |31|31]|1,1]|11
16 93 3,2 (3,1 32|11 |L,1]|11
32 93 3,213,132 1,1] 12|11

Table 1: The parameters of 7-th to 12-th layers of SCoordNet w.r.t.
different downsample rates and receptive fields. The number be-
fore comma is kernel size, while the one after comma is stride.

Receptive Relocalization accuracy Mapping accuracy
field pose error | pose accuracy | mean | stddev
29 0.025m, 0.87° 87.9% 29.6cm 323
45 0.023m, 0.88° 93.4% 24.4cm 29.2
61 0.023m, 0.84° 94.0% 17.3cm 23.1
93 0.024m, 0.91° 92.9% 11.5cm 16.4
125 0.026m, 0.95° 88.3% 11.7cm 16.1
157 0.026m, 0.97° 86.6% 10.3cm 15.0
189 0.030m, 1.07° 81.0% 10.3cm 139
221 0.031m, 1.22° 71.8% 9.5cm 129

Table 2: The performance of SCoordNet w.r.t. the receptive field.
The pose accuracy means the percentage of poses with rotation
and translation errors less than 5°and 5cm, respectively.

tainty modeling leads to more accurate predictions for both
SCoordNet and OFlowNet. We attribute the improvements
to the fact that the uncertainties apply auto-weighting to the
loss term of each pixel as in Eqs. 10 & 14 of the main paper,
which prevents the learning from getting stuck in the hard
or infeasible examples like the boundary pixels for SCoord-
Net and the occluded pixels for OFlowNet (see Fig. 2 of the
main paper).

4. Ablation Study on the Receptive Field

The receptive field, denoted as R, is an essential factor of
Convolutional Neural Network (CNN) design. In our case,
it determines how many image observations around a pixel
are exposed and used for scene coordinate prediction. Here,
we would like to evaluate the impact of R on the perfor-
mance of SCoordNet. SCoordNet presented in the main
paper has R = 93. We change the kernel size of 7-th to
12-th layers of SCoordNet to adjust the receptive field to
29, 45, 61, 125, 157, 189, 221, as shown in Table 1. Due
to the time limitations, the evaluation only runs on heads
of 7scenes dataset [7]. As reported in Table 2, the mean
of scene coordinate errors grows up as the receptive field
R decreases. We illustrate the CDF of scene coordinate
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Figure 2: The cumulative distribution function of scene coordinate
errors w.r.t. different receptive field R. A smaller R generally has
a denser distribution of errors smaller than 2cm as well as larger
than 20cm. The more predictions with errors smaller than 2cm
contribute to the accuracy of pose determination, while the larger
number of outlier predictions with errors larger than 20cm hamper
the robustness of relocalization.

errors in Fig. 2. It is noteworthy that a smaller R results
in more outlier predictions which cause a larger mean of
scene coordinate errors. However, a larger mean of scene
coordinate error does not necessarily lead to a decrease in
relocalization accuracy. For example, a receptive field of
61 has worse mapping accuracy than the larger receptive
fields, but it achieves the smaller pose error and the better
pose accuracy than them. As we can see from Fig. 2, a
smaller receptive field has a larger portion of precise scene
coordinate predictions, especially those with errors smaller
than 2cm. These predictions are crucial to the accuracy of
pose determination, as the outlier predictions are generally
filtered by RANSAC. Nevertheless, when we further reduce
R from 61 to 45 and then 29, a drop of relocalization accu-
racy is observed. It is because, as R decreases, the growing
number of outlier predictions deteriorates the robustness of
pose computation. A receptive field between 45 and 93 is
a good choice that respects the trade-off between precision
and robustness.

5. Ablation Study on the Downsample Rate

Due to the cost of dense predictions over full-resolution
images, we predict scene coordinates for the images down-
sized by a factor of 8 in the main paper, following previ-
ous works [2]. In this section, we intend to explore how
the downsample rate affects the trade-off between accuracy
and efficiency over SCoordNet. As reported in Table 1, we
change the kernel size and strides of 7-th to 12-th layers to
adjust the downsample rate to 4, 8, 16 and 32 with the same
receptive field of 93. The mean accuracy and the average
time taken to localize frames of heads are reported in Ta-
ble 3. As intuitively expected, the larger downsample rate
generally leads to a drop of relocalization and mapping ac-
curacy, as well as an increasing speed. For example, the



Downsample | Relocalization accuracy | Mapping accuracy |

Time

rate | poseerror | poseaccuracy | mean | stddev |
4 0.024m, 0.97° 93.6% 11.2cm 17.3 1.34s
8 0.024m, 0.91° 92.9% 11.5cm 16.4 0.20s
16 0.025m, 0.92° 89.1% 16.3cm 20.5 0.11s
32 0.029m, 1.06° 79.6% 20.7cm 20.7 0.034s

Table 3: The performance of SCoordNet w.r.t. the downsample
rate. The pose accuracy means the percentage of poses with rota-
tion and translation errors less than 5°and 5cm, respectively.

downsample rate 4 and 8 have a comparable performance,
while the downsample rate 8 outperforms 16 by a large mar-
gin. However, on the upside, a larger downsample rate is
appealing due to the higher efficiency which scales quadrat-
ically with the downsample rate. For real-time applications,
a downsample rate of 32 allows for a low latency of 34ms
per frame with a frequency of about 30 Hz'.

6. Running Time of KFNet Subsystems

Table 4 reports the mean running time per frame (of size
640 x 480) of the measurement, process and filtering sys-
tems and NIS test, on a NVIDIA GTX 1080 Ti. Since the
measurement and process systems are independent and can
run in parallel, the total time per frame is 157.18 ms, which
means KFNet only causes an extra overhead of 0.58 ms
compared to the one-shot SCoordNet. Besides, our KFNet
is 3 times faster than the state-of-the-art one-shot relocal-
ization system DSAC++ [2].

\ KFNet | DSAC++

Modules | Measurement | Process | Filtering | NIS | Total -
Time (ms) 156.60 51.23 0.29 0.29 | 157.18 | 486.07

Table 4: Running time of the subsystems of KFNet.

7. Mapping Visualization

As a supplement of Fig. 5 in the main paper, we visual-
ize the point clouds of 7scenes [7], 12scenes [8] and Cam-
bridge [4] predicted by DSAC++ [2] and our KFNet-filtered
in Fig. 3.

! All the experiments of this work run on a machine with a 8-core Intel
i7-4770K, a 32GB memory and a NVIDIA GTX 1080 Ti graphics card.



DSAC++ KFNet-filtered DSAC++ KFNet-filtered
Figure 3: Point clouds of all the scenes predicted by DSAC++ [2] and our KFNet-filtered. Zoom in for better view.

4



Input \ Layer \ Output Output Size
SCoordNet
I, Conv+ReLU, K=3x3, S=1, F=64 convla Hx W x 64
convla Conv+RelLLU, K=3x3, S=1, F=64 convlb Hx W x 64
convlb Conv+ReLU, K=3x3, S=2, F=256 conv2a H/2 x W/2 x 256
conv2a Conv+ReLU, K=3x3, S=1, F=256 conv2b H/2 x W/2 x 256
conv2b Conv+ReLU, K=3x3, S=2, F=512 | conv3a H/4 x W/4 x 512
conv3a Conv+RelLLU, K=3x3, S=1, F=512 conv3b H/4 x W/4 x 512
conv3b Conv+ReLU, K=3x3, S=2, F=1024 | conv4a H/8 x W/8 x 1024
convda Conv+ReLU, K=3x3, S=1, F=1024 | conv4b H/8 x W/8 x 1024
conv4b Conv+ReLU, K=3x3, S=1, F=512 conv5 H/8 x W/8 x 512
convs Conv+ReLU, K=3x3, S=1, F=256 convb H/8 x W /8 x 256
conv6b Conv+ReLU, K=1x1, S=1, F=128 conv?7 H/8 x W/8 x 128
conv7 Conv, K=1x1, S=1, F=3 Zt H/8 x W/8 x 3
conv7 Conv+Exp, K=1x1, S=I, F=1 V. H/8 x W/8 x 1
OFlowNet
Iiq]|oL: Conv+ReLU, K=3x3, S=1, F=16 featl 2x Hx W x 16
featl Conv+ReLU, K=3x3, S=2, F=32 feat2 2xH/2x W/2x 32
feat2 Conv+ReLU, K=3x3, S=1, F=32 feat3 2x H/2x W/2x 32
feat3 Conv+ReLU, K=3x3, S=2, F=64 feat4 2xH/4x W/4 x 64
feat4 Conv+RelLU, K=3x3, S=1, F=64 feat5 2xH/4x W/4 x 64
feat5 Conv+ReLU, K=3x3, S=2, F=128 | feat6 2x H/8 x W/8 x 128
feat6 Conv, K=3x3, S=1, F=32 F._1|loF: | 2xH/8 x W/8 x 32
Fi_1]oF: Cost Volume Constructor voll H/8 x W/8 x w x w X 32
voll Reshape vol2 Nxwxwx32 (N=HW/64)
vol2 Conv+RelLU, K=3x3, S=1, F=32 vol3 N xwxwx 32
vol3 Conv+ReLU, K=3x3, S=2, F=32 vol4 NXxw/2xw/2x 32
vol4 Conv+ReLU, K=3x3, S=1, F=32 vol5 Nxw/2xw/2x 32
vol5 Conv+ReLU, K=3x3, S=2, F=64 vol6 Nxw/4xw/4x64
vol6 Conv+ReLU, K=3x3, S=1, F=64 vol7 N xw/4xw/4x64
vol7 Conv+ReLU, K=3x3, S=2, F=128 vol8 N x w/8 x w/8 x 128
vol8 Conv+ReLU, K=3x3, S=1, F=128 vol9 N x w/8 x w/8 x 128
vol9 Deconv+ReLU, K=3x3, S=2, F=64 | voll0 N xw/4xw/4x64
voll0 ||5 vol7 Conv+ReLU, K=3x3, S=1, F=64 volll N xw/4x w/4x 64
volll Deconv+ReLU, K=3x3, S=2, F=32 | voll2 NXxw/2xw/2x 32
voll2 ||5 vol5 Conv+ReLU, K=3x3, S=1, F=32 voll3 Nxw/2xw/2x 32
voll3 Deconv+ReLLU, K=3x3, S 2, F=16 | voll4 Nxwxwx16
voll4 |5 vol3 Conv+ReLU, K=3x3, S=1, F=16 voll5 Nxwxwx 16
voll5 Conv, K=3x3, S=1, F=1 confidence | N x w xw x 1
confidence Spatial Softmax [3] flow1 N x 2
flowl Reshape flow2 H/8 x W/8 x 2
flow2, @,_1||3%_1 | Flow-guided Warping [9, 10, 5,6] | 6, [s2; H/8 x W/8 x 4
vol9 Reshape fcl N x 2w?
fel FC+ReLU, F=64 fc2 N x 64
fc2 FC+ReLU, F=32 fc3 N x 32
fc3 FC+Exp, F=1 fc4 Nx1
fc4 Reshape W, H/8 x W/8 x 1

Table 5: The full architecture of the proposed SCoordNet and OFlowNet.

«|l .
7

denotes concatenation along ¢-th dimension.
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