
Appendix of Learning to Select Base Classes for Few-shot Classification

1. Proof of the Main Theories
1.1. Proof for Corollary 4.1

Lemma 1. ∀n ∈ N, gn : 2Bu → R≥0, gn(U) := MK(f(cn, {cBs , cU})) is a submodular function.

Proof. ∀A ⊆ B ⊆ BU , let u ∈ BU\B, define the top-K similar classes with class n in Bs ∪A and Bs ∪B are KA and KB

separately, we also define that after adding class u to both A and B, the top-K similar classes become Ku
A and Ku

B . Next, we
discuss four cases:

(1) u ∈ Ku
A but u ∈ Ku

B: In this case, gn(A + u) − gn(A) = f(cn, cu) − min
x∈KA

f(cn, cx) and gn(B + u) − gn(B) =

f(cn, cu) − min
x∈KB

f(cn, cx). As (Bs ∪ A) ⊆ (Bs ∪ B), there must be min
x∈KA

f(cn, cx) ≤ min
x∈KB

f(cn, cx). Thus we have

gn(A+ u)− gn(A) ≥ gn(B + u)− gn(B).
(2) u ∈ Ku

A but u /∈ Ku
B : In this case, easy to show that gn(A+ u)− gn(A) > 0 = gn(B + u)− gn(B).

(3) u /∈ Ku
A but u ∈ Ku

B: This case will not exist, as it represents that f(cn, cu) ≤ min
x∈KA

f(cn, cx) and f(cn, cu) ≥
min
x∈KB

f(cn, cx). This will induce a contradictory to min
x∈KA

f(cn, cx) ≤ min
x∈KB

f(cn, cx).

(4) u /∈ Ku
A but u /∈ Ku

B : In this case, easy to show that gn(A+ u)− gn(A) = gn(B + u)− gn(B) = 0.
In conclusion, ∀A ⊆ B ⊆ BU , u ∈ BU\B, we have gn(A+ u)− gn(A) ≥ gn(B + u)− gn(B), which demonstrates that

gn(·) is a submodular function.

Corollary 1. (Corollary 4.1 in original paper) Considering optimization problem 3 (in original paper), when λ = 0, Problem
3 is equivalent to a submodular monotone non-decreasing optimization with exact cardinality constraint and when λ > 0,
Problem 3 is equivalent to a submodular optimization with exact cardinality.

Proof. When λ = 0, by Lemma 1 and the property of the additivity of submodular function that if f and g are both submodular,
then h = f + g is also submodular, easy to show that the optimization function is submodular. Easy to show that gn(U) is
also monotone non-decreasing, so Problem 3 with λ = 0 is a submodular monotone non-decreasing optimization with exact
cardinality constraint. Also, the regularizer term of the optimization function

R(U) =
∑
n∈N

1

|Bs|+m

∑
u∈Bs∪U

f(cn, cu)

is a modular function satisfying R(A + u) − R(A) = R(B + u) − R(B),∀A ⊆ B ⊆ V . By the property of submodular
function, the whole optimization function 3 with λ > 0 is also a submodular function (but not monotone non-decreasing).

1.2. Proof for Theorem 1

Theorem 1. For Bs = ∅ and λ = 0, when m ≥ K · |N |, using Greedy on Novel Class to solve for optimization problem 3,
the solution will be optimal.

Proof. The maximum number of base classes for top-K most similar classes with each novel class is K · |N |, thus when
m ≥ K · |N |, a greedy algorithm on finding top-K most similar classes for each novel class is optimal.

1.3. Proof for Theorem 2

Theorem 2. For Bs = ∅ and λ = 0, using Greedy on Target Function to solve for optimization problem 3, let h(·) be the
optimization function, and let Q be

Q = Eu∼Uniform(B),v∼Uniform(N)(f(cu, cv))

representing for the average similarity between base classes and novel classes, we have h(U) ≥ (1−1/e) ·h(OPT)+1/e ·Q.

Proof. Let us supposeAi denotes the chosen subset after greedy step i. Let function γ(u) = 1
N

∑
n∈N f(cn, cu). According to

the greedy algorithm, AK should be top-k elements in Bu maximizing γ(u). Easy to show that h(AK) = 1
K

∑
u∈AK

γ(u) ≥
Q.

[3] shows that for submodular monotone non-decreasing problem, we have

h(OPT)− h(Ai) ≤ (1− 1/k) · (h(OPT)− h(Ai−1)),

Combining the inequality for every K ≤ i ≤ m and take limitations we have

h(U) = h(Am) ≥ (1− 1/e) · h(OPT) + 1/e · h(AK) ≥ (1− 1/e) · h(OPT) + 1/e ·Q.

1.4. Proof for Theorem 3

Theorem 3. Let S ⊆ Bu is a random set, with each element v in Bu i.i.d sampled with probability (x ∧ (Bu − u))v. For
each novel class n ∈ N , we sort the similarity function f(cn, cb) for every base class b ∈ B in descent order, denoting as
qn,[1], qn,[2], · · · qn,[|B|]. Similarly, we also sort the similarity function for every base class in S ∪Bs in descent order, denoting
as sn,[1], sn,[2], · · · sn,[|S|+|Bs|], then we have:

F (x ∨ u)− F (x ∧ (Bu − u))

=
1

|N | ·K
∑
n∈N

|B|∑
i=1

P (sn,[K] = qn,[i]) max(f(cn, cu)− qn,[i], 0)

− λ · 1

|N | ·m
∑
n∈N

f(cn, cu)

(1)

Proof.

F (x ∨ u)− F (x ∧ (Bu − u))

=
∑

S⊆Bu\u

h(S + u)
∏
v∈S
v 6=u

xv
∏
v/∈S
v 6=u

(1− xv) · 1−
∑

S⊆Bu\u

h(S)
∏
v∈S
v 6=u

xv
∏
v/∈S
v 6=u

(1− xv) · 1

=
∑

S⊆Bu\u

(h(S + u)− h(S))
∏
v∈S
v 6=u

xv
∏
v/∈S
v 6=u

(1− xv)

=
∑

S⊆Bu\u

(
1

|N | ·K
∑
n∈N

max(f(cn, cu)− sn,[K], 0))
∏
v∈S
v 6=u

xv
∏
v/∈S
v 6=u

(1− xv)

− λ · 1

|N | ·m
∑
n∈N

f(cn, cu)
∑

S⊆Bu\u

(
∏
v∈S
v 6=u

xv
∏
v/∈S
v 6=u

(1− xv))

=
1

|N | ·K
∑
n∈N

|B|∑
i=1

P (sn,[K] = qn,[i]) max(f(cn, cu)− qn,[i], 0)

− λ · 1

|N | ·m
∑
n∈N

f(cn, cu)

1.5. Proof for Equation 7 (in Original Paper)

The only unknown term P (sn,[K] = qn,[i]) for n ∈ N could be solved using dynamic programming in O(K · |B| · |N |)
time complexity by the following two recursion equations:{

P (sn,[j] ≥ qn,[i]) = (1− x[i]) · P (sn,[j] ≥ qn,[i−1]) + x[i] · P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bu
P (sn,[j] ≥ qn,[i]) = P (sn,[j−1] ≥ qn,[i−1]) for [i] ∈ Bs

(2)

P (sn,[j] = qn,[i]) = P (sn,[j] ≥ qn,[i])− P (sn,[j] ≥ qn,[i−1]) (3)

Proof. Equation 3 is obvious. Below we give the proof of 2, for the case of [i] ∈ Bu:

P (sn,[j] = qn,[i])

= {P (sn,[j−1] ≥ qn,[i−1])−
i−1∑
m=1

P (sn,[j] = qn,[m])} · x[i]

= {P (sn,[j−1] ≥ qn,[i−1])−
i−1∑
m=1

(P (sn,[j] ≥ qn,[m])− P (sn,[j] ≥ qn,[m−1]))} · x[i]

= {P (sn,[j−1] ≥ qn,[i−1])− P (sn,[j] ≥ qn,[i−1])} · x[i]

Plug Equation 3 to the equation above and that will be Equation 2.
Note that the vector x could also be seen as an extension form in [0, 1]|B|: x[i] represents for the probability of element [i]

being selected, when using these two equations, if [i] ∈ Bs we set x[i] = 1; if [i] = v ∈ Bu\u, we set x[i] = xv; and if [i] = u
we set x[i] = 0. Hence for [i] ∈ Bs we have x[i] = 1 and plug into the first equation of 2 to obtain the second equation.

1.6. Proof for Theorem 4

Theorem 4. For Bs = ∅ and λ > 0, using a combination of Random Greedy Algorithm and Continuous Double Greedy
Algorithm to solve for optimization problem 3, let h(·) be the optimization function, and let Q be

Q = Eu∼Uniform(B),v∼Uniform(N)(f(cu, cv))

representing for the average similarity between base classes and novel classes, and let r be the cardinality of Bu, we have

E(h(U)) ≥ max(
1−m/er

e
· h(OPT) + C1 ·Q, (1 +

r

2
√

(r −m)m
)−1 · h(OPT) + C2 ·Q)

For 0 < λ < 1
e−1 , we have C1 = 1

e + (1− 1
e)mr − (1− 1

e) · λ > 0 and C2 = (1−λ)r
2
√

(r−m)m+r
− ε ≥ 1

2 (1− λ) > 0.

Proof. 1. For random greedy algorithm, our proof follows the Lemma 4.7 and Lemma 4.8 in [2] with slight differences. We
suggest the readers read the proof of [2] foreahead. The first difference is that h(Bu) may be negative, and it should not be
taken away while calculating E(h(Ai−1 ∪M ′i)). Considering h(Bu) < 0 we have:

m−Xi−1

r
· h(Bu) ≥ m

r
· h(Bu) =

m

r
(1− λ · r

m
) ·Q (4)

The inequality follows by the definition of Xi−1: Xi−1 = |OPT\Ai| ≥ 0. And this term should be added to RHS of Lemma
4.7 in [2] with a m−1 coefficient according to the process of proof. Thus Lemma 4.7 could be rewritten in our problem as: for
every K ≤ i ≤ m:

E(hui(Ai−1)) ≥ [r/m− 1 + (1− 1/m)i−1] · (1− 1/k)i−1

n
· h(OPT)

− E(h(Ai−1)

k
+

1

r
(1− λ · r

m
) ·Q− Ei−1

The second difference is that we start our algorithm from i = K and similar to Theorem 1 we have

h(AK) = (
1

K
− λ

m
)
∑
u∈AK

γ(u) ≥ (1− λ ·K
m

) ·Q. (5)

Thus compared to Lemma 4.8 in [2], we need to add two terms related to Equation 4 and 5. After repeated applications of
Lemma 4.7, the term related to 4 is calculated by:

lim
K→0

m→+∞

m∑
i=K

(1− 1

m
)i · (1

r
(1− λ · r

m
) ·Q) = (1− 1

e
)
m

r
(1− λ r

m
) ·Q.

And the term related to 5 is calculated by:

lim
K→0

m→+∞

(1− 1

m
)m−Kh(Ak) ≥ 1

e
·Q.

Thus combine these term with the coefficient h(OPT) unchanged we could prove that:

C1 =
1

e
+ (1− 1

e
)
m

r
− (1− 1

e
) · λ

And for λ > 1/(e− 1), C1 guarantees to be non-negative.
2. For double continuous greedy algorithm, refer to the Theorem 3.2 in [2] with some deformation we have:

h(U) ≥
h(OPT) + 1

2 (
√

r−m+K
m−K)h(AK) +

√
m−K
r−m+Kh(Bu))

1 + 1
2

r√
(r−m+K)(m−K)

(6)

From Theorem 1, we could conclude that h(AK) = (1
K −

λ
m)

∑
u∈AK

γ(u) ≥ (1 − λ·K
m) · Q. Also, easy to show that

h(Bu) ≥ (1− λ·r
m) ·Q. Thus we could put these two inequality to Equation 6 and as K << m and K << r, we could omit

the term with K. Then Equation 6 is equivalent to the inequality below:

h(U) ≥ (1 +
r

2
√

(r −m)m
)−1 · h(OPT) + C2 ·Q) (7)

And we have:

C2 = (1 +
r

2
√

(r −m)m
)−1 · 1

2
· (
√
r −m
m

+

√
m

r −m
− λ · r√

(r −m)m
)− ε

=
(1− λ)r

2
√

(r −m)m+ r
− ε

Let α = m/r ∈ (0, 1) denote for the proportion of chosen classes with respect to all classes, we find that C = (1 +
2
√

(1− α)α)−1(1− λ). Thus, the extremum is taken at α = 1/2, and we have C ≥ 1
2 · (1− λ), which is our theorem.

Theorem 2 shows that when combining random greedy algorithm and double continuous greedy algorithm, and for
0 < λ < 1/(e − 1), we could reach a 0.356-approximation. It could be easily shown by comparing the two bounds that
when m < 0.082r or m > 0.918r we choose random greedy algorithm and when 0.082r ≤ m ≤ 0.918r we choose double
continuous greedy algorithm.

2. Details of Continuous Double Greedy Algorithm
2.1. Reduction

To simplify our discussion in the original paper, we assume the following reduction of the original problem [2] is applied:

Reduction 1. For the problem of max {h(U) : |U | = m,U ⊂ Bu}, we may assume 2m < |Bu|.

Proof. If this is not the case, let m̄ = |Bu| −m and h̄(U) = h(Bu\U), it could be easily checked that 2m̄ < |Bu| and the
problem max {h̄(U) : |U | = m̄, U ⊂ Bu} is equivalent to the original problem.

The details of Algorithm 4 in the original paper are based on the assumption 2m ≤ |Bu|.

2.2. Initial State of Dynamic Programming

The explanation for P (sn,[j] ≥ qn,[i]) is the probability of the jth-largest similarity between base classes in the random set
S ∈ Bs and the novel class n larger than qn,[i], i.e. the ith-largest similarity between base classes in Bu and the novel class n.
From this definition, the initial state of the dynamic programming process is:

P (sn,[1] ≥ qn,[1]) = x[1]

P (sn,[j] ≥ qn,[1]) = 0 for j = 2, 3, · · ·K
P (sn,[1] ≥ qn,[i]) = (1− P (sn,[1] ≥ qn,[i−1])) · x[i] for i = 2, 3, · · · |B|

2.3. Pruning of Dynamic Programming

According to Equation 6 and 7 in original paper, we need to calculate Pu(sn,[j] ≥ qn,[i]) for j = 1 · · ·K and i = 1 · · · |B|,
for each u ∈ Bu and novel class n. Noticing that here we use Pu instead of P because for each u ∈ Bu, we must set
xu = (x ∧ (Bu − u))u = 0 and run dynamic programming by Equation 7. Thus the result for P (sn,[j] ≥ qn,[i]) is different
considering selecting different u. Traditionally, we need to fix and loop u ∈ Bu, n ∈ N to calculate Pu(sn,[j] ≥ qn,[i]) in
O(K · |B|2 · |N |). However, in this section, we introduce a pruning method, which could largely decrease the time complexity.

𝑠𝑛,[1]

𝑠𝑛,[2]

𝑠𝑛,[3]

𝑠𝑛,[…]

𝑠𝑛,[𝐾]

𝑞𝑛,[1] 𝑞𝑛,[𝑎] 𝑞𝑛,[|𝐵|]

𝑥[1] = 0.3 𝑥[𝑎] = 0.1 𝑥[𝑏] = 0.2

𝑞𝑛,[𝑏]… … …

…

𝑠𝑛,[1]

𝑠𝑛,[2]

𝑠𝑛,[3]

𝑠𝑛,[…]

𝑠𝑛,[𝐾]

𝑞𝑛,[1] 𝑞𝑛,[𝑎] 𝑞𝑛,[|𝐵|]

𝑥[1] = 0.3 𝒙[𝒂] = 𝟎.𝟎 𝑥[𝑏] = 0.2

𝑞𝑛,[𝑏]… … …

…

𝑠𝑛,[1]

𝑠𝑛,[2]

𝑠𝑛,[3]

𝑠𝑛,[…]

𝑠𝑛,[𝐾]

𝑞𝑛,[1] 𝑞𝑛,[𝑎] 𝑞𝑛,[|𝐵|]

𝑥[1] = 0.3 𝑥[𝑎] = 0.1 𝒙[𝒃] = 𝟎.𝟎

𝑞𝑛,[𝑏]… … …

…

DP Table 𝑷𝑷𝒓𝒆(𝒔𝒏,[𝒋] ≥ 𝒒𝒏,[𝒊])

DP Table 𝑷𝒖(𝒔𝒏,[𝒋] ≥ 𝒒𝒏,[𝒊]), u=[a]

DP Table 𝑷𝒖(𝒔𝒏,[𝒋] ≥ 𝒒𝒏,[𝒊]), u=[b]

Re-calculate

Re-calculate

Figure 1. Example of Pruning Methods

The keypoint is that we could pre-compute Ppre(sn,[j] ≥ qn,[i]), as Figure 1 shows. The dynamic programming (DP) table
of Ppre(sn,[j] ≥ qn,[i]) is constructed by setting the probability vector x as its original value, without setting certain xu to
be 0. In this way, when different u ∈ Bu is selected, we could utilize this pre-calculation DP table. The unique difference
for calculating Ppre(sn,[j] ≥ qn,[i]) and Pu(sn,[j] ≥ qn,[i]) is that we need to set corresponding xu = 0, as the right part
of Figure 1 shows. Let us suppose u = [a] and we encourage two pruning methods in this paper: First, if |Ppre(sn,[j] ≥
qn,[a])− Ppre(sn,[j] ≥ qn,[a−1])| < ε for all j = 1, · · · ,K, then there is no need to re-calculate Pu(sn,[j] ≥ qn,[i]), and we
could directly use Ppre(sn,[j] ≥ qn,[i]) instead. Noticing that when a is relatively large, there is a high probability satisfying
the condition above, thus we could decrease the constant number of the time complexity of the algorithm substantially. Second,
even though there is need to re-calculate DP table for Pu(sn,[j] ≥ qn,[i]), we find that the left part of the DP table of column
a does not need to re-calculate as well, as Figure 1 shows. In this way, we could only re-calculate the right part (the green
area). By using these two pruning methods simultaneously, the general complexity of the algorithm is relatively low compared
with the worst case O(T ·K · |B|2 · |N |). The algorithm could further be easily extended to parallel computing version for a
greater acceleration.

2.4. Pipage Rounding

The original paper mentions that, to transform the fractional solution obtained by Algorithm 4 to an integral solution, we
may use some rounding techniques. One of the classical trick is Pipage Rounding.

We need three things to make Pipage Rounding work:
1. For any x ∈ P , we need a vector v and α, β > 0 such that x + αv ∈ P or x − βv ∈ P have strictly more integral

coordinates.
2. For all x, the function gx(t) := F (x+ tv) needs to be convex.
3. Finally, we need a starting fractional x with a guarantee that F (x) ≥ ρ ·OPT .
where P = {x ∈ [0, 1]|Bu| :

∑|Bu|
j=1 xj = m} is a polytope constraint and F (·) is the multi-linear extension of the original

optimization function h(·).
Noticing that the assumption 2 and 3 are satisfied in Non-monotone Submodular Optimization, where assumption 2 is

proved by [1], and assumption 3 is consistent with Theorem 4 in original paper. Next we focus on assumption 1.

Suppose x is a non-integral vector in P and there are at least two fractional coordinates. Let it be xp and xq. Define
v = ep − eq, where ep is the vector with 1 in the pth coordinate and 0 elsewhere. Let α = min(1 − xp, xq) and
β = min(1 − xq, xp). After constructing v, α, β, easy to show that x + αv and x − βv are both in P and both of
them have strictyly more integral coordinates.

We show that all three assumptions are satisfied, for running Pipage Rounding, we select two coordinates of x at each time,
selecting v, α, β as above, compare F (x+ αv) and F (x− βv) and pick the probability vector making the value larger (i.e.
x+ αv or x− βv) as the new probability vector x. When calculating the value of the function, we still just need to calculate
F (x+ αv)− F (x) instead of directly calculating F (x+ αv) by the equation:

F (· · · , 1, · · · , x′q, · · ·)− F (· · · , xp, · · · , xq, · · ·) =

(F (· · · , 1, · · · , x′q, · · ·)− F (· · · , xp, · · · , x′q, · · ·))+
(F (· · · , xp, · · · , x′q, · · ·)− F (· · · , xp, · · · , xq, · · ·)),

and convert the problem of change in two coordinates to change in only one coordinate, which could be solved using dynamic
programming the same as Equation 6 and 7 with a slight difference, as is the case of F (x− βv). Repeat this process until
the component of x is all integral (i.e. 1 or 0). From assumption 1 we know that the algorithm will definitely converged to
an integral solution. [1] also shows that the integral solution x∗ after running Pipage Rounding also satisfies F (x∗) ≥ F (x),
which does not change the lower bound of Continuous Double Greedy Algorithm.

2.5. Extensions

We also note that Algorithm 4 (along with Algorithm 3) in original paper has more applicability in real cases, especially
when there are some modular constraints. For example, we could add a constraint to the original problem that the difficulty of
obtaining a sufficient image set for each base class could be quantified as a real number, and we should balance the accuracy
of classification on novel classes and the total difficulty of obtaining base dataset when selecting base classes. The setting is
equivalent to substact a hyper-parameter µ multiplying the total difficulty from the original optimization function. Noticing the
total difficulty is a modular term, thus the new optimization function is also submodular and we could still solve this new
problem by non-monotone submodular optimization.

3. Complexity Analysis
For Algorithm 1, we use a balanced binary search tree to record the similarity of base classes with each novel class.

Establishing and updating the search tree cost O(|B| · log|B| · |N |) totally.
For Algorithm 2 and 3, we use a minimum heap to record current top-K similar base classes for each novel class. For each

turn, the calculation of all h(ui|Ui−1) costs O(|B|), for Algorithm 2 finding the top-1 of h(ui|Ui−1) costs O(|B|) and for
Algorithm 3 finding top-m elements costs O(|B| · logm). Finally the update of the minimum heap costs O(|N | · logK). Thus
totally the complexity is O(m · (|B|+ |N | · logK)) for Algorithm 2 and O(m · (|B| · logm+ |N | · logK)) for Algorithm 3.

For Algorithm 4, for each turn t and for each u ∈ Bu, the dynamic programming process costs O(K · |B| · |N |). Thus, the
worst-case complexity of the Double Continuous Greedy Algorithm is O(T ·K · |B|2 · |N |). However, with some pruning
strategy (see Appendix), the constant number of the complexity is relatively low (much smaller than 1).

4. More Ablation Studies
4.1. Effects of Model Head

Table 1. ImageNet: Pre-trained Selection, 100-way novel classes
Algorithm Head m=100, 5-shot m=100, 20-shot m=20, 5-shot m=20, 20-shot

Random 1-NN 39.39%± 0.82% 49.47%± 0.67% 23.89%± 0.56% 33.06%± 0.47%
SR 38.74%± 0.76% 50.20%± 0.40% 24.29%± 0.49% 36.38%± 0.37%

DomSim 1-NN 38.00%± 0.36% 48.80%± 0.79% 23.15%± 0.43% 31.81%± 0.58%
SR 38.84%± 0.74% 52.81%± 0.20% 23.62%± 0.29% 36.31%± 0.45%

Alg. 1, K = 1, λ = 0 1-NN 43.42%± 0.78% 53.79%± 0.37% 25.71%± 0.43% 34.67%± 0.36%
SR 43.72%± 0.47% 55.84%± 0.38% 26.08%± 0.45% 37.75%± 0.22%

Alg. 2, K = 1, λ = 0 1-NN 43.20%± 0.76% 53.61%± 0.27% 26.13%± 0.44% 34.97%± 0.45%
SR 43.70%± 0.56% 55.87%± 0.46% 26.60%± 0.55% 38.28%± 0.28%

Alg. 2, K = 3, λ = 0 1-NN 42.89%± 0.43% 53.13%± 0.27% 25.10%± 0.48% 34.52%± 0.51%
SR 43.02%± 0.11% 55.74%± 0.21% 25.71%± 0.41% 37.68%± 0.25%

The goal of this section is to prove that our proposed algorithm is not influenced by the choice of few-shot learning
algorithm. We try different model heads after extracting the high-level features of the backbone. We select the Pre-trained
Selection setting on ImageNet to demonstrate the viewpoint. The result is shown in Table 1. 1-NN means that we use a 1-NN
algorithm based on cosine similarity to give the label of a test sample as the one with the nearest class centroid. SR means
Softmax Regression on the high-level representation space. (i.e. Fine-tuning the classification layer in original backbone). The
two methods represent for an easy realization of metric-based method and learning-based method. From Table 1 we show
that the promotion of SR compared with 1-NN for all selection algorithms is rather stable in the same experiment setting and
our algorithm is model-agnostic. Moreover, comparing 5-shot with 20-shot, we find that when the shot number is increasing,
the margin of our algorithm and the baselines is shrinking when using SR as model head, which shows that the effect of
fine-tuning gradually surpasses the effect of class selection with the increase of the shot number, demonstrating that our
algorithm performs much better on few-shot setting.

4.2. Effects of the Number of Novel Classes

Table 2. ImageNet: Pre-trained Selection, 10-way
Algorithm m=100, 20-shot

Random 84.33%± 1.71%
DomSim 85.78%± 2.06%

Alg. 1, K = 10, λ = 0 88.36%± 1.15%
Alg. 2, K = 3, λ = 0 87.62%± 1.38%
Alg. 2, K = 10, λ = 0 88.02%± 1.58%

Alg. 4, K = 10, λ = 0.2 88.52%± 1.88%

In this section, we show the experiment result for 10-way 20-shot setting with m = 100 with 1-NN head in Table 2. We
could draw three conclusions: First, in 10-way setting, our algorithm promotes about 4.19% compared with Random Selection,
which is at the same level with 100-way 20-shot setting shown in Table 1, demonstrating the effectiveness of our proposed
algorithm in different number of novel classes. Second, we find that we need to increase K compared with 100-way 20-shot
setting as the number of base classes far exceeds the number of novel classes, thus we could provide more similar base classes
for each novel class to improve the performance. Third, compared with λ > 0 and λ = 0 case, we show that diversity may be
helpful when the number of base classes is much larger than the number of novel classes. In this setting diversity brings about
a promotion of 0.5%.

4.3. Cold Start Selection on Caltech and CUB dataset

Table 3. Cold Start Selection, 100-way
Algorithm m=100, 5-shot, Caltech m=100, 5-shot, CUB

Random 18.46%± 1.19% 45.31%± 1.32%
DomSim 27.32%± 0.82% 51.72%± 1.24%

Alg. 2, K = 1, λ = 0 27.59%± 0.76% 53.48%± 1.19%
Alg. 2, K = 3, λ = 0 29.33%± 0.69% 53.56%± 1.34%
Alg. 2, K = 5, λ = 0 28.83%± 0.60% 53.33%± 1.18%

Pre-trained (Upperbound) 29.65%± 0.82% 55.41%± 1.25%

In this section, we also test cold start selection on Caltech256 and CUB-200-2011 as Table 3. All our algorithms use a
mechanism of 6-12-25-50-100. The conclusion is the same as the original paper and there is nothing to discuss more about the
results.

5. Detailed Experiment Settings in Training Phase
For all experiments, when training the base model, we use a standard ResNet-18 structure. The output dimension of the

high-level feature is 512. The preprocessing step of the images is the same as original ResNet-18 paper. The base model is
trained for 120 epoches, the learning rate is set to 0.1 for Epoch 1 to Epoch 25, 0.01 for Epoch 25 to Epoch 50, 0.001 for
Epoch 50 to Epoch 80, 0.0001 for Epoch 80 to Epoch 105 and 0.00001 for Epoch 105 to Epoch 120. A weight decay with
hyperparameter 0.0005 is used. We use a momentum SGD and the momentum coefficient is set to 0.9. The batch size is set to
64. We train the whole base model on 8*Nvidia Tesla V100. For each base model, the training time is about 4 hours and for

each experiment setting this training process is repeated for 10 times, the total training hours for each experiment setting (i.e.
each result number in the result tables) is about 40 hours. (The cold start problem may spend much longer time, about 75
hours per experiment setting). The main framework of the training process is based on Tensorflow, and the selection algorithm
is based on C++11 for speed-up.

References
[1] A. A. Ageev and M. I. Sviridenko. Pipage rounding: A new method of constructing algorithms with proven performance

guarantee. Journal of Combinatorial Optimization, 8(3):307–328, 2004.

[2] Niv Buchbinder, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz. Submodular maximization with cardinality
constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1433–1452.
Society for Industrial and Applied Mathematics, 2014.

[3] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

	. Proof of the Main Theories
	. Proof for Corollary 4.1
	. Proof for Theorem 1
	. Proof for Theorem 2
	. Proof for Theorem 3
	. Proof for Equation 7 (in Original Paper)
	. Proof for Theorem 4

	. Details of Continuous Double Greedy Algorithm
	. Reduction
	. Initial State of Dynamic Programming
	. Pruning of Dynamic Programming
	. Pipage Rounding
	. Extensions

	. Complexity Analysis
	. More Ablation Studies
	. Effects of Model Head
	. Effects of the Number of Novel Classes
	. Cold Start Selection on Caltech and CUB dataset

	. Detailed Experiment Settings in Training Phase

