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Abstract. To reconstruct 3D shapes of real objects, a structured-light
technique has been commonly used especially for practical purposes, such
as inspection, industrial modeling, medical diagnosis, etc, because of sim-
plicity, stability and high precision. Among them, oneshot scanning tech-
nique, which requires only single image for reconstruction, becomes im-
portant for the purpose of capturing moving objects. One open problem
of oneshot scanning technique is its instability, when captured pattern is
degraded by some reasons, such as strong specularity, subsurface scatter-
ing, inter-reflection and so on. One of important targets for oneshot scan
is live animal, which includes human body or tissue of organ, and has sub-
surface scattering. In this paper, we propose a learning-based approach
to solve pattern degradation caused by subsurface scattering for oneshot
scan. Since patterns are significantly blurred by subsurface scattering,
robust decoding technique is required, which is effectively achieved by
separating the decoding process into two parts, such as pattern detec-
tion and ID recognition in our technique; both parts are implemented
by CNN. To efficiently achieve robust pattern detection, we convert a
line detection into segmentation problem. For robust ID recognition, we
segment all the region into each ID using U-Net. In the experiments, it is
shown that our technique is robust against strong subsurface scattering
compared to state of the art technique.

1 Introduction

In order to reconstruct 3D shapes of real objects, mainly two approaches ex-
ist, one is camera only algorithm and the other is camera and active-lighting
based algorithm. Although there are several important advantages on camera
only algorithm, i.e., systems can be compact and low energy consumption, crit-
ical limitations exists, such as textureless objects cannot be recovered. Because
of the limitation, it is difficult to apply the camera only algorithm to practical
purposes, such as inspection, industrial modeling or medical diagnosis. To the
contrary, camera and active-lighting algorithm do not have such limitation and
wide varieties of products have been developed. Among them, structured-light
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technique is most popular because of its simplicity, stability and high precision.
Along a long history of structured light, problems on scanning static objects
with smooth and Lambertian surfaces have been mostly solved. One important
remaining problem is a reconstruction of moving objects and it has been in-
tensively researched recently. Most popular solution is based on static pattern
projection with single image capture, which is called oneshot scan [12, 16].

Generally, to retrieve correspondences between the captured image and the
original illuminated patterns of a projector for oneshot scan systems, features
and codes are extracted from the captured image. For this purpose, common fea-
ture detection methods such as edge/corner detection are the first choice. Since
projected patterns for recent oneshot scan techniques usually consist of simple
structures, such as grids or dots [12, 26, 16], using the prior knowledge of such
structure is used to improve the detection accuracy. After feature extraction,
unique correspondences between the projected pattern and the captured image
are retrieved by using spatial distribution of those features. To achieve efficient
and stable matching between the patterns and the captured images, many ex-
isting oneshot methods embed a distinctive “codes” into local area of pattern.
These codes are detected from the captured image (i.e., decoding) and used for
matching. If these codes are detected with smaller error rate than the assumption
of the matching algorithm, the matching process succeeds. One practical issue
of oneshot scan is that since the codes are embedded as spatial pattern distribu-
tion, reconstruction accuracy is severely affected by degradation of the captured
pattern; note that such degradation is frequently caused by common physical
phenomena, such as specularity, strong subsurface scattering or inter-reflection.

In this paper, we propose a learning-based approach to solve subsurface scat-
tering effect, which is typical on live animals including human body and tissue
or organ. Since patterns are significantly blurred out by subsurface scattering
effects, robust decoding technique is required, which is efficiently achieved by
separating the decoding process into two parts, such as pattern detection and
ID recognition part. Both parts are implemented by CNN to avoid analyzing
complicated phenomena of subsurface scattering and related effects. In the pa-
per, we further propose a robust line detection algorithm by converting the
problem into a segmentation problem, where lines are detected as a boundary of
two segments; note that CNN works surprisingly well on segmentation and our
technique can take full advantage of it. We also propose a robust ID recogni-
tion technique which is achieved by segmenting all the region into each ID using
U-Net.

In the experiments, it is shown that our technique is robust to strong subsur-
face scattering effects compared to state of the art technique. The advantages of
our approach are as follows: (1) Novel CNN-based technique for detecting and
decoding projected patterns, where grid-structures of patterns are detected by
two line-detection CNNs, and ID recognition CNN, is proposed. (2) Line detec-
tion problem is solved by segmentation algorithm. (3) The CNNs are trained by
examples with strong subsurface scattering properties and the stability of the
method against blurring of the projected patterns are confirmed.
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2 Related work

There are two major shape recovery techniques using active light, such as pho-
tometric stereo and structured light. Photometric stereo recovers the surface
normal of each pixel using multiple images captured by a camera while chang-
ing the light source direction [10, 9]. Although photometric stereo can recover
surface normals, they need usually more than 40 images for stable reconstruc-
tion and cannot be used for oneshot scan [27, 11]. The structured-light technique
has been used for practical applications [22, 27, 17]. There are two primary ap-
proaches to encode positional information into patterns, such as temporal and
spatial encoding. Because temporal encoding requires multiple images, it is not
suitable for capturing moving objects [23, 25]. Spatial encoding requires only
a single image and is possible to capture fast-moving objects [16, 12, 15, 26, 20]
and recently draw a wide attention. One severe problem for spatial encoding
method is that they encode positional information into small regions, patterns
tend to be complicated and easily degraded by environmental conditions, such
as noise, specularity, blur, etc. To avoid such limitations, some techniques are
based on geometric constraints rather than decoding [13, 21, 18, 14, 26], but not
considered for strong degradation like subsurface scattering.. There are several
techniques for compensation of such degradation [6, 7, 5], however, they assume
capturing multiple images with projecting multiple patterns, thus cannot be
applied to oneshot scan. Recently, solution for subsurface scattering objects is
proposed [4], but it requires a specifically designed pattern and more general
technique for wide variations of patterns is strongly demanded.

Recently, CNNs have become common tools for vision applications. Image
segmentation is one of the most successful examples of such applications [8,
3]. U-Net [19] is an architecture of FCNN (Fully convolutional neural network),
which can receive an image and produces a pixel-wise labeled image. It has
contracting paths (signal flow where image resolution becomes coarse) to cap-
ture large-scale context information and symmetric expanding path ( signal flow
where low-resolution features are merged into high-resolution features) to realize
precise localization. It is known to outperform previous FCNN architectures such
as sliding window convolutional networks [2] in segmentation tasks of medical
images. Song et al. proposed to detect code information of structured light using
a CNN[24]. We not only use CNNs for classifying codes of the structured light,
but also use them for detecting structures of the pattern such as lines that form
grid-like structures.

3 Overview

3.1 System configuration

The proposed 3D measurement system consists of a camera and a projector as
shown in Fig. 1(a). The camera and the projector are assumed to be calibrated
(i.e., the intrinsic parameters of the devices and their relative positions and
orientations are known). The projector pattern is fixed and does not change, so
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Fig. 1. Projector-camera scanning system and algorithm overview: (a)Scanning sys-
tem: patterns are projected onto the objects including strong subsurface scattering.
Geometric features of patterns, such as lines or intersections, are detected and used
for reconstruction. (b)Algorithm overview of CNN-based decoding and 3D reconstruc-
tion for oneshot scan. Note that we have two CNNs for vertical and horizontal line
detections, and another CNN for decoding IDs of grid points.

no synchronization is required. Some geometric patterns are projected from the
projector and captured by the camera. In the work of spatial encoding method,
the projected pattern is extracted from the captured image and the accuracy of
such pattern detection is the key for accuracy and stability of 3D reconstruction.
In the method, pixel-wise pattern information is efficiently decoded by CNN-
based technique.

3.2 Algorithm

Our method consists of two stages: pattern decoding stage and 3D reconstruction
stage as shown in Fig. 1(b).

The pattern decoding stage can also be divided into two phases, such as
a learning phase and a decoding phase. In the pattern learning phase, first,
actual patterns are projected onto the strong subsurface scattering objects and
captured by a camera. Then, correct lines and code IDs are manually given as
for the ground truth. It is a tough task even for humans, thus, learning data
augmentations such as image translations or rotations are used to decrease the
burden. Then, parameters and kernels of U-net [19] are estimated for lines and
IDs independently using deep learning framework so that cost functions are
minimized. The cost function is basically a difference between an output of U-
net and the ground truth.

In the decoding phase, the captured image is first applied to CNNs for ver-
tical and horizontal line detections. At the same time, the image is also applied
to CNN for region-wise classification of local feature codes embedded into the
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Fig. 2. The projected pattern(top), and embedded codewords of S colored in red, L in
blue, and R in green (bottom). S means edges of the left and the right sides have the
same height, L means the left side is higher, and R means the right is higher.

pattern. Then, both results are combined to produce final output, i.e., detected
lines with estimated local codes in the pattern.

Finally, by using the image with detected lines with pattern ID as the input,
3D shapes are recovered in the 3D reconstruction stage. Since a single local code
is not sufficient for unique decision of correspondences, information of connec-
tivity and the epipolar constraints are used with a voting scheme to increase
robustness, similarly as [4]. Once correspondences are retrieved, 3D shapes are
reconstructed by light sectioning method.

4 CNN-based feature detection and decode for active

stereo

In this paper, we use “grid pattern with gapped codes” described in [4], which
is claimed to be robust to defocus on projection. The pattern is shown in Fig. 2.
A major feature of this pattern is a grid-like structure and discrete codes given
to each grid point. The grid-like structure is composed of vertical and horizontal
line segments. In the pattern, a discrete feature (gap code) is attached to each
of the grid point represented by the level gap between the left and right edges
of the grid point. The classes of the code are either of S / L / R as shown in
different color in Fig. 2(right).

We believe such a grid-like structure is suited for CNN-based detection frame-
work. Because pattern structures are repetitive, common features of different
points can be easily extracted. Moreover, the grid-structure itself can be a large
help for detecting local features such as lines, even in disturbances such as noise
or blurring.

4.1 Detection of grid structure

In this paper, we propose to extract grid-structure and gap-code information
using U-Nets[19], which is a kind of FCNN (fully convolutional neural network).
The structure of the U-Net is shown in Fig. 3. The numbers in the figure rep-
resents dimensions of the feature maps. For example, the 1-D image (intensity
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Fig. 3. Structure of U-Nets.

image) of the input is converted to a 64-D feature map by applying 2-steps of
convolutions. Then, the spatial size of the feature map is sub-sampled to become
a lower resolution (1/2 for both x and y-axis) feature map by max pooling. This
coarse resolution feature map is later up-sampled by up-convolution and concate-
nated with the high-resolution feature maps. The information flow in the feature
map looks as if “U” character in Fig. 3, thus, it is called “U-Net”. Because of
this network structure, both fine and coarse resolution features are accounted
for in the outputs of U-Nets.

U-Nets are originally used for pixel-wise labeling or segmentation of images.
Applying a U-Net to an image, it finally produces a feature map of the same
size. In the resulting N-dimensional feature maps, each pixel is an N-D vector.
By taking the index of the maximum element for each N-D vector, image of
N-labels is obtained.

The training process of a U-Net for detecting vertical lines is as follows. First,
image samples of the pattern-illuminated scene is collected. Then, the vertical
line locations for the image samples are designated manually as curves of 1-dot
widths. The 1-dot width curves are too sparse and narrow to be directly used as
regions of teacher data. Thus, regions with 5-dot width of left and right side of
the thin curves are extracted, and labeled as 1 and 2, respectively, as shown in
Fig. 4. The rest of the pixels are labeled as 0. These 3 labeled images are used
as teacher data. Then, a U-Net is trained to produce such labeled regions using
the loss function of the softmax entropy between the 3-labeled teacher data and
the 3-D feature map produced by the trained U-Net.

By applying the trained U-Net to the image, we can get the 3-labeled image,
where left and right side of the vertical curves are labeled as 1 and 2, respectively.
Thus, by extracting the 2 horizontally-adjacent pixels where the left is 1 and
the right is 2, and connecting those pixels vertically, vertical curve detection is
achieved.

The horizontal curve detection is achieved similarly. However, the horizontal
edges may be disconnected due to the gaps at the grid points. Even in those



Robust structured light system against subsurface scattering effects 7

Label 1
Label 2

(a) (b) (c)

Label 1

Label 2

(d) (e) (f)

Fig. 4. Teacher data for vertical line detection (a-c), and horizontal line detection (d-f).
(a)(d): Sample image of the projected pattern. (b)(e) Vertical lines that are manually
annotated. (c)(f) Labeled regions used as training data. For horizontal line detection,
discontinuities at the grid points are intentionally connected in the teacher data.

cases, teacher data is provided as continuous curves that go through the center
point of the gaps as shown in Fig. 4(e). By training a U-Net using such teacher
data, we can expect results where horizontal curves are detected as continuous
at grid points, even if they are actually disconnected by gap codes.

An advantage of using U-Net for line detection of the grid structure is stability
to disturbances such as blur, noise, or specularity. Fig. 5 show an example to
show the stability of the line detection ability using a surface of a squid. In the
examples, strong noise is added to the image, however, the line-detection result
does not degrade significantly. We think that the stability comes from that the
CNN uses features extracted by image convolution, which is known to be stable
to small noises. In addition, we think that the U-Net uses global information such
as grid-like structures for detecting local features of line, because the lines that
are almost completely wiped out by the noise and saturation are also detected.

On the contrary, we have found that the line detection of U-Net can be
disturbed by scale changes that are not trained. In Fig. 6, we used U-Net that
are trained for patterns with about 20x20 (pixel) grid size, and we can see that
the result of U-Net was disturbed by scale changes (40x40 grid size) of input
image for this example. This problem can be solved by adding training data
with proper sizes, for example, if the grid sizes of the input images may be as
large as 40x40, then training data with this size should be included. This can be
achieved by data augmentation.

Another advantage of using U-Net for grid detection is that the horizontal
edges that are actually disconnected by the gaps are intentionally detected as
continuous curves by providing such training data (Fig. 7). Such a task is not
easy for conventional line detection algorithms. Thanks to the continuously-
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(a) (b) (c) (d)

Fig. 5. Stability to noised image. (a) Sample image(squid surface). (b) CNN (vertical
line detection) result of (a). (c) Noised image of (a). (d) CNN (vertical line detection)
result of (c).

(a) (b) (c) (d)

Fig. 6. Scale mismatch of the input image. (a) Input image with matched scale (about
20x20 grid size). (b) CNN (vertical line detection) result of (a). (c) Input image with
mismatched scale (about 40x40 grid size). (d) CNN (vertical line detection) result of
(c).

detected horizontal curves, analysis of grid-structure becomes much simpler than
the previous work[4].

The max pooling and up convolution of the U-Net provide feature maps for
different resolutions. For line detection process, we use 4 different resolutions.
In the coarsest resolutions, the size of a “pixel” feature map is 8×8 pixels of
the original image. Thus, the convolution in this resolution uses information of
about 24×24 pixel patches, which is larger than typical grid size that is about
20×20 of the original image. Thus, the U-Net is considered to use information
of the grid structures for local line detections.

4.2 Detection of pattern codes

In the proposed method, identification of gap codes is processed by directly
applying U-Net to the image signal, not from the line detection results. Thus,
the gap code estimation does not depend on line segment detection, which is
advantageous for stable detection of gap codes. Note that such a direct method
is not easy to implement by conventional image processing.

The training data generation is shown in Fig. 8. In the training process, the
white background pixels of Fig. 8(c) are treated as “don’t care” regions.
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(a) (b)

Fig. 7. Detection of discontinuous lines with gaps as continuous lines. (a) Input image
(squid surface). (b) CNN (horizontal line detection) result of (a).

Label 0Label 1Label 2

(a) (b) (c)

Fig. 8. Teacher data for code detection. (a): Sample image of the projected pattern.
(b) Codes that are manually annotated. (c) Labeled regions used as training data.
Background pixels are treated as “don’t care” data for the loss function.

The advantage of directly detecting the pattern code is that the stability of
the code detection. Since, in the previous work [4], identification of gap codes
have been achieved by using results of line detection, failure of line detection or
failure of grid-structure analysis consequently leads to code-detection failures.
The proposed method is free from such problems of sequential processing.

5 Experiment

5.1 Evaluation using subsurface scattering objects

To examine the ability of our technique, we actually scan multiple objects, which
also exhibit subsurface scattering effects, by using the system as shown in Fig. 9.
The 3D points on the projected lines are calculated by triangulation. Since the
lines are sparse points, we filled space between the lines using interpolation based
on RBFs (radial-basis functions) [1].

For the training of U-Nets, we have captured images of several materials with
subsurface scattering (e.g., bio-tissues , squids, or candles) while projecting the
grid pattern of Fig. 2. Then the vertical and horizontal lines are annotated by
human hands, and teacher data samples shown in Fig. 4 are generated from the
data. Teacher data of code detection (Fig. 8) are also generated from human
annotation. The numbers of the annotated images were 42, 40, and 42, respec-
tively for the vertical lines, horizontal lines, and codes detection. The U-Nets are
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Fig. 9. Actual objects capturing setup. A camera and a projector are precisely cali-
brated in advance.

trained with image patches with size of 80 extracted from the training data set,
and with batch size of 50. The number of updates of weights of U-Nets were 2000
for each of the three nets. In this training process, we augment the training data
by adding noise and scaling the intensity, since the intensity of the illuminated
patterns may change significantly.

The tested objects are squid, bottled milk and wax materials. Fig. 10 shows
the grid and code detection results for squid using our technique as well as
previous technique [4]. The code error were improved 15% by applying our tech-
nique from [4]. Fig. 11 shows all the reconstruction results, where objects are
multiple times scanned in order to increase their density. From the results, it is
clearly shown that reconstruction quality and density are significantly improved
from previous technique [4]. We have compared the results with ground truth
3D shapes obtained by Gray-code projection, and evaluated the RMSE of the
shapes. . RMSE value is improved from 1.70mm to 1.27mm for milk and 1.78mm
to 1.44mm for squid, respectively. We also scan the same objects with Kinect
to verify the subsurface scattering effect. As shown in Fig. 12, shapes cannot be
recovered because of strong subsurface scattering effect, such effect are clearly
shown in infra-red images (it increases speckle noise to intervene correct decoding
process).

5.2 Bio-tissue scanning

Next, to demonstrate practicability of the proposed method, we measured an
actual organ tissue using endoscopic camera system. Bio-tissues such as organ
tissues are generally problematic material, because they have strong subsurface
scattering, but important for medical diagnosis and have strong demand.

Fig. 13 shows the results of grid detection and code detection. Note that,
since the background regions are trained as “Don’t care”, the background pixels
are labeled arbitrarily in (d). Also, to qualitatively evaluate correctness of (e),
compare the color arrangements of (e) with (f).

For quantitative evaluation of the accuracy of the code detection, we manu-
ally counted the number of erroneous code detection in Fig. 13(e), and the error
rate was 1.6%. It is shown that, despite the effects of subsurface scattering, which
causes strong blurring on the projected lines or bright regions between the lines,
the grid structures and the codes in the projected pattern are stably detected.
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Captured scene Horizontal line Vertical line Decoded results
detection ([4]) detection ([4]) ([4])

ID labeling result Horizontal line Vertical line Decoded result
(proposed) detection detection (proposed)

(proposed) (proposed) (proposed)

Reconstructed Reconstructed Reconstructed Reconstructed
shape shape shape shape

(proposed) ([4]) (proposed) ([4])

Fig. 10. Grid and code detection results for squid: Top row: Source images and line
detection and decoding results of [4]. Middle row: ID segmentation, line detection
and decoding results of our method. Bottom row: Shape reconstructed results. Since
encoding pattern is as same as Fig. 13(f), it is confirmed that our decoding result is
more correct than [4]. Further, from 3D reconstruction results, it is confirmed that our
method achieves dense and smooth reconstruction without any smoothing algorithm,
whereas previous method [4] creates many holes and bumps.

Fig. 14 (a-d) shows the results of the proposed algorithm. For comparison,
Fig. 13 (e-g) shows grid and code detection results and the 3D reconstruction
result with line detection algorithm of [4]. The reconstructed area of the proposed
method is far wider than the result of of [4].

6 Conclusion

This paper proposed a CNN-based grid pattern detection algorithm for active
stereo to solve pattern degradation problem caused by subsurface scattering.
Two independent networks are constructed and trained for both line detection
and code based segmentation purposes, respectively. They are integrated to re-
trieve robust and accurate line detection results with pattern IDs. With our
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(a) (b) (c) (d) (e)

Fig. 11. Reconstruction results compared to previous technique [4]. Top row: squid,
middle row: bottled milk, and bottom row: waxed objects. Left to right: (a) scan-
ning scene, (b) and (d) shape reconstructed by our method, and (c) and (e) shape
reconstructed by [4]. It is confirmed that our method achieves dense and smooth re-
construction, whereas previous method [4] creates many holes and bumps.

experiments using several target objects with strong subsurface scattering and
specular effects, the proposed method shows stable detection of the grid struc-
ture and codes that are embedded into the grid points. In addition, 3D shapes of
strong subsurface scattering objects are successfully reconstructed, which is only
scarcely reconstructed even with the previous technique which is designed to ro-
bust to blurring effects. In the future, scale dependencies would be addressed by
analyzing the training data sets.
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(a) (b) (c) (d)

Fig. 12. Objects with strong subsurface scattering effects scanned by Kinect. (a): Infra-
red image of squid. (b) Depth image of scene (a), where it is shown that the depth of
the squid cannot be retrieved. (c): Infra-red image of bottled milk. (d) Depth image of
scene (c), where it is shown that the depth of the bottled milk cannot be retrieved.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Grid and code detection results for measuring a piece of organ tissue: (a):
Source image. (b) Output label image for vertical line detection . (c) Output label image
for horizontal line detection. (d) Output label image for code detection (Note that, since
the background regions are trained as “Don’t care”, the background pixels are labeled
arbitrary). (e) Extracted grid-structures and codes for grid points from (b),(c) and
(d). (f) Original gap codes with same coloring with (e). To evaluate correctness of (e),
compare the color arrangements of (e) with (f).
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 14. 3D reconstruction of Fig. 13. (a-d) The results using the proposed grid and
code detection algorithm. (e-g) The results using a conventional line detection algo-
rithms of [4]. (a) Reconstructed regions. (b-d) Reconstructed 3D shapes. (e) Extracted
grid-structures and codes for grid points based with a conventional method [4]. (f)
Reconstructed regions with [4]. (g) Reconstructed shape with [4].
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