
Supplementary Materials

The supplementary materials give the following infor-
mation, which is not included in the submitted paper due to
page limitation.

- Detailed proofs on Section 3.2 and 3.3 in the paper

- More details on experimental setup.

- More results on the Section 4.5 (Generalization).

- Discussions on Neural Architecture Search (NAS).

1. Detailed Proof
1.1. Equation 5 in the paper

By incorporating the template network, the probability
measure function in Eq. (1) in the paper can be converted
to

P(M,WM | D) −→ P(M̂ ◦WT | D), (S1)

where ◦ is the Hadamard product1, M̂ ∈ (0, 1)L×L×3 is a
binary random matrix and M̂(l, i, u) = 1/0 denotes that
the feature from the layer i and the fusion unit u is en-
abled/disabled at layer l in the template network, respec-
tively. WT ∈ RL×L×3×V denotes the random weight ma-
trix of the template network, where we use V to denote ker-
nel shape for simplicity. This conversion actually integrates
the kernel weights into fusion strategies. Since we can fully
recover theM from the embedded version M̂ ◦WT (it is
because the kernel is defined in real number field, the prob-
ability of being zero for every element can be ignored), the
first requirement is still satisfied.

We then approximate the posteriori distribution by mini-
mizing the KL divergence

KL(Q(M̂ ◦WT ) || P(M̂ ◦WT | D), (S2)

where Q(·) denotes a variational distribution. We can
rewrite the above KL term as

log(p(D)) + EQ(M̂◦WT )
[log(

Q(M̂ ◦WT )

P(M̂ ◦WT ,D)
)]. (S3)

1We actually broadcast (repeat) the elements in the last dimension of
M̂ to match the shape L× L× 3× V

Since log(p(D)) is the constant evidence , minimizing Eq.
S2 is equivalent to minimizing the negative evidence lower
bound EQ(M̂◦WT )

[log( Q(M̂◦WT )

P(M̂◦WT ,D)
)]. This lower bound

can be further rewritten as

KL(Q(M̂◦WT ) || P(M̂◦WT ))

−
N∑
t=1

∫
Q(M̂◦WT ) log p(yt | xt,M̂◦WT )dM̂◦WT .

(S4)

We assume the Q(M̂ ◦WT ) to have a factorized form and
we factorize it over fusion units at each layer as∏

l,i,u

q(M̂(l, i, u) ·WT (l, i, u, :)). (S5)

We further re-parameterize the random kernel weight WT

with a deterministic kernel weight multiplying a random
variable that subjects to some distribution. Take a uni-
variate Gaussian distribution x ∼ qθ(x) = N (µ, σ) as an
example, its re-parametrization can be x = g(θ, ε) = µ+σε
with ε ∼ N (0, 1) a parameter-free random variable, where
µ and σ are the variational parameters θ. Following [3], we
choose the Bernoulli distribution for the re-parametrization,
which leads to

M̂(l, i, u) ·WT (l, i, u, :) = M̂(l, i, u) · (wl,i,u · zl,i,u),

where zl,i,u ∼ Bernoulli(p̃l,i,u).

(S6)

Here wl,i,u is the deterministic weight matrix associated
with the random weight matrix WT (l, i, u, :). Since each
M̂(l, i, u) controls the utilization of the fusion units u with
binary values 1 and 0, it also subjects to Bernoulli distri-
bution, denoted as Bernoulli(p̂l,i,u). Therefore, we use a
new Bernoulli distribution to replace the original two as

M̂(l, i, u)·WT (l, i, u, :) = wl,i,u · εl,i,u,
where εl,i,u ∼ Bernoulli(pl,i,u),

pl,i,u = p̂l,i,u · p̃l,i,u.
(S7)

Now, we replace the M̂(l, i, u) · WT (l, i, u, :) with its re-
parameterized form in the second term in Eq. S4, which



leads to

N∑
t=1

∫
Q(M̂◦WT ) log p(yt | xt,M̂◦WT )dM̂◦WT

=

N∑
t=1

∫
p(ε) log p(yt | xt, w · ε)dε

≈
N∑
t=1

p(εt) log p(yt | xt, w · εt).

(S8)

We use Monte Carlo estimation to approximate the integral
term in the above equation, where εt indicates t-th sam-
pling. Combining Eq. S4 with Eq. S8, our objective func-
tion is converted to minimizing

KL(Q(M̂◦WT ) || P(M̂◦WT ))

−
N∑
t=1

p(εt) log p(yt | xt, w · εt).
(S9)

The second term in Eq. S9 is equivalent to the inference of
a neural network with DropPath on dataset {xi, yi}. How-
ever, the derivatives w.r.t. the Eq. S9 is still difficult to
compute because of the KL term.

Here we leverage the Proposition 4 in [2] which proves
that given fixed M,C ∈ N, a probability vector p =
(p1, p2, ..., pC), and Σh ∈ RM×M diagonal positive-
definite for h = 1, 2, ..., C, with the elements of each Σh
not dependent on M, and let q(x) =

∑C
h=1 phN (x;µh,Σh)

be a mixture of Gaussians with N components, where µh ∈
RM , if assuming that µh−µj ∼ N (0, I), the KL divergence
between q(x) and p(x) = N (0, Ik) can be approximated as

KL(q(x), p(x)) ≈
C∑
h=1

[
ph
2

(µthµh + tr(Σh)

−K(1 + log 2π)− log |Σh|) + ph log ph].

(S10)

Actually, Eq. S7 suggests that

q(M̂(l, i, u) ·WT (l, i, u, :))

=δ(M̂(l, i, u) ·WT (l, i, u, :)− wl,i,u · εl,i,u),
(S11)

and we can approximate each q(M̂(l,i,u)·WT (l,i,u,:)|εl,i,u)
as a narrow Gaussian with a small standard devia-
tion Σ = σ2I . Therefore, q(M̂(l,i,u)·WT (l,i,u,:)) =∫
q(M̂(l,i,u)·WT (l,i,u,:)|εl,i,u)p(ε)dε is also a mixture of

two Gaussians with small standard deviations (similar with
the one in the above proposition), where one component
fixed at zero and another one fixed at wl,i,u. If we assume
the prior of u to be ‘S+ST’ at all layers in the template net-
work and the prior of kernel weight to be Guassian distribu-
tion N (wl,i,u; 0, I/(kl,i,u)2), where kl,i,u is a prior length

scale, the prior distribution of each M̂(l, i, u) ·WT (l, i, u, :)
is still Guassian. Given the Eq. S5 and the proposition Eq.
S10, it can be easily derived that

∂

∂w∂p
KL(Q(M̂◦WT ) || P(M̂◦WT ))

=
∂

∂w∂p

∑
l,i,u

KL(q(M̂(l,i,u)·WT (l,i,u,:)) || p(M̂(l,i,u)·WT (l,i,u,:)))

≈ ∂

∂w∂p

∑
l,i,u

(1− pl,i,u)k2l,i,u
2

‖wl,i,u‖2 + pl,i,u log pl,i,u.

(S12)

In addition to the variational parameters wl,i,u, the opti-
mal distribution of random variable ε which encodes the
network architecture information also needs to be found.
In order to facilitate a gradient based solution, we employ
Gumbel-softmax to relax the discrete Bernoulli distribution
to continuous space. More specifically, instead of drawing
εl,i,u w.r.t. theBernoulli(pl,i,u), we deterministically draw
the εl,i,u with

εl,i,u = Sigmoid(
1

τ
[log pl,i,u − log(1− pl,i,u)

+ log(log r2)− log(log r1)])

s.t. r1, r2 ∼ Uniform(0, 1).

(S13)

Under this re-parametrisation, the distribution of εl,i,u is
smooth for τ > 0 and p(εl,i,u) → Bernoulli(pl,i,u) as
τ approaches 0 and. Therefore, we have well-defined gradi-
ents w.r.t. the probability pl,i,u by using a small τ . Combin-
ing Eq. S12 and S13, we can obtain the gradients presented
by the Eq. (5) in the paper.

1.2. Equation 7 in the paper

We use v0 to denote index (l0, i0, u0) for simplicity. It is
straightforward to derive that

P(M̂(v0) = 0 | D)

=

∫
WT (v0)

P(M̂(v0) = 0,WT (v0) | D)

=

∫
WT (v0)

P(M̂(v0) ·WT (v0) = 0 | D).

(S14)
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Figure 1: Architecture of the template network used in our method. The notion ‘x6’ indicates that the basic module (a single
grey box) is repeated by six times. The spatial stride size used for all the convolution and pooling operations is one and two,
respectively. The temporal stride size is always set to be one.

Once the variational distribution Q is available, it is easy to
derive that

P(M̂(v0) ·WT (v0) | D)

=

∫
M̂(v)·WT (v),v 6=v0

P(M̂(v) ·WT (v) | D)

≈
∫
M̂(v)·WT (v),v 6=v0

∏
v

q(M̂(v) ·WT (v))

=

∫
M̂(v)·WT (v),v 6=v0

q(M̂(v0) ·WT (v0))
∏
v 6=v0

q(M̂(v) ·WT (v))

=q(M̂(v0) ·WT (v0))

∫
M̂(v)·WT (v),v 6=v0

∏
v 6=v0

q(M̂(v) ·WT (v))

=q(M̂(v0) ·WT (v0)).

(S15)

According to Eq. S7, S14 and S15, we have

P(M̂(v0) = 1 | D)

=1− P(M̂(v0) = 0 | D)

=1−
∫
WT (v0)

P(M̂(v0) ·WT (v0) = 0 | D)

≈1−
∫
WT (v0)

q(M̂(v0) ·WT (v0) = 0)

=1− p̂v0 .

(S16)

In practice we optimize pl,i,u = p̂l,i,u · p̃l,i,u as a whole,
and the p̂l,i,u and p̃l,i,u are initialized with the same value,
therefore, we have

p̂v0 =
√
pv0 . (S17)

Hereby, we have the posterior probability of fusion unit at
each layer, which can be used as numerical measurements
for the layer-level importance of the fusion units as de-
scribed in the paper.

2. More Details on Experimental Setups
2.1. Template Network

We visualize the complete structure of the template net-
work in Fig. 1. As can be viewed in the figure, each layer

in the template network contains three convolution opera-
tions which is used to derive the three basic fusion units as
illustrated in the Fig. 3 in the paper. The feature map output
from each layer will be used as input for all the succeed-
ing layers, which forms a densely-connected 3D network.
Similar to [6], we also insert reduction block for memory
efficiency.

2.2. Figure 3

Fig. 3 in the paper is a part of the whole template net-
work (Fig. 1 in this supplementary material). It illustrates
how the basic units are derived from the template network.
Each grey block refers to a module that contains three con-
volutions as well as three drop-path operations (D1, D2, and
D3). By activating each drop-path operation w.r.t. its proba-
bility, we can derive three basic fusion units, i.e., S (activate
D3 only), ST (activate D2 only) and S+ST (no activation),
plus one residual operation (activate D1). This design helps
us to construct the probability space via network training
with DropPath, as described in the Section 3.2 in the paper.

2.3. Basic Fusion Units

There two reasons for U = {S, ST, S + ST} chosen in-
stead of the full set, i.e., U = {S, T, ST, S+T, S+ST, T+
ST, S + T + ST}. 1) Hardware constraint. Something and
Kinetics dataset both have more than 200K videos and the
training time for a single trial is two weeks. If we consider
all possible combinations in template network, the param-
eter size and training time would increase around 25% and
40%, respectively, which results in one more week for train-
ing. Besides, we have to reduce batch size from 32 to 16,
which also affects the training speed and convergence badly.
We can not afford such computational cost given the limited
hardware resources. Therefore, we choose to only investi-
gate the three widely investigated fusion units [25,35] in this
paper. 2) Fair comparison. As discussed in Section 4.1 in
the paper, we prefer that the fusion units explored in our
approach are conceptually included in most of other fusion
methods for fair comparison with state-of-the-arts in terms
of efficiency and effectiveness.



3. More Results on Generalization
In order to justify that the observations obtained from

the probability space can generalize, we construct new
spatiotemporal strategies based on the observations dis-
cussed in Section. 4.4 in the paper, but with five very
different backbone networks. They are DenseNet121[6],
ResNet50[5], MobileNetV2[10], ResNeXt50[11], and
ResNeXt101[11], respectively. They differ from each other
in terms of topology, parameter size and FLOPs. We inflate
them into 3D CNNs with the same module visualized in our
template network. We compare four different fusion strate-
gies on each backbone, i.e., optimized(Opt), fused(S+ST),
spatial(S) and spatiotemporal(ST). ‘Opt’ means we follow
the observations to design the fusion strategies (except for
Densenet we directly use the best one sampled from the
probability space). Please note that we can only roughly fol-
low the observations because the network topology varies
from backbone to backbone. ‘S+ST’ indicates that we em-
ploy S+ST convolution all the way. ‘Spatial’ and ‘spa-
tiotemporal’ indicate using spatial convolutions and spa-
tiotemporal convolutions all the way, respectively. Please
also note that there are 3D poolings existing in the ‘spatial’
mode, so it is not pure 2D network. We report clip-level
performance in this section for quick comparison.

On Something-Something V1 and Something-
Something V2, we follow the Observation I and II to
construct the strategy ‘Opt’ where fused convolutions
are used for the first half and the last three layers of
network, and spatiotemporal convolutions are applied on
the remaining layers. As can be viewed from the Fig.
2(b) and 3(b), although backbones are quite different, all
the networks perform better with the optimized fusion
strategy. One exception is MobileNetV2, where the ‘Opt’
strategy is slightly worse than the fused mode. We think
the reason is that MobileNetV2 is too small to fit this large
dataset and any kind of bonus on the parameter size would
help improve the performance greatly. The ‘S+ST’ mode
contains 7 more 2D convolutions than the ‘Opt’ mode in
the MobileNetV2 backbone.

Similar results can be observed on UCF101, where the
‘Opt’ strategy makes all the four backbone networks outper-
form their counterparts, which is consistent with the Obser-
vation III. Please note that the optimized strategy is equiva-
lent to the fused strategy on UCF101 according to the Fig.
4.

On Kinetics400, we roughly follow the Observation I II
and III as well as the patterns in Fig. 5(a) to use the S+ST
convolutions and S convolutions periodically in the first two
third of network and ST convolutions in the remaining lay-
ers for the strategy ’Opt’. We can see from the Fig. 5(b) that
‘Opt’ strategy still performs the best on different backbones.
Due to the limited, we can not evaluate the S+ST strategy
on Kinetics400 with the 3D ResNeXt101 backbone.
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(a) Figure: Marginal probability of layer-level fusion units.

Net.
Mod.

Opt S+ST S ST

3D Dense.121 50.2 46.5 41.8 47.5
3D ResNet50 41.2 38.9 33.8 40.1
3D ResNeXt50 43.6 40.7 35.2 42.1
3D ResNeXt101 44.0 42.3 36.6 42.7

(b) Table: The performance of different backbones constructed
with the spatiotemporal hints and their counter-parts.

Figure 2: Spatiotemporal fusion hints obtained from the
probability space on Something-Something V1.

We also implement a small experiment to illustrate the
learned probability space can help the spatiotemporal fusion
strategy capture the character of the data. More specifically,
we reduce the temporal resolution of input video clips by
employing temporal pooling with a stride of 2 and window
size of 3. We draw the corresponding marginal probability
and best-sampled fusion strategy on Something V1 in Fig.
6. It can be easily observed that the layer-level preference
changes accordingly. There are more spatial convolutions
and less spatiotemporal convolutions utilized in the best-
sampled strategy when compared with Fig. 2 in which no
additional temporal pooling is used.

4. More Discussions on NAS
We believe that our proposed algorithm can be extended

for NAS. But in this paper, it is specially designed for ana-
lyzing spatiotemporal fusion from a probabilistic view. To
ensure the whole scheme is theoretically sound and cor-
rect, we have to construct a valid probability space to facili-
tate efficient and effective analysis with numerical measure-
ments. To our best knowledge, no published NAS papers
manage to formulate and construct such probability space.

Additionally, existing NAS methods have shortcoming
in spatiotemporal analysis. For example, differentiable
NAS methods such as DARTS[7] assign a scalar unit (reg-
ularized by softmax function) to each operation and jointly
optimize weight and the unit in an alternative fashion. Only
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(a) Figure: Marginal probability of layer-level fusion units.

Net.
Mod.

Opt S+ST S ST

3D Dense.121 62.4 59.5 55.1 60.5
3D Mobile.v2 59.5 59.7 52.9 59.3

(b) Table: The performance of different backbones constructed
with the spatiotemporal hints and their counter-parts.

Figure 3: Spatiotemporal fusion hints obtained from the
probability space on Something-Something V2.
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(a) Figure: Marginal probability of layer-level fusion units.

Net.
Mod.

Opt S+ST S ST

3D Dense.121 84.2 84.2 83.6 83.1
3D ResNet50 82.4 82.4 81.2 81.6
3D Mobile.v2 81.8 81.8 81.3 80.8
3D ResNeXt50 85.1 85.1 83.9 82.9

(b) Table: The performance of different backbones constructed
with the spatiotemporal hints and their counter-parts.

Figure 4: Spatiotemporal fusion hints obtained from the
probability space on UCF101.

one single architecture is derived by selecting the operation
that has the largest activation in each layer and the weight
needs to be trained from scratch to produce final perfor-
mance. It can not properly sample a group of diverse ar-
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(a) Figure: Marginal probability of layer-level fusion units.

Net.
Mod.

Opt S+ST S ST

3D Dense.121 71.7 69.7 67.8 68.3
3D ResNeXt101 72.0 - 70.6 70.9

(b) Table: The performance of different backbones constructed
with the spatiotemporal hints and their counter-parts.

Figure 5: Spatiotemporal fusion hints obtained from the
probability space on Kinetics400.
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(a) Figure: Marginal probability of layer-level fusion units.

Net.
Mod.

Opt S+ST S ST

3D Dense.121 44.2 40.1 38.8 41.1

(b) Table: The performance of Densenet121 constructed with the
spatiotemporal hints and their counter-parts

Figure 6: Spatiotemporal fusion hints obtained from the
probability space on Something-Something V1 with less
temporal resolution.

chitectures to be directly evaluated for further fusion analy-
sis. Sampling-based NAS methods such as [1, 4] randomly
sample different sub-networks and naively inherit the kernel
weights from the template network. A group of candidates
can be obtained in this way. However, the inherited weight
may not match the sampled architectures and thus the per-



formance of each sub-network does not match the ideal per-
formance as well, which suggests it can not be used to fa-
cilitate an effective analysis on spatiotemporal fusion in 3D
CNNs. As another example, Evolution-based NAS methods
iteratively derive new child architectures from population.
Due to the high complexity of evolution algorithm, it can-
not facilitate fine-grained layer-level spatiotemporal analy-
sis. For instance, evolved module is repeated several times
to form a homogeneous network which has few variations in
terms of network-level structure diversity [8], and only con-
nectivity among several predefined modules can be evolved
[9].
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