
Supplementary Material

LA Specific Parameters

For the LA-specific parameters, we use cluster size
m = 8000 for constructing close neighbors Ci and
nearest neighbor size k = 512 for constructing back-
ground neighbors Bi. These parameters depart some-
what from the optimal parameters found in [7], due
to the substantial difference in size, and thus density
in the embedding space, between the Kinetics training
set (240K points) and the ImageNet dataset used in
[7] (1.2M points).

Network Implementation Details

For VIE-Single, we directly apply the ResNet-18 ar-
chitecture and follow exactly the same preprocessing
pipeline as described in the main text.
For VIE-3DResNet, in order to be comparable to

other works [4, 3] which use a smaller input resolution
for their networks, we correspondingly scale down our
input image size. More specifically, during training,
we first resize the chosen frames so that their shortest
edges are between 128 and 160px and then get 112×
112 images through random crops. We then apply
the same color noise and random horizontal flip to
get the final inputs to the networks. During testing,
the frames are resized so that their shortest side is
128px, and then the center 112× 112 crops are chosen
as inputs. Same as in [4, 3], the input clip contains
16 consecutive frames.

For VIE-TRN, we sample four consecutive half-
second bins, and then one frame from each bin, using
ResNet-18 as the shared 2D-CNN across multiple
frames, with the outputs of the Conv5 concatenated
channel-wise and input into a fully-connected layer
to generate the final embedding. This is a simplified
version of the TRN, which runs faster and achieves
only slightly lower supervised action-recognition per-

formance than the full 8-frame TRN introduced in [6].
For VIE-Slow and VIE-SlowFast, we follow [1] but

modify it to use ResNet-18 rather than ResNet-50.
The Slow model/pathway evenly samples one frame
from every 16 to assemble a 4-frame input sequence,
while the Fast pathway samples one frame from every
4 to assemble a 16-frame input sequence.

Single-frame Models with Multi-frame Inputs

To control for the fact that multi-frame models re-
ceived more total inputs than single-frame models, we
also built models which, for any given multi-frame
model, takes VIE-Single model, applies it to multiple
frames using the same sampling strategy as for the
multi-frame model, and then averages across the per-
frame outputs before training the softmax classifier.
These models are denoted with Input-Single. And
their performance is shown in Table S1.

Models Conv3 Conv4 Conv5
TRN-Input-Single 25.52 39.25 44.27
Slow-Input-Single 26.17 39.24 44.62
Sf-Input-Single 25.72 39.38 44.29

Table S1: Top-1 transfer learning accuracy (%) on Kinetics
for Input-Single models.

Reimplementation Details

We reimplemented OPN [5], RotNet [2], and 3DRot-
Net [3] methods and train them on Kinetics videos, as
controls for VIE. The implementation of OPN follows
the procedure described in the paper as closely as
possible, including input size, motion-related frame
sampling, the use of frame-wise spatial jittering and
channel dropping, and the learning rate schedule.
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However, for a fair comparison, we use ResNet-18
as the OPN backbone. Our OPN implementation
achieves approximately 40% in the order prediction
training task on Kinetics, similar to that reported
in the original OPN paper, suggesting it is function-
ing as intended. As for RotNet and 3DRotNet, we
use ResNet-18 and 3DResNet-18 as the backbones
respectively. The input resolution for 3DResNet-18
is set as 112× 112, matching the input resolution of
VIE-3DResNet. Other details follow the procedure
described in the original papers.

Fine-tuning Implementation Details

In testing for both preprocessing pipelines, each video
is split into consecutive 16-frame clips and the outputs
of all clips are averaged to get the final prediction. As
for other parameters, the initial learning rate is 0.01
and the weight decay is 1e-4 for the training from
scratch. For finetuning, the initial learning rate is
0.0005 and the weight decay is 1e-5. The learning
rate is dropped by 10 after validation performance
saturates. We report the results on the first split for
both UCF101 and HMDB51, which should be close
to the 3-split average result.
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