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Abstract. Convolutional neural networks have been successfully ap-
plied to semantic segmentation problems. However, there are many prob-
lems that are inherently not pixel-wise classification problems but are
nevertheless frequently formulated as semantic segmentation. This ill-
posed formulation consequently necessitates hand-crafted scenario-specific
and computationally expensive post-processing methods to convert the
per pixel probability maps to final desired outputs. Generative adver-
sarial networks (GANs) can be used to make the semantic segmentation
network output to be more realistic or better structure-preserving, de-
creasing the dependency on potentially complex post-processing.
In this work, we propose EL-GAN: a GAN framework to mitigate the
discussed problem using an embedding loss. With EL-GAN, we discrimi-
nate based on learned embeddings of both the labels and the prediction
at the same time. This results in much more stable training due to hav-
ing better discriminative information, benefiting from seeing both ‘fake’
and ‘real’ predictions at the same time. This substantially stabilizes the
adversarial training process. We use the TuSimple lane marking chal-
lenge to demonstrate that with our proposed framework it is viable to
overcome the inherent anomalies of posing it as a semantic segmentation
problem. Not only is the output considerably more similar to the labels
when compared to conventional methods, the subsequent post-processing
is also simpler and crosses the competitive 96% accuracy threshold.

1 Introduction

Convolutional neural networks (CNNs) have been successfully applied to various
computer vision problems by posing them as an image segmentation problem.
Examples include road scene understanding for autonomous driving [18,20,23]
and medical imaging [2,3,8,13,19,22]. The output of such a network is an image-
sized map, representing per-pixel class probabilities. However, in many cases
the problem itself is not directly a pixel-classification task, and/or the predic-
tions need to preserve certain qualities/structures that are not enforced with
the high degrees of freedom of a per-pixel classification scheme. For instance,
if the task at hand is to detect a single straight line in an image, a pixel-level
loss cannot easily enforce high-level qualities such as thinness, straightness or
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the uniqueness of the detected line. The fundamental reason behind this is the
way the training loss is formulated (e.g. per-pixel cross entropy), such that each
output pixel in the segmentation map is evaluated independently of all others,
i.e. no explicit inter-pixel consistency is enforced. Enforcing these qualities of-
ten necessitates additional post-processing steps. Examples of post-processing
steps include applying a conditional random field (CRF) [14], additional sep-
arately trained networks [20], or non-learned problem-specific algorithms [1].
Drawbacks of such approaches are that they require effort to construct, can
have many hyper-parameters, are problem specific, and might still not capture
the final objective. For example, CRFs need to be trained separately and either
only capture local consistencies or are computationally expensive at inference
time with long-range dependencies.

A potential solution for the lack of structure enforcement in semantic segmen-
tation problems is to use generative adversarial networks (GANs) [5] to ‘learn’
an extra loss function that aims to model the desired properties. GANs work by
training two networks in an alternating fashion in a minimax game: a genera-

tor is trained to produce results, while a discriminator is trained to distinguish
produced data (‘fake’) from ground truth labels (‘real’). GANs have also been
applied to semantic segmentation problems to try to address the aforementioned
issues with the per-pixel loss [18]. In such a case, the generator would produce
the semantic segmentation map, while the discriminator alternately observes
ground truth labels and predicted segmentation maps. There are issues with
this approach, as also observed by [28]: the single binary prediction of the dis-
criminator does not provide stable and sufficient gradient feedback to properly
train the networks.

In prior work, the discriminator in a GAN observes either ‘real’ or ‘fake’ data
in an alternating fashion (e.g. [18]), due to its inherently unsupervised nature.
However, in the case of a semantic segmentation problem, we do have access to
the ground truth data corresponding to a prediction. The intuition behind our
work is that by feeding both the predictions and the labels at the same time, it
is possible for a discriminator to obtain much more useful feedback to steer the
training of the segmentation network in the direction of more realistic labels. In
other words, the discriminator can be taught to learn a supervised loss function.

In this work, we propose such an architecture for enforcing structure in se-
mantic segmentation output. In particular, we propose EL-GAN (‘Embedding
loss GAN’), in which the discriminator takes as input the source data, a pre-
diction map and a ground truth label, and is trained to minimize the difference
between embeddings of the predictions and labels. The more useful gradient
feedback and increased training stability in EL-GAN enables us to successfully
train semantic segmentation networks using a GAN architecture. As a result, our
segmentation predictions are structurally much more similar to the training la-
bels without requiring additional problem-specific loss terms or post-processing
steps. The benefits of our approach are illustrated in Fig. 1, in which we show an
example training label and compare it to predictions of a regular segmentation
network and our EL-GAN framework. Our contributions are:
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Fig. 1. Illustration of using EL-GAN for lane marking segmentation: an example
ground truth label (left), its corresponding raw prediction by a conventional segmen-
tation network based on [11] (middle), and a prediction by EL-GAN (right). Note how
EL-GAN matches the thin-line style of the labels in terms of certainty and connectivity

– We propose a novel method to impose structure on problems that are badly
posed as semantic segmentation, by using a generative adversarial network
architecture with a discriminator that is trained on both predictions and
labels at the same time. We introduce EL-GAN, an instance of the above,
which uses an L2 loss on embeddings of the segmentation network predictions
and the ground truth labels.

– We show that the embedding loss substantially stabilizes training and leads
to more useful gradient feedback compared to a normal adversarial loss for-
mulation. Compared to conventional segmentation networks, this requires
no extra engineered loss terms or complex post-processing, leading to better
label-like prediction qualities.

– We demonstrate the usefulness of EL-GAN for autonomous driving applica-
tions, although the method is generic and can be applied to other segmen-
tation problems as well. We test on the TuSimple lane marking detection
dataset and show competitive accuracy scores, but also show that EL-GAN
visually produces results more similar to the ground truth labels.

2 Related Work

Quality Preserving Semantic Segmentation. Several methods have pro-
posed to add property-targeted loss terms [2,22] or to use pair-wise or higher-
order term CRFs [14,31,27], to enforce neural networks to preserve certain qual-
ities such as smoothness, topology and neighborhood consistency. In contrast to
our work, such approaches are mostly only capable of preserving lower-level con-
sistencies and also impose additional costs at inference time. Hand-engineering
extra loss terms that target enforcing certain qualities is often challenging as
identifying the target qualities in the first place and then coming up with effi-
cient differentiable loss terms is often not straight-forward.

Adversarial Training for Semantic Segmentation. The principal un-
derlying idea of GANs [5] is to enable a neural network to learn a target distribu-
tion for generating samples by training it in a minimax game with a competing
discriminator network. Luc et al. [18] employed adversarial training for segmen-
tation to ensure higher-level semantic consistencies. Their work involves using
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a discriminator that provides feedback to the segmentation network (generator)
based on differences between distributions of labels and predictions. This differs
from aforementioned works in the sense that the additional loss term is being
learned by the discriminator rather than having fixed hand-crafted loss terms.
The same mechanism was later applied to image-to-image translation [10], med-
ical image analysis [3,8,13,19,28,29,17,24] and other segmentation tasks [21]. In
contrast to our work, this formulation of adversarial training does not use the
pairing information of images and labels. Based on this, some works [30,7] sug-
gest using a GAN in a semi-supervised fashion, with the additional assumption
that the unlabeled data is coming from the same distribution as the labeled
ones. Our work also stems from the same intuition that this formulation does
not leverage the pairing information; we instead change the method such that
the pairing information is exploited. Another related work is [28], which proposes
an L1 loss term for GAN-based medical image segmentation, but interpretations
and extensive ablation studies are not provided. Our method differs in the input
the discriminator receives, as well as the loss term that is used to train it. In con-
current work, Hwang et al. [9] uses adversarial training for structural matching
between the ground-truth and the predicted image. In contrast to our work, [9]
does not condition the discriminator on the input image, nor uses a pixel-level
loss to steer the training of the segmenter network. As a consequence, the dis-
criminator representations need to be kept low-level to ensure a segmenter that
attends to low-level details. Furthermore, we provide extensive ablation studies
in order to better understand, discuss and interpret the characteristics and ben-
efits of the method.
Feature matching, as proposed in [26], also learns features to maximize the dif-
ference between the real and fake distributions. However, a difference is that
Salimans et al. are matching fake/real distribution features statistics (e.g. mean)
rather than matching the embeddings directly, which is not possible in unsuper-
vised image generation.

Perceptual Loss. Several recent works [25,4,12], in particular targeting im-
age super-resolution, are based on the idea that pixel-level objective losses are
often not sufficient to ensure high-level semantics of a generated image. There-
fore, they suggest to capture higher-level representations of images from the rep-
resentations of a separate network at a given layer. In image super-resolution,
the corresponding ground truth label for a given low-resolution image is often
available. Therefore, a difference measure (e.g. L2) between the high-level rep-
resentations of the reconstructed and ground truth images is considered as an
extra loss term. Our work is inspired by this idea: similarly, we propose to use the
difference between the labels and predictions in a high-level embedding space.

Lane Marking Detection. Since the evaluation of our work focuses on lane
marking detection, we also discuss other related approaches for this problem,
while we refer the reader to a recent survey for a broader overview [1]. An
example of a successful lane marking detection approach is by Pan et al. [23].
In their work, they train a problem-specific spatial CNN and add hand-crafted
post-processing. Lee et al. [15] use extra vanishing-point labels to guide the
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network toward a more structurally consistent lane marking detection. Another
recent example is the work by Neven et al. [20], in which a regular segmentation
network is used to obtain lane marking prediction maps. They then train a second
network to perform a constrained perspective transformation, after which curve
fitting is used to obtain the final results. We compare our work in more detail to
the studies above [20,23] that are similarly conducted on the Tusimple challenge,
in Section 6.1.

3 Method

In this section we introduce EL-GAN: adversarial training with embedding loss
for semantic segmentation. This method is generic and can be applied to various
segmentation problems. The detailed network architecture and training set-up
is discussed in Section 4.

3.1 Baseline: Adversarial Training for Semantic Segmentation

Adversarial training can be used to ensure a higher level of label resembling
qualities such as smoothness, preserving neighborhood consistencies, and so on.
This is done by using a discriminator network that learns a loss function for
these desirable properties over time rather than formulating these properties ex-
plicitly. A typical approach for benefiting from adversarial training for semantic
segmentation [18,10] involves formulating a loss function for the segmentation
network (generator) that consists of two terms: one term concerning low-level
pixel-wise prediction/label fitness (Lfit) and another (adversarial) loss term for
preserving higher-level consistency qualities (Ladv), conditioned on the input
image:

Lgen(x, y; θgen, θdisc) = Lfit(G(x; θgen), y) + λLadv(G(x; θgen);x, θdisc), (1)

where x and y are the input image and the corresponding label map respec-
tively, θgen and θdisc are the set of parameters for the generator and discrim-
inator networks, G(x; θ) represents a transformation on input image x, im-
posed by the generator network parameterized by θ, and λ indicates the rel-
ative importance of the adversarial loss term. The loss term Lfit is often formu-
lated with a pixel-wise categorical cross entropy loss, Lcce(G(x; θgen), y), where

Lcce(ŷ, y) = 1
wh

∑wh

i

∑c

j yi,j ln(ŷi,j) with c representing the number of target
classes and w and h being the width and height of the image.

The adversarial loss term, Ladv indicates how successful the discrimina-
tor is in rejecting the (fake) dense prediction maps produced by the gener-
ator and is often formulated with a binary cross entropy loss between zero
and the binary prediction of the discriminator for a generated prediction map:
Lbce(D(G(x; θgen); θdisc), 0), where Lbce(ẑ, z) = −z ln(ẑ)− (1− z) ln(1− ẑ) and
D is the transformation imposed by the discriminator network.
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While the generator is trained to minimize its adversarial loss term, the
discriminator tries to maximize it, by minimizing its loss defined as:

Ldisc(x, y; θgen, θdisc) = Lbce(D(G(x; θgen); θdisc), 0) + Lbce(D(y; θdisc), 1). (2)

By alternating between the training of the two networks, the discriminator learns
the differences between the label and prediction distributions, while the genera-
tor tries to change the qualities of its predictions, similar to that of the labels,
such that the two distributions are not distinguishable. In practice, it is often
observed that the training of the adversarial networks tends to be more tricky
and unstable compared to training normal networks. This can be attributed to
the mutual training of the two networks involved in a minimax game where
the training dynamics of each affect the training of the other. The discrimina-
tor gives feedback to the generator based on how plausible the generator images
are. There are two important issues with the frequently used adversarial training
framework for semantic segmentation:

1. The notion of plausibility and fake-ness of these prediction maps comes from
the discriminator’s representation of these concepts and how its weights en-
code these qualities; This encoding is likely to be far from perfect, resulting
in gradients in directions that are likely not improving the generator.

2. The conventional adversarial loss term does not exploit the valuable piece
of information on image/label pairing that is often available for many of the
supervised semantic segmentation tasks.

3.2 Adversarial Training with Embedding Loss

Given the two issues above, one can leverage the image/label pairing to base
the plausibility/fake-ness not only on the discriminator’s understanding of these
notions but also on a true plausible label map. One way to utilize this idea
is to use the discriminator to take the prediction/label maps into a higher-level
description and define the adversarial loss as their difference in embedding space:

Lgen(x, y; θgen, θdisc) = Lfit(G(x; θgen), y) + λLadv(G(x; θgen), y;x, θdisc), (3)

where we suggest to formulate Ladv(G(x; θgen), y;x, θdisc) with embedding loss
Lemb(G(x; θgen), y;x, θdisc) defined as a distance over embeddings (e.g. L2):

Lemb(ŷ, y;x, θdisc) = ‖De(y;x, θdisc)−De(ŷ;x, θdisc)‖2 , (4)

where De(ŷ;x, θ) represents the embeddings extracted from a given layer in the
network D parameterized with θ, given the prediction ŷ and x as its inputs.

We name this the EL-GAN architecture, in which the adversarial loss and the
corresponding gradients are computed based on a difference in high-level descrip-
tions (embeddings) of labels and predictions. While the discriminator learns to
minimize its loss on the discrimination between real and fake distributions, and
likely learns a set of discriminative embeddings, the generator tries to minimize
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Fig. 2. Illustration of the novel training set-up for the generator loss: left for a conven-
tional GAN (Equation 1), right when using the embedding loss (Equations 3 and 4)

this embedding difference. This formulation of generator training is illustrated
in Fig. 2 on the right-hand side, in which we also show the regular generator
training set-up on the left-hand side for comparison.

Apart from the mentioned change in computing the adversarial loss for
the generator updates, Equation 2 for discriminator updates can optionally be
rewritten with a similar idea as:

Ldisc(x, y; θgen, θdisc) = −Lemb(G(x, θgen), y;x, θdisc). (5)

However, in our empirical studies we have found that using the cross entropy
loss for updating the discriminator parameters gives better results.

4 Experimental Setup

In this section we elaborate on the datasets and metrics used for evaluating our
method, followed by details of the network architectures and training methods.

4.1 Evaluation Datasets and Metrics

We focus our evaluation on the application domain of autonomous driving, but
stress that our method is generic and can be applied to other semantic seg-
mentation problems as well. One of the motivations of this work is to be able
to produce predictions resembling the ground truth labels as much as possible.
This is in particular useful for the TuSimple lane marking detection data set
with thin structures, reducing the need for complicated post-processing.

The TuSimple lane marking detection dataset1 consists of 3626 annotated
1280×720 front-facing road images images on US highways in the San Diego
area divided over four sequences, and a similar set of 2782 test images. The
annotations are given in the form of polylines of lane markings: those of the ego-
lane and the lanes to the left and right of the car. The polylines are given at fixed
height-intervals every 20 pixels. To generate labels for semantic segmentation,

1 TuSimple dataset details: http://benchmark.tusimple.ai/#/t/1

http://benchmark.tusimple.ai/#/t/1
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Fig. 3. Overview of the EL-GAN architecture, illustrating both the training of the
generator and discriminator with examples from the TuSimple lane marking challenge

we convert these to segmentation maps by discretizing the lines using smooth
interpolation with a Gaussian with a sigma of 1 pixel wide. An example of such
a label is shown in red in the left of Fig. 1.

The dataset is evaluated on results in the same format as the labels, namely
multiple polylines. For our evaluation we use the official metrics as defined in
the challenge1, namely accuracy, false positive rate, and false negative rate. We
report results on the official test set as well as on a validation set which is one
of the labeled sequences with 409 images (‘0601’). We note that performance on
this validation set is perhaps not fully representative, because of its small size.
A different validation sequence also has its drawbacks, since the other three are
much larger and will considerably reduce the size of the already small data set.

Since our network still outputs segmentation maps rather than the required
polylines, we do apply post-processing, but keep it as simple as possible: after
binarizing, we transform each connected component into a separate polyline by
taking the mean x-index of a sequence of non-zero values at each y-index. We
refer to this method as ‘basic’. We also evaluate a ‘basic++’ version which also
splits connected components in case it detects that multiple sequences of non-
zero values occur at one sampling location.

4.2 Network Architectures and Training

In this section we discuss the network and training set-up used for our exper-
iments. A sketch of the high-level network architecture with example data is
shown in Fig. 3, which shows the different loss terms used for either the gener-
ator or discriminator training, or both.

For the generator we use a fully-convolutional U-Net style network with a
downwards and an upwards path and skip connections. In particular, we use the
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Tiramisu DenseNet architecture [11] for lane marking detection, configured with
7 up/down levels for a total of 64 3×3 convolution layers.

For the discriminator we use a DenseNet architecture [6] with 7 blocks and
a total of 32 3×3 convolution layers, followed by a fully-convolutional patch-
GAN classifier [16]. We use a two-headed network for the first 2 dense blocks to
separately process the input image from the labels or predictions, after which we
concatenate the feature maps. We take the embeddings after the final convolution
layer, but explore other options in Section 5.2.

We first pre-train the generator models until convergence, which we also use
as our baseline non-GAN model for Section 5. Using a batch size of 8, we then
pre-train the discriminator for 10k iterations, after which alternate between 300
and 200 iterations of generator and discriminator training, respectively. The
generator is trained with the Adam optimizer, while the discriminator training
was observed to be more stable using SGD. We train the discriminator using the
regular cross entropy loss (Equation 2), while we train the generator with the
adversarial embedding loss with λ = 1 (Equations 3 and 4). We did not do any
data augmentation nor pre-train the model on other data.

5 Results

In this section we report the results on the TuSimple datasets using the experi-
mental set-up as discussed in Section 4. Additionally, we perform three ablation
studies: evaluating the training stability, exploring the options for the training
losses, and varying the choice for embedding loss layer.

5.1 TuSimple Lane Marking Challenge

In this section we report the results of the TuSimple lane marking detection
challenge and compare them with our baseline and the state-of-the-art.

We first evaluated EL-GAN and our baseline on the validation set using
both post-processing methods. The results in Table 1 show that the basic post-
processing method is not suitable for the baseline model, while the improved
basic++ method performs a lot better. Still, EL-GAN outperforms the baseline,
in particular with the most basic post-processing method.

Table 1. Results on TuSimple lane marking validation set

Method Post-processing Accuracy (%) FP FN

Baseline (no GAN) basic 86.2 0.089 0.213
Baseline (no GAN) basic++ 94.3 0.084 0.070
EL-GAN basic 93.3 0.061 0.104
EL-GAN basic++ 94.9 0.059 0.067
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label on data prediction post-processed prediction post-processed
EL-GAN regular CNN

Fig. 4. Example results for lane marking segmentation: the labels on top of the data
(left column), the prediction and final results of EL-GAN (next two columns), and
results of the regular CNN baseline [11] using the same post-processing (right two
columns). The colors of the lines have no meaning other than to distinguish them from
each other. Details are best viewed on a computer screen when zoomed in

Some results on the validation set are shown in Fig. 4, which compares the
two methods in terms of raw prediction maps and post-processed results using
the basic++ method. Clearly, EL-GAN produces considerably thinner and more
label-like output with less noise, making post-processing easier in general.

Furthermore, we train EL-GAN and the baseline on the entire labeled dataset,
and evaluate using the basic++ post-processing on the official test set of the
TuSimple challenge. Table 2 shows the results, which includes all methods in the
top 6 (only two of which are published, to the best of our knowledge) and their
rank on the leaderboard as of March 14, 2018. We rank 4th based on accuracy
with a difference less than half a percent to the best, and obtain the lowest
false positive rate. Compared to the baseline, our adversarial training algorithm
improves ∼2% on the accuracy (decrease of error by 38%), decreases the FPs
by more than 55% and FNs by 30% on the private challenge test set. These
improvements take the baseline from 14th rank to 4th.
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Table 2. TuSimple lane marking challenge leaderboard (test set) as of March 14, 2018

Rank Method Name on board Extra data Accuracy (%) FP FN

#1 Unpublished leonardoli ? 96.87 0.0442 0.0197
#2 Pan et al. [23] XingangPan Yes 96.53 0.0617 0.0180

#3 Unpublished aslarry ? 96.50 0.0851 0.0269
#5 Neven et al. [20] DavyNeven No 96.38 0.0780 0.0244
#6 Unpublished li ? 96.15 0.1888 0.0365

#14 Baseline (no GAN) N/A No 94.54 0.0733 0.0476
#4 EL-GAN TomTom EL-GAN No 96.39 0.0412 0.0336

5.2 Ablation Studies

Table 3 compares the use of embedding/cross entropy as different choices for ad-
versarial loss term for training of the generator and the discriminator networks.
To compare the stability of the training, statistics over validation accuracies
are reported. Fig. 5 furthermore illustrates the validation set F-score mean, and
standard deviation over 5 training runs. These results show that using the em-
bedding loss for the generator makes GAN training stable. We observed similar
behavior when training with other hyper-parameters.

Table 3. TuSimple validation set accuracy statistics over different training iterations
(every 10K), comparing the stability of different choices for adversarial losses

Loss Accuracy statistics:
Generator Discriminator mean var max Equations

Cross entropy Cross entropy 33.84 511.71 58.11 1 and 2
Cross entropy Embedding 0.00 0.00 0.02 1 and 5
Embedding Cross entropy 93.97 0.459 94.65 3, 4 and 2
Embedding Embedding 94.17 0.429 94.98 3, 4 and 5

The features used for the embedding loss can be taken at different locations
in the discriminator. In this section we explore three options: taking the features
either after the 3rd, 5th, or 7th dense block. We note that the 3rd block contains
the first shared convolution layers with both the image input and the predictions
or labels, and that the 7th block contains the final set of convolutions before
the classifier of the network. Results for the TuSimple lane marking detection
validation set are given in Table 4 and in Fig. 6. From the results, we conclude
that the later we take the embeddings, the better the score and the more similar
the predictions are to the labels.
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Fig. 5. A comparison of training stability for using different adversarial loss terms
(embedding/cross entropy) on the validation f-score. For each method the central point
represents the mean f-score and the bars on each side illustrate the standard deviation.
It should be noted that in the g:emb/d:ce and g:emb/d:emb cases the std bars are not
visible due to tiny variations among different runs.

Table 4. Ablation study on embedding extraction layer

Embedding loss after block # Accuracy (%) FP FN

Dense block 3 (first block after joining) 93.91 0.1013 0.1060
Dense block 5 94.01 0.0733 0.0878
Dense block 7 (before classifier) 94.94 0.0592 0.0673

6 Discussion

6.1 Comparison with Other Lane Marking Detection Methods

In Table 2 we showed the results on the TuSimple lane marking data set with
EL-GAN ranking 4th on the leaderboard. In this section, we compare our method
in more detail to the other two published methods: Pan et al. [23] (ranking 2nd)
and Neven et al. [20] (ranking 5th).

Neven et al. [20] argue in their work that post-processing techniques such as
curve fitting are preferably not done on the output of the network, but rather
in a birds-eye perspective. To this extent they train a separate network to learn
a homography to find a perspective transform for which curve fitting is easier.
In our work we show that it is possible to achieve comparable accuracy results
without having to perform curve fitting at all, thus omitting the requirement for
training and evaluating a separate network for this purpose.

Pan et al. [23] use a multi-class approach to lane marking detection, in which
each lane marking is a separate class. Although this eases post-processing, it
requires more complexity in label creation and makes the task more difficult
for the network: it should now also learn which lane is which, requiring a larger
field of view and yielding ambiguities at lane changes. In contrast, with our GAN
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label on data EL after DB 3 EL after DB 5 EL after DB 7

Fig. 6. Comparison of taking the embedding loss (EL) after a particular dense block
(DB): the data and the label (left) and the prediction results of the different settings
(right three images). Details are best viewed on a computer screen when zoomed in

approach, we can learn a simpler single-class problem without requiring complex
post-processing to separate individual markings. Pan et al. [23] also argue that
problems such as lane marking detection can benefit from spatial consistency
and message passing before the final predictions are made. For this reason they
propose to feed the output of a regular segmentation network into a problem
specific ‘spatial CNN’ with message passing convolutions in different directions.
This does indeed result in a better accuracy on the TuSimple data set compared
to EL-GAN, however, it is unclear how much is attributed to their spatial CNN
and how much to the fact that they train on a non-public data set which is 20
times larger than the regular TuSimple data set.

6.2 Analysis of the Ablation Study

As we observed in the comparison of the different adversarial loss terms as pre-
sented in Table 3 and Fig. 5, using the embedding loss for the generator makes
the training more stable and prevents collapses. The embedding loss, in contrast
to the usual formulation with the cross entropy loss, provides stronger signals as
it leverages the existing ground-truth rather than basing it only on the discrim-
inator’s internal representations of fake-ness and plausibility.

Therefore, using a normal cross entropy loss can result in collapses, in which
the generator starts to explore samples in the feature space where the discrim-
inator’s fake/real comprehension is not well formed. In contrast, using the em-
bedding loss, such noise productions result in high differences in the embedding
space and is strictly penalized by the embedding loss. Furthermore, having an
overwhelming discriminator that can perfectly distinguish the fake and real dis-
tributions results in training collapses and instability. Hence, using an embedding
loss with better gradients that flow back to the generator likely results in a more



14 M. Ghafoorian, C. Nugteren, N. Baka, O. Booij and M. Hofmann

data close-up regular CNN 3× EL-GAN

Fig. 7. Example detail of input data (left), a regular semantic segmentation output
(center), and three different EL-GAN models trained with the same settings shown as
red, green, and blue channels (right)

competent generator. Similarly, it is no surprise that using an embedding loss
for the discriminator and not for the generator results in a badly diverging be-
havior due to a much more dominating discriminator and a generator that is not
penalized much for producing noise.

In the second ablation study, as presented in Table 4 and Fig. 6, we observed
that using deeper representations for extracting the embeddings results in better
performance. This is perhaps due to a larger receptive field of the embeddings
that better enables the generator to improve on the higher-level qualities and
consistencies.

6.3 GANs for Semantic Segmentation

Looking more closely at the comparison between a regular CNN and EL-GAN
(Fig. 4), we see a distinct difference in the nature of their output. The non-
GAN network produces a probabilistic output with a probability per class per
pixel, while EL-GAN’s output is similar to a possible label, without expressing
any uncertainty. One might argue that the lack of being able to express un-
certainty hinders further post-processing. However, the first step of commonly
applied post-processing schemes is removing the probabilities by thresholding
or applying argmax (e.g. [20,23]). In addition, the independent per-pixel prob-
abilistic output of the regular CNN might hide inter-pixel correlation necessary
for correct post-processing. The cross entropy loss pushes the network to output
a segmentation distribution that does not lie on the manifold of possible labels.

In EL-GAN and other GANs for semantic segmentation, networks are trained
to output a sample of the distribution of possible labels conditioned on the
input image. An example is shown in Fig. 7, from which we clearly see the
selection of a sample once the lane marking is occluded and the network becomes
more uncertain. Although this sacrifices the possibility to express uncertainty, we
argue that the fact that it lies on, or close to, the manifold of possible labels, it
can make post-processing easier and more accurate. For the task of lane marking
detection we indeed have shown that the semantic segmentation does not need to
output probabilities. However, for other applications this might not be the case.



EL-GAN: Embedding Loss Driven Generative Adversarial Nets 15

A straightforward approach to re-introduce expressing uncertainty by a GAN,
would be to simply run it multiple times conditioned on extra random input or
use an ensemble of EL-GANs. The resulting samples which model the probability
on the manifold of possible labels would then be the input to post-processing.

7 Conclusions

In this paper, we proposed, studied and compared EL-GAN as a method to pre-
serve label-resembling qualities in the predictions of the network. We showed that
using EL-GAN results in a more stable adversarial training process. Further-
more, we achieved state-of-the-art results on the TuSimple challenge, without
using any extra data or complicated hand-engineered post-processing pipelines,
as opposed to the other competitive methods.
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14. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian
edge potentials. In: Advances in neural information processing systems. pp. 109–
117 (2011)

15. Lee, S., Kim, J., Yoon, J.S., Shin, S., Bailo, O., Kim, N., Lee, T.H., Hong, H.S.,
Han, S.H., Kweon, I.S.: Vpgnet: Vanishing point guided network for lane and
road marking detection and recognition. In: Computer Vision (ICCV), 2017 IEEE
International Conference on. pp. 1965–1973. IEEE (2017)

16. Li, C., Wand, M.: Precomputed Real-Time Texture Synthesis with Markovian Gen-
erative Adversarial Networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV: European Conference on Computer Vision. pp. 702–716. Springer Interna-
tional Publishing, Cham (2016)

17. Li, Z., Wang, Y., Yu, J.: Brain Tumor Segmentation Using an Adversarial Network.
In: International MICCAI Brainlesion Workshop. pp. 123–132. Springer (2017)

18. Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic Segmentation using Ad-
versarial Networks. In: NIPS Workshop on Adversarial Training. Barcelona, Spain
(Dec 2016), https://hal.inria.fr/hal-01398049

19. Moeskops, P., Veta, M., Lafarge, M.W., Eppenhof, K.A., Pluim, J.P.: Adversarial
Training and Dilated Convolutions for Brain MRI Segmentation. In: Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,
pp. 56–64. Springer (2017)

20. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Van Gool, L.: To-
wards End-to-End Lane Detection: an Instance Segmentation Approach. ArXiv
e-prints (Feb 2018)

21. Nguyen, V., Vicente, T.F.Y., Zhao, M., Hoai, M., Samaras, D.: Shadow detection
with conditional generative adversarial networks. In: ICCV: IEEE International
Conference on Computer Vision. pp. 4520–4528. IEEE (2017)

22. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook,
S., de Marvao, A., Dawes, T., O’Regan, D., et al.: Anatomically Constrained Neural
Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation.
IEEE transactions on medical imaging (2017)

https://doi.org/10.1117/12.2293406
https://doi.org/10.1117/12.2293406
https://doi.org/10.1109/CVPRW.2017.156
https://hal.inria.fr/hal-01398049


EL-GAN: Embedding Loss Driven Generative Adversarial Nets 17

23. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial As Deep: Spatial CNN
for Traffic Scene Understanding. In: AAAI Conference on Artificial Intelligence
(February 2018)

24. Sadanandan, S.K., Karlsson, J., Whlby, C.: Spheroid segmentation us-
ing multiscale deep adversarial networks. In: ICCVW: IEEE Interna-
tional Conference on Computer Vision Workshops. pp. 36–41 (Oct 2017).
https://doi.org/10.1109/ICCVW.2017.11

25. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: Single image super-resolution
through automated texture synthesis. In: CVPR: IEEE Conference on Computer
Vision and Pattern Recognition. pp. 4491–4500 (2017)

26. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Im-
proved techniques for training gans. In: Advances in Neural Information Processing
Systems. pp. 2234–2242 (2016)

27. Schwing, A.G., Urtasun, R.: Fully Connected Deep Structured Networks. ArXiv
e-prints (Mar 2015)

28. Xue, Y., Xu, T., Zhang, H., Long, R., Huang, X.: SegAN: Adversarial Network
with Multi-scale L 1 Loss for Medical Image Segmentation. ArXiv e-prints (Jun
2017)

29. Yang, D., Xu, D., Zhou, S.K., Georgescu, B., Chen, M., Grbic, S., Metaxas,
D., Comaniciu, D.: Automatic liver segmentation using an adversarial image-to-
image network. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 507–515. Springer (2017)

30. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep
adversarial networks for biomedical image segmentation utilizing unannotated im-
ages. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 408–416. Springer (2017)

31. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang,
C., Torr, P.H.: Conditional Random Fields as Recurrent Neural Networks. In:
ICCV: International Conference on Computer Vision. pp. 1529–1537 (2015)

https://doi.org/10.1109/ICCVW.2017.11

