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Abstract. Neural networks achieve the state-of-the-art in image classification
tasks. However, they can encode spurious variations or biases that may be present
in the training data. For example, training an age predictor on a dataset that is not
balanced for gender can lead to gender biased predicitons (e.g. wrongly predict-
ing that males are older if only elderly males are in the training set).

We present two distinct contributions:

1) An algorithm that can remove multiple sources of variation from the feature
representation of a network. We demonstrate that this algorithm can be used to
remove biases from the feature representation, and thereby improve classification
accuracies, when training networks on extremely biased datasets.

2) An ancestral origin database of 14,000 images of individuals from East Asia,
the Indian subcontinent, sub-Saharan Africa, and Western Europe.

We demonstrate on this dataset, for a number of facial attribute classification
tasks, that we are able to remove racial biases from the network feature represen-
tation.
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1 Introduction

The current state-of-the-art image recognition algorithms are based on convolutional
neural networks [1,/2,3]]. These networks rely on large datasets of labeled images, to
simultaneously generate a feature representation and a decision framework. This ap-
proach removes the need to handcraft features for any given problem but also gives rise
to the question as to what feature representation the network has actually learned.
These models are trained on large datasets that contain a number of biases [4} /5] or
spurious variations, that are irrelevant, or even problematic, for a given task (e.g. dis-
criminating by gender or ancestral origin). One such example is face recognition. Large
publicly available face datasets are often composed of celebrities, such as [6L|7,(8}9}/10,
11]]. These can contain age, gender, and ancestral origin biases: for example, female
celebrities tend to be younger than their male counterparts. This bias does not represent
the real world outside of the movie business, reducing the usefulness of models trained
on these datasets. Furthermore, in cases where large datasets are not available, train-
ing algorithms are initialized from networks that have been trained on similar tasks,
for which more data is available [12}|13,/14]. This method, called fine-tuning, carries
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two potential issues: 1) spurious variations are learned from the small dataset, and 2)
inheriting biases present in the large dataset.

The use of big data to train Al-models has, to name a few, been adopted by gov-
ernment agencies, institutions of law, human resources, and medical decision systems.
A number of such models have been shown to make decisions based on the gender or
ancestral origin of an individual, leading to concerns about their “fairness” [[15/16}/17].
With the recent enforcement of the General Data Protection Regulation lawsﬂ indi-
viduals have the right to know the rationale behind an automated decision concerning
them. To continue the adoption of deep learning, more needs to be done to make neural
networks more transparent. One way to approach this issue is to prevent models from
making decisions for the wrong reasons.

To be sure that decisions are not being made due to biases, we must look beyond us-
ing accuracy as our only performance metric. An experiment by Zhao et al [18] showed
that neural networks learn and amplify biases in the training data. Women were more
often depicted in kitchens than men, so the network learned that being in the kitchen
was a key feature for the identification of women. Though this may have been true for
the dataset the classifier was trained on, in general, this is not a reliable indicator of the
presence of a woman.

In this paper, we introduce an algorithm, inspired by a domain and task adaptation
approach [19], that can be used to 1) to ensure that a network is blind to a known bias in
the dataset, 2) improve the classification performance when faced with an extreme bias,
and 3) remove multiple spurious variations from the feature representation of a primary
classification task. We use age, gender, ancestral origin, and pose information for facial
images to demonstrate our framework.

As discrimination by ancestral origin is a type of spurious variation in many tasks,
we have created a new labeled ancestral origin dataset, “Labeled Ancestral Origin Faces
in the Wild (LAOFIW)”, from publicly available images. This dataset contains 14,000
images of individuals whose ancestral origin is sub-Saharan Africa, Indian Subconti-
nent, Europe, and East Asia, with a variety of poses, illumination, facial expressions.

The rest of this paper is organized as follows. Section [3] introduces our LAOFIW
dataset and other datasets we used for our experiments. Section{4{discusses the methods
to remove spurious variations from the feature representation of a network. In section
we present an experiment to remove a bias from the feature representation network.
In section[5.2] we investigate how removing an extreme bias can improve classification
performance, and in section [5.3] we investigate removing multiple spurious variations
from a network. The results are detailed in section @ Finally, section summarises our
findings.

2 Related Work

Image datasets are known to contain biases that cause models to generalize poorly to
new, unseen data [4,/5]. This has been addressed by domain adaptation that aims to
minimize the difference between the source and target domains [20]. Domain adaptation
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has been shown to improve the generalisability of classifiers for the same task across
different domains [[1921]. We draw inspiration from domain adaptation methods to
make the network agnostic to spurious variations.

Learning feature representations that are invariant to certain spurious variations has
been tackled in a number of ways. [22] take a multi-task learning approach to pose-
invariant face recognition. They propose a novel approach to automatically weight each
of the spurious variations during training. Another approach is to adjust the training data
distribution at training time, to avoid learning biases [18]. This method relies on having
labels for each of the spurious variations for each training instance. This is not feasible
for most existing datasets, as they tend to be labeled with a single task in mind, where
information about spurious variations is not available. Our method can make use of
separate datasets, each labeled for distinct tasks, to remove multiple spurious variations
simultaneously.

Jia et al [23|] and Raff et al [24] draw inspiration from [25] to remove a source of
variation with the use of a gradient reversal layer to update the network in opposition of
a task. Instead of applying gradient reversal on the output of the softmax layer, which
penalizes correct classifications, we compute the cross-entropy of the output classifier
and a uniform distribution, as in [[19}21]]. This ensures an equally uninformative classi-
fier across all tasks.

3 Datasets

3.1 Labeled Ancestral Origin Faces in the Wild

A new ancestral origin database was created as part of this work called “Labeled An-
cestral Origin Faces in the Wild (LAOFIW)”. The aim of this dataset was to 1) create
a dataset for experimentation, and 2) be used as a spurious variation dataset for ap-
plications where training a network to be agnostic to ancestral origin is important. The
database was assembled using the Bing Image Search API. Search terms based upon ori-
gin, e.g. “German, English, Polish, etc”, were submitted in conjunction with the words
“man, woman; boy, girl”. Additionally, results were filtered to return photographic im-
ages of faces. In total, 43 origin search terms were queried returning 20,000 images.
Duplicates were removed by comparing their Histogram of Oriented Gradients [26]] en-
coded using a Gaussian mixture model for each image. The remaining 14,000 images,
were manually divided into four broad ancestral origins: sub-Saharan Africa, Indian
Subcontinent, Europe, and East Asia. These classes were selected on the basis of being
visually distinct from each other.

The database contains roughly the same number of male and female individuals. It
also contains images with varied poses: more than a third of the images are non-frontal.
Sample images are shown in figure|[I]

3.2 Age and Gender Dataset

The IMDB dataset is a large publicly available dataset of the images contained in the
profiles of the 100,000 most popular actors on the IMDb WebsiteE] with gender and date

> https://www.imdb.com/
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Fig. 1: Example images from the LAOFIW dataset for each of the four classes. In rows
top to bottom: Sub-Saharan Africa, Europe, East Asia, Indian Subcontinent. The images
are highly varied in age, gender, pose, lighting and expression.

of birth labels provided for each instance [27]. We used this dataset to investigate the
effects of age and gender bias in celebrity datasets.

The labels in the IMDB dataset are noisy, with a number of individuals having both
incorrect age and gender labels. This is due to the nature of how the data was collected:
The authors assumed that images from an actor’s profile that contained a single face
would show the actor in question. As stated by the authors, however, these images often
contain other actors, who co-starred in their movies [27]. As gender and date of birth are
taken from the profile of the actor, this causes erroneous labels for images that show co-
stars. The age of an individual was calculated as the difference between the timestamp
of the photo and the date of birth of the subject. In some cases, the time stamps of
photos predate an actor’s date of birth or are otherwise unreliable.

To mitigate this problem, we used the Microsoft Azure Face APﬂ to extract gender
and age estimates for an identity-balanced subset of 150,000 images. We rejected all
images in which the predicted gender from Azure and the IMDB gender label disagreed.
We then ran the analysis for age and removed images in which the Azure age prediction
differed by more than 10 years from the IMDB labels. The resulting, cleaned dataset
contained 60,000 images.

In order to quantify the effectiveness of this data cleansing procedure, we trained
a gender classification VGG-M network [3]] on both the original 150,000 images and
the cleaned 60,000 images, withholding 20% of the images for testing. The gender
classification accuracies on the test images improved from 75%, before cleaning, to
99% after cleaning.

The distribution of ages for each gender in the cleaned IMDB dataset is shown in
figure 2] We can observe a bias towards younger women and older men in the data.

8 https://azure.microsoft.com/en-gb/services/cognitive-services/face/
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A subset of the cleaned data was used to create an unbiased test dataset, which
contains equal numbers of men and women for each age category. This unbiased test
dataset was used to evaluate network bias and was not used during training.
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Fig. 2: Age distributions and differences for women (red) and men (blue) in the IMDB
dataset. The dataset bias towards younger women and older men is visible.

3.3 Pose Dataset

We used the AFLW dataset [|10]] categorized by yaw, to train the pose classifier men-
tioned in section [3.1] The poses were binned into five categories, “profile left, near-
frontal left, frontal, near-frontal right, profile right”. The non-frontal images were du-
plicated and flipped to augment the dataset. A class-balanced subset of 24,000 images
was selected for training, and a class-balanced set of 6,000 images was reserved for
testing.

4 Methods

We introduce a supervised-learning algorithm that aims to learn a single feature rep-
resentation Grpy, that is informative for a primary classification task, whilst simultane-
ously being uninformative for a number of spurious variations, that represent undesir-
able sources of variation. For example, we may wish to create an age classifier, that
does not base its decisions on any pose, ancestral origin, or gender information.

We assume access to a primary dataset D,, = {x;, y; ZL:pl, containing n,, images, x;,
with labels y; € {1, ..., K'}. And similarly, we assume access to M secondary datasets,
Ds = {D,, }M_,, each describing a single spurious variation.

4.1 Joint Learning and Unlearning

We introduce a joint learning and unlearning (JLU) algorithm to learn a primary classi-
fication task, whilst simultaneously unlearning multiple spurious variations.
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Our convolutional network (CNN) architecture is depicted in Figure[3] The primary
branch has a single classification loss, the primary classification loss, which assesses
the ability of the network to accurately distinguish between classes of the primary task.
Each secondary branch has two losses: a classification loss and a confusion loss. These
losses are used to, in turn, assess the amount of spurious variation information left in
the feature representation 6., and then remove it.
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Fig. 3: Overview of CNN Architecture: We use a joint loss over primary and secondary
data to learn a feature representation that simultaneously learns to classify the primary
task but becomes invariant to secondary tasks, the spurious variations. The spurious
variation classification loss and confusion loss act in opposition to learn the classifier
on the feature embedding and change the feature embedding to confuse the classifier,
respectively. The base architecture is a VGG-M network [3]].

Let the classification objective for a generic task with K classes and a corresponding
classifier 0., given a feature representation ., be defined as the standard softmax loss:

Nk

Lsoftmax(ma Y; erepra OC) = - ]l[y = k] log pi, (D

>
Il

1

where py, is the softmax of the classifier’s output assigning the input z to class k.
We will refer to this loss evaluated on the primary task as L p(p, Yp; Orepr, #p) and on
the m-th spurious variation as Ly, (T, Ym., Orepr; Om )-

Inspired by [[19], we introduce a confusion loss for the m-th spurious variation,
Leont(Tms Ym,, Om; Grepr), in . Minimizing the confusion loss seeks to change the fea-
ture representation frp, such that it becomes invariant to the spurious variations.

1
Lconf,m (-rn'u Ym, Om; erepr) = - Z —_— IOg P, - (2)

m
Nm

We compute the best classifier for each spurious variation, 6,,,, and then compute the
entropy between the output predicted from each of these classifiers and a uniform dis-
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tribution. The complete method minimizes the joint loss function:

L(xpv YpyTsyYs, 9;07 05; arepr) = Lp(l'pv Yps greprv ep)

(3)
+ Ls + aLcont,
where o determines how strongly the confusion loss affects the overall loss, 0; =
{(917 ceey 9]»[}, and
M
conf - M mZ conf,m Qfm, Yms 9m7 9repr> (4)
M
Z xma Ym, 9repr§ 9m)> Q)

where (3, is a weight assigned to the m—th spurious variation. As mentioned in [[19],
the confusion loss (@) and the spurious variation classification loss (3)) stand in opposi-
tion to one another, so they cannot be optimized in the same step. Therefore, we switch
between training the spurious variation classification loss, L, and then the joint pri-
mary and confusion loss, Lp(asp, Yp’ Oreprs Gp) + aL¢on . At each iteration, we find the
best spurious variation classifier for the feature representation. The training procedure
is shown in algorithmm We used the VGG-M architecture [28]], which consists of five
convolutional layers (convl-5) and three fully connected layers (fc6-8). The feature
representation parameters Oy represents layers conv1-fc7.

Algorithm 1 Joint Learning and Unlearning

: procedure min L(xp7 yP7 msv ys7 0?7 057 erepr)
for epochs do
while dLS # 0do

1

2

3

4: rmn L

5: end while

6: min L, + aLconf
7 end for

8: end procedure

S Experiments

In this section, we present experiments to demonstrate possible applications of our
methodology and the datasets we tested them on.

Removal of a bias from a network — We train a gender-agnostic age classifier us-
ing the IMDB dataset, which contains a gender bias: female celebrities tend to be
younger than their male counterparts in this dataset.

Removal of an extreme bias from a network — We train an age-agnostic gender clas-
sifier on subsets of the IMDB dataset that contain only young women and only old
men, and vice versa.
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Simultaneous removal of multiple spurious variations — We demonstrate our JLU
algorithm’s ability to simultaneously remove multiple spurious variations from the
feature representation of a network trained for a primary classification task.

5.1 Removal of a bias from a network

We investigated the task of creating an age classifier using the cleaned IMDB dataset
described in section We hypothesize that the gender bias in the distribution, where
men are generally older than their female counterparts in this dataset, will be learned
by the network.

We trained two networks to perform this task: 1) baseline — trained solely on age
data, 2) blind — trained on age data, whilst removing gender-specific information from
the network.

We evaluated both networks on the unbiased test dataset detailed in section[3.2] We
compared accuracies for age classification and prediction distributions for both genders.

5.2 Removal of an extreme bias from a network

We train gender classifiers using the following artificially biased subsets of the cleaned
IMDB data from section 3.2

1. Extreme bias 1 (EB1): women aged 0-30, men aged 40+
2. Extreme bias 1 (EB2): women aged 40+, men aged 0-30

We placed a buffer of 10 years without any individuals between the two sets to exag-
gerate the age difference between the genders. We hypothesize that the age bias in the
distribution will be learned by the network, for example, if trained on EB1, it should
falsely learn to predict that young men are in fact women. Histograms of these datasets
are given in figure 4]

We trained a baseline network on gender only, and a blind network using our JLU
algorithm to unlearn age. The trained classifiers were evaluated on the unbiased test
dataset detailed in section 3.2

5.3 Simultaneous removal of multiple spurious variations

We demonstrate our algorithm’s ability to remove multiple spurious variations from
the feature representation of a network. The primary task and spurious variations are
selected from age, gender, ancestral origin and pose. In each case, one task is selected
as the primary task, and the others make up the spurious variations that we wish to
remove. A baseline network was trained for each primary task without using our JLU
algorithm.

We used the cleaned IMDB dataset described in section [3.2] for age and gender
labels. We used our LAOFIW dataset, described in section to classify ancestral
origin. Finally, we used the adapted AFLW dataset (Section to classify pose.
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(a) EB1: women aged 0-30, men aged 40+ (b) EB2: women aged 40+, men aged 0-30

Fig. 4: Histograms showing the ages of women (red) and men (blue) in the artificially
biased datasets. In both cases, individuals aged under 35 were selected for the young,
and individuals aged above 45 were selected for the old set.

5.4 Age Classification

Since our dataset is relatively small for a deep learning task, we do not approach age
estimation as a regression task. We conduct age classification by creating age bins of
5 years, or more years at either end of the distribution. The categories are shown in
figure 2] We define predictions within one class from the true age class as a positive
classification to account for errors caused by edge cases in different bins.

5.5 Implementation details

Our base network is an adapted VGG-M network [3|], pre-trained on the VGG-Face
dataset [[11]]. In our experiments, we saw no significant improvement in updating the
weights in the convolutional layers, therefore, the weights in layers convl-conv5 were
frozen for all experiments. This significantly increased the speed of the training algo-
rithm.

The confusion loss was approximated using the Kullback-Leibler divergence be-
tween the softmax output of a classifier and a uniform distribution. The network is
trained using stochastic gradient descent (SGD) with a learning rate of 1 x 10~*. Learn-
ing rates of classification layers for each task were boosted by a factor of 10. The hy-
perparameter in equation[3]is set to a value of & = 0.1. The spurious variation classifier
hyperparameters were all set to 3,,, = 1. To address the imbalance in the class distribu-
tions of the training data, losses were weighted by the inverse of the relative frequency
of that class. We conduct our experiments using the MatConvNet framework [29].

6 Results

6.1 Removal of a bias from a dataset

We computed feature representations for the class-balanced test dataset from section[3.2]
for both baseline and blind networks. T-SNE visualizations of these feature embed-
dings are shown in figure [5] The feature representation of the baseline network that
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was trained to classify age is clearly separable by gender, demonstrating that the bias in
the training data was learned. After unlearning gender, the feature representation is no
longer separable by gender, demonstrating that this bias has been removed.
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Fig.5: T-SNE visualizations of 4096-dimensional feature representation of the class-
balanced test dataset for age classification networks trained on gender-biased data. (a)
Baseline network without unlearning gender, (b) Blind network with gender unlearn-
ing. The feature representation is clearly separable by gender for the baseline network,
showing that the network has learned the gender bias in the dataset. After unlearning,
this bias is no longer pronounced.

The distributions of the age predictions and ground truth on the gender-balanced
test set are shown in figure[6] The red and blue lines show the predicted ages for women
and men, respectively. The black dashed line shows the ground truth for both genders.
The distributions of predicted ages for females and males are different for the baseline
network (Figure [5a): women’s ages tend to be underestimated, whereas men’s ages are
generally overestimated. This behaviour mimics the bias within the training data, which
confirms that the classification model is making age predictions that are, to a degree,
dependent on gender.

In order for us to be sure that the network is not using gender information to predict
age, both female and male prediction distributions should be similar. Figure [5b] shows
the distributions for the network that has been trained to no longer be able to differenti-
ate between genders. The KL-divergence between age prediction distributions for men
and women of the biased and unbiased networks are 0.049 and 0.027, respectively. The
reduction in KL-divergence shows that the network has successfully unlearned gender,
as the predicted age distributions for both genders are similar. Note, that we are not
necessarily trying to perfectly predict the ground truth, but be confident that we are not
treating men and women differently.

The average prediction accuracy for age classification on the gender-balanced test
dataset for the baseline network was 78.9% (78.4% for females and 79.4% for males)
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and for the unbiased network was 78.1% (77.4% for females and 78.9% for males).
This corresponds to a reduction in accuracy of 0.8% (1.2% for females and 0.5% for
males).
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700 700
0 600 » 600
& &
8 H
£500 £ 500
5 400 5 400
3 F:
§300 5300
Z 200 =200
100 100
0 0
2y FRI eI 8e Y8 FRIfIERg
CR A /FH IS E&EE CR AV FH IS E&EE
Age Classes Age Classes
(a) Baseline network (b) Unbiased network

Fig. 6: Prediction distributions of age for each gender compared to the ground truth
(black) for men (blue) and women (red). The evaluation dataset was gender-balanced so
that each class has an equal number of women and men. (a) Baseline network without
unlearning gender, (b) unbiased network with gender unlearning. The red line shows
the age predictions for women and the blue line shows them for men. The prediction
distributions for women and men align after unlearning gender. The KL-divergence
score between the prediction distributions of men and women are given for each case.
The KL-Divergence score reduces, as two distributions become more similar.

6.2 Removal of an extreme bias from a network

The baseline gender classification accuracy on the gender-balanced test data was 70%
for a network trained on the EB1 dataset. This was improved by 16% to 86% for the
blind network, where we simultaneously unlearned age information. The accuracies for
networks trained on the EB2 dataset were 62% for the baseline and 82% for the blind
network. This amounts to a 20% increase in classification accuracy.

The age distributions of individuals that were predicted to be either male or female,
trained on the EB1 dataset, are shown in figure[7] The baseline network often wrongly
predicts older individuals to be male, and younger individuals to be female, in line with
the training data. The age distribution of gender predictions from the JLU network,
however, is closer to the true distribution. We observed similar results for the baseline
network trained on the EB2 dataset, where younger individuals were more often pre-
dicted to be male, and older individuals were more often predicted to be female. The
JLU network prediction distributions were closer to the true distributions.

6.3 Simultaneous removal of multiple spurious variations

Figure [8|shows how the accuracies on the test data for each attribute vary over the JLU
training procedure when simultaneoulsy unlearning multiple spurious variations. For
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(b) Male and female predictions by age by network trained on EB2 dataset

Fig.7: Age distributions of male and female predictions from networks trained on the
biased (a) EB1 and (b) EB2 datasets, evaluated on the gender-balanced test data. The
baseline network often wrongly predicts older individuals to be male and younger indi-
viduals to be female. Using the JLU algorithm reduces this bias and shifts the prediction
distributions closer to the true distribution.

clarity, in the figure, spurious variation classification accuracies were rescaled using the
equation below:

a=1-—, (©)

where e is the mean-class error of the classifier and en,,x corresponds to the error-rate
of a classifier that draws at random. A perfect classifier corresponds to a score of a = 1
and a random classifier corresponds to a score of a = 0. The primary classification
accuracy was not rescaled.

These results are summarised in table [Tl for networks trained with and without JLU.
The baseline column corresponds to the accuracy of the best classifier on a feature
embedding trained without JLU. The “blind” column shows the same accuracies when
using the JLU algorithm. When the classifier cannot recover meaningful information
from the feature embedding the accuracy is equivalent to random chance.

Age — The primary classification accuracy of the blind network is 5% less than the
baseline network. Information about ancestral origin was removed from the network
completely. Gender and pose information were removed by 88% and 91%, respectively.

Ancestral Origin — The primary classification accuracy of the blind network im-
proved by 1% compared to the baseline network. The proportions of age, gender, and
pose information that were unlearned were 92%, 98%, and 86%, respectively.
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Table 1: Classification accuracies for each spurious variation for a baseline network
and a “blind network”. The baseline accuracies show the best classifiers that can be
learned on the feature representation of the primary task without the JLU algorithm.
The “Blind” column shows the classification accuracies after JLU. The random chance
column states the target accuracy for a spurious variation classifier after JLU, corre-
sponding to an uninformative classifier’s accuracy. The % unlearned column shows the
relative difference of baseline and blind accuracies to random chance.

Primary Spurious Baseline Blind % Unlearned Random
Chance
Age 0.79 0.74
Ancestral Origin 0.83 0.25 100% 0.25
Gender 0.99 0.56 88% 0.50
Pose 0.66 0.24 91% 0.20
Ancestral Origin 0.94 0.95
Age 0.58 0.12 92% 0.08
Gender 0.99 0.51 98% 0.50
Pose 0.56 0.25 86% 0.20
Gender 0.99 0.99
Age 0.70 0.12 94% 0.08
Ancestral Origin 0.85 0.26 98% 0.25
Pose 0.62 0.22 95% 0.20
Pose 0.84 0.84
Age 0.68 0.12 93% 0.08
Ancestral Origin 0.88 0.39 78% 0.25
Gender 0.99 0.57 86% 0.50

Gender — The primary classification accuracy of the blind network is the same
as the baseline network. Age, ancestral origin, and pose information were removed by
94%, 98% and 95%, respectively.

Pose — The primary classification accuracy of the blind network is the same as the
baseline network. Information about age, ancestral origin, and gender were removed
from the network by 93%, 78% and 86%, respectively.

Apart from the network that was trained on the primary task of age classification
on data that contained a strong gender bias, all blind networks have the same or better
primary classification accuracy compared to their baseline counterparts. Spurious vari-
ations were successfully removed in most cases, with classification accuracies reducing
to within 5% of random chance in 9/12 cases. The pose experiment proved the least
effective, with ancestral origin information proving most difficult to remove.

7 Conclusion

The paper proposes an approach for removing multiple known dataset biases or spu-
rious variations from a deep neural network. Similar to previous work in the field, the
algorithm is inspired by domain adaptation work. Drawing inspiration from [19], we
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Fig. 8: Classification accuracies on test data for the primary task and spurious varia-
tions during the training procedure of the JLU algorithm. The primary classification
accuracy is compared to the baseline network accuracy (dotted). The spurious variation
accuracies have been re-scaled using equation [6] so that zero accuracy corresponds to
the accuracy of a random chance classifier.

compare the cross-entropy between the output distribution of classifiers that are trained
to predict spurious variations and a uniform distribution. The resulting feature represen-
tation is informative for the primary task but blind to one or more spurious variations.

We demonstrated our algorithm’s efficacy on face classification tasks of age, ances-
tral origin, pose and gender. The resulting feature representations remained informative
for one task, whilst simultaneously being uninformative for the others. When training a
gender classification network on extremely age-biased data, our algorithm significantly
improves (by up to 20%) classification accuracies on an unbiased test dataset. This
demonstrates that our algorithm allows networks trained on biased data to generalize
better to unbiased settings, by removing each known bias from the feature representa-
tion of the network.

This is a significant step towards trusting that a network definitely isn’t basing its
decisions on the wrong reasons. With increasing use of neural networks in government,
law, and employment to make life-changing decisions, it is of great importance, that
undesirable social biases are not encoded in the decision algorithm. We also created a
dataset to detect ancestral origin from faces, which can be used to remove racial biases
from the feature representation of a network. We will make this dataset available to the
public.

Some spurious variations are easier to remove than others — applying different
weights to each spurious variation classifier could account for these differences. A
dynamic-weighting scheme, as in [22]], to automatically weight these different tasks
at different time-points during training may improve convergence.
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