
Plane-based Humanoid Robot Navigation and

Object Model Construction for Grasping

Pavel Gritsenko2, Igor Gritsenko2, Askar Seidakhmet2, and Bogdan Kwolek1

1 AGH University of Science and Technology, 30 Mickiewicza, 30-059 Krakow, Poland
http://home.agh.edu.pl/~bkw/contact.html

2 Al-Farabi Kazakh National University, Prospect al-Farabi 71, Almaty, Kazakhstan

Abstract. In this work we present an approach to humanoid robot nav-
igation and object model construction for grasping using only RGB-D
data from an onboard depth sensor. A plane-based representation is used
to provide a high-level model of the workspace, to estimate both the
global robot pose and pose with respect to the object, and to determine
the object pose as well as its dimensions. A visual feedback is used to
achieve the desired robot pose for grasping. In the pre–grasping pose the
robot determines the object pose as well as its dimensions. In such a local
grasping approach, a simulator with our high-level scene representation
and a virtual camera is used to fine-tune the motion controllers as well
as to simulate and validate the process of grasping. We present exper-
imental results that were obtained in simulations with virtual camera
and robot as well as with real humanoid robot equipped with RGB-D
camera, which performed object grasping in low-texture layouts.

Keywords: Object grasping; humanoid robot; pose recovery

1 Introduction

Humanoid robotics technology has recently made rapid progress. However, ob-
ject grasping by humanoid robots is still a challenging problem due to complex
mechanical structures, long kinematic chains, occlusions and noisy camera ob-
servations. Conventional approaches to object grasping can fail when the shape,
dimension or pose of the objects are missing or are not precise enough. Grasp-
ing of unknown objects with neither 3D models nor appearance data is very
important for humanoid robots that by definition should work in unknown and
unstructured environments. Moreover, any humanoid robot should automatically
determine best grasping pose, i.e. be able to approach the object as well avoid
obstacles while moving towards the object of interest, and finally take the best
pose with respect to the object. As noticed in a recent survey [1], very few works
employ visual feedback during the reaching and grasping. Most approaches rely
on open-loop algorithms, where the robot takes a single shot of the scene, de-
termines the relative poses between the hands and the object of interest, and
finally without a visual feedback drives the arms towards the object.

In real grasping scenarios with humanoid robots, particularly with robots
that act as human assistants, the robot should be able to detect the object on the

http://home.agh.edu.pl/~bkw/contact.html


2

basis of a description provided by the user, or alternatively, it should recognize
the object of interest or acquire information about the object on the basis of
pointing gestures. Given the object of interest determined with such a user-
friendly interface, the humanoid robot should approach the object and take the
pre-grasping pose. Finally, it should determine object dimensions, best grasping
points, calculate arm motions and execute grasping task. While approaching
the object the robot should, among others, simultaneously build or update the
map of the environment, construct high level-representation of the environment,
determine its own pose in the map and with respect to the object, detect and
avoid obstacles, etc.

Navigating in unknown environment towards the object to be grasped re-
quires a SLAM (Simultaneous Localization and Mapping) system. Several ap-
proaches to solve SLAM problem have been proposed in the last two decades [2].
Most existing SLAM systems use RGB cameras or RGB-D cameras to perceive
the scene. Traditional RGB image-based SLAM might fail in challenging low-
texture cases. The reason for this is that in low-texture scenes it is often difficult
to find a sufficient number of reliable point features and, as a consequence, the
performance of such SLAM algorithms degrades. In such low-texture scenarios,
in addition to points, lines, planes and objects should be utilized. Moreover,
reasoning about 3D objects and layouts should be carried out for better scene
understanding. The RGB-D SLAM systems built on point clouds require sub-
stantial amount of memory. Even when mapping a simple scene, for instance
an empty room, in mentioned above representation the memory demands grow
quickly with scene complexity and time.

In general, the existing approaches for unknown object grasping can be di-
vided into two groups: global and local grasping approaches. Global grasping
approaches employ the full 3D model of the unknown object to find appropriate
grasps. The model can be constructed by the use of multiple views of the object,
for instance, by using structure from motion to refine existing model, by using
point clouds to infer 3D structure and/or model, or by decomposition the object
into 3D shapes, etc. In contrast, local grasping approaches only utilize avail-
able data to accomplish suitable grasps using information like edges, silhouettes,
boundaries, etc.

In this work we present an approach to humanoid robot navigation and ob-
ject model construction for grasping using only RGB-D data from an onboard
depth sensor. A plane-based representation is used to provide a high-level model
of the workspace, i.e. the world in which the robot performs the task and oc-
cupies space, to estimate both the global robot pose and pose with respect to
the object, and to determine the object pose as well as its dimensions. A visual
feedback is used to achieve the desired robot pose for grasping. In the first stage,
error between robot position and desired path is calculated, whereas in the last
stage, error between robot pose and object pose is calculated for visual controller,
which allows the robot reaching a pre-grasping pose. In the pre–grasping pose
the robot determines the object pose as well as its dimensions. In such a local
grasping approach, a simulator with our high-level scene representation and a



3

virtual camera is used to fine-tune the motion controllers as well as to simulate
and validate the process of grasping. We present experimental results that were
obtained in simulations with virtual camera and robot as well as with real hu-
manoid robot equipped with RGB-D camera, which performed object grasping
in low-texture layouts.

2 Relevant Work and Our Contribution

2.1 Relevant Work

Contrary to analytic approaches to object grasping, approaches following the
data-driven paradigm focus on object representation and extraction of percep-
tual information [1]. Data-driven grasp synthesis started to be used more broadly
with the availability of GraspIt! [3], which is an interactive simulation, planning,
analysis, and visualization tool to determine stable grasp for a mechanical hand.
In [4], Kragic et al. presented a visual tracking system that was capable of rec-
ognizing objects. Once an object was recognized the model and object pose have
been sent to GraspIt!. Then, a human operator utilized the discussed tool to
design motion strategies for grasping of the considered object. The latest ver-
sion of the discussed simulator can accommodate arbitrary hand as well as load
objects and obstacles of arbitrary geometry.

In grasping system of a humanoid robot we can distinguish units responsi-
ble for navigation of the robot, acquisition of the object model and determining
grasping points from the acquired data. Usually, the navigation unit is con-
sidered separately or it is assumed that the robot is placed in vicinity of the
object, i.e. it is already located in a pre-grasping position. In [5] a SLAM-based
grasping framework for robotic arm navigation and object model construction is
presented. Authors of discussed work argue that although improving the object
model is beneficial, it is not enough to achieve stable grasping. Thus, a correction
of robot pose has been one of the key aspect of the proposed framework. They
demonstrated the influence of the accuracy of the robot pose on the process of
grasping. A simple object constructed from three planes attached together has
been used in all experiments. The features of the object were defined as the
intersection between these planes.

In approaches belonging to local grasping category, RGB-D cameras are usu-
ally used to provide information required for completing the task. An approach
[6] uses object edges to determine grasping locations by fitting a so-called grasp-
ing rectangle on image plane. Such a rectangle is used to describe gripper config-
uration. A learning algorithm has been investigated to select the best grasping
location depending on the object shape. In a later work [7], the presented above
idea has been extended by looking at the contact area of the grasping rectangle.
For instance, if the contact area appears to be too small, the grasp task is likely
to fail and a better grasp is searched. An approach proposed by Ala et al. [8]
retrieves graspable boundaries and convex segments of unknown object. In point
clouds acquired by a 3D camera a scene segmentation is conducted to determine



4

point cloud belonging to the object. With the help of blob detection, the object
boundaries are determined to extract the boundary edges. The grasp planner
determines one contact point in order to execute a boundary grasp. In [9], the
algorithm fits the gripper shape to point cloud that belongs to the object. It
utilizes a segmentation to delineate object from the scene as well as incorporates
learning to improve the grasp success rate. In approach of Navarro [10], object
center is estimated on the basis of point cloud. A tracking algorithm has been
used to extract objects on a conveyer belt and then grasp them by a gripper.
In [11] the principal axis and centroid of unknown object are estimated on the
basis of point cloud to determine a stable grasp. A high success rate has been
demonstrated for a set of household objects.

On the basis of a bottom-up hierarchical clustering approach, which is able
to segment objects and parts in a scene, a transform from such a segmentation
into a corresponding, hierarchical saliency function has been proposed in [12].
This hierarchical saliency characterizes most salient corresponding region (scale)
for each point in the image. The discussed algorithm has been evaluated on an
easy-to-use pick and place manipulation system.

2.2 Differences with Relevant Approaches

Our approach to scene and object representation differs in several aspects from
approaches discussed in relevant work. The first difference is that our algorithm
does not decompose point clouds onto sets of separate primitives, but instead it
aggregates detected in advance planes onto objects and builds complex represen-
tations comprising plane-based objects and point clouds. The second difference
is that our algorithm reconstructs any type plane-based objects consisting of any
number of faces. Thus, it differs from widely used RANSAC algorithm, which
can extract objects described mathematically. It can employ any of the state-of-
the-art closed-form solutions [13,14,15,16,17,18] to estimate the robot pose. The
use of trihedral angles (corners) to represent plane-based objects permits the dis-
cussed capability. Trihedral angles permit the use of all three types of primitives:
point, line, plane, as well as point-to-point [15], line-to-line [14], plane-to-plane
[13], point-to-line [17], point-to-plane [18], and line-to-plane [16] correspondences
and their closed-form solutions. Owing to use of graph patterns it can be used
to perform classification of objects.

Another important point is that there exist no state-of-the-art representa-
tion providing high-level information about the environment to allow a robot to
distinguish between objects, their sizes and types [19]. With the ability to ex-
tract objects and their physical sizes, our high-level map representation provides
additional information and opportunities for higher level understanding of the
scene and object geometries.



5

3 Algorithm overview

The plane object-based map representation is built on point cloud, which is cal-
culated on the basis of RGB-D streams delivered by the Xtion sensor. Upon
the segmented planes in the point cloud we build a graph, where a node and
edge represent a plane and its real intersection with other plane, respectively.
Afterwards, we extract all trihedral angles, i.e. corners represented by 3rd or-
der cycles in the graph. Next, we carry out systematic aggregation of trihedral
angles onto object such as trihedral angles belonging to the same plane-based
object have common edges. At the end, we perform object classification using
simple subgraph patterns and calculate their physical sizes. During approach-
ing the object by a humanoid robot with the onboard RGB-D sensor, the point
could is segmented, planes are extracted, correspondences between planes are
determined, and relative poses (rotations and translations) between current and
previous point clouds are determined using RANSAC algorithm, which is ini-
tialized in each frame with a direct pose estimate [20]. On the basis of the initial
pose of the robot in real world coordinates, which is determined automatically
on the basis of visual data, as well as object position that can be determined
automatically or specified by the user, the robot calculates a collision free path,
and then follows it using a visual feedback. A controller responsible for path
following and reaching the desired pose uses the robot pose as well as object
location. In the vicinity of the object the controller employs the object pose to
achieve best grasping pose. It is determined by a simulator, which on the basis
of our high-level object representation, the kinematic model of the humanoid
robot, as well as virtual camera, performs a simulation of reaching and grasping
the object. This means that the 3D scene fragments that are located in the field
of view of the virtual camera can be extracted and then projected into the image
plane of the camera. The simulations were done using Webots robot simulator
[21,22], which provides a complete development environment to model, program
and simulate robots and our scripts in Python language. In the simulation ex-
periments an ArUco marker [23], which was attached to the object of interest
has been detected and then used to determine the pose of Nao robot acting in
virtual world. The parameters obtained in the simulation were then used in real
experiments. Given a motion controller tuned by the discussed tool, the robot
can follow any feasible path towards the pre-grasping position. The main role
of our tool is simulation and visualization of the grasping process given the real
pose of the robot as well as pose of the object together with its dimensions. We
assume that the objects undergoing grasping are located on the floor and are
composed of planes.

Figure 1 depicts step–by–step transition from simple point cloud to classified
plane–based object representation with sizes (edge lengths). In the algorithm we
can distinguish seven major steps. In the first step, RGB-D data stream consist-
ing of a pair of a color image and a depth map is acquired. After that, colored
point cloud is reconstructed on the basis of the RGB-D stream and intrinsic
calibration parameters. The colored point cloud is an initial representation of
the observed scene. In the next step, M-estimator SAmple Consensus (MSAC)



6

is executed to perform plane segmentation. Afterwards, real planes intersections
with their lengths are calculated. At the end, on the basis of segmented planes
and their intersections a graph is being built. This leads to second map repre-
sentation that comprises plane equations and point clouds representing objects
of complex shape (not plane-based objects). Due to substitution of point clouds
representing plane equations the map representation gets compact. In the follow-
ing step, extraction of trihedral angles that are represented by 3rd order cycles
from the constructed graph takes place (Fig. 2). After determining the trihedral
angles, their aggregation can be performed as the trihedral angles of the same
plane-based object have common edges. Finding common edges for trihedral an-
gles is performed using the constructed graph. Through aggregating all trihedral
angles with common edges we get abstract plane-based objects. This means that
at this stage we have a structure that describes which planes belong to which
object, the number of such objects, their dimensions, but no types. Therefore,
this representation is called as abstract plane-based objects, see also Fig. 1. The
last step is devoted to classification. The classification relies on matching graph
patterns with a subgraph from the extracted graph. The resulting algorithm is
simple and effective.

Fig. 1. Diagram illustrating transition from colored point cloud to classified plane
object-based high-level map representation.

4 The Algorithm

4.1 Object model and its dimensions

Determining physical object size. Let us consider how the real intersection
of two planes and their length can be extracted. Let’s assume that we have two
planes: P1 = A1x+B1y+C1z+D1 and P2 = A2x+B2y+C2z+D2. According to
algorithm in Fig. 1, after point cloud segmentation we determine the plane inter-
sections. Thus, after this step we have in disposal planes and their inliers, i.e. ar-
ray of points representing them. Let’s denote P1 inliers as {pplane1,1 . . . pplane1,i}
and P2 inliers as {pplane2,1 . . . pplane2,i}. According to definition of the intersec-
tion, which states that if planes P1 and P2 have real intersection then they should



7

have common inliers {pedge,1 . . . pedge,i}, i.e. array of points belonging to P1 and
P2 simultaneously, see (1):

{pedge,1 . . . pedge,i} = {pplane1,1 . . . pplane1,i} ∩ {pplane2,1 . . . pplane2,i} (1)

However, pedge,1 . . . pedge,i = ∅, because a point can be among inliers of only
single plane. Thus, we reformulate this definition and state that the points rep-
resenting real intersection pedge,1 . . . pedge,i will be simultaneously close to planes
P1 and P2. Therefore, on the basis of equations (2)–(5) we determine the point-
to-plane distance for both sets of inliers to both planes.

{dplane1−plane1,1 . . . dplane1−plane1,i} = |A1pplane1,i,x +B1pplane1,i,y

+ C1pplane1,i,z +D1| ∗ (A
2

1
+B2

1
+ C2

1
)1/2 (2)

{dplane1−plane2,1 . . . dplane1−plane2,i} = |A2pplane1,i,x +B2pplane1,i,y

+ C2pplane1,i,z +D2| ∗ (A
2

2
+B2

2
+ C2

2
)1/2 (3)

{dplane2−plane2,1 . . . dplane2−plane2,i} = |A2pplane2,i,x +B2pplane2,i,y

+ C2pplane2,i,z +D2| ∗ (A
2

2
+B2

2
+ C2

2
)1/2 (4)

{dplane2−plane1,1 . . . dplane2−plane1,i} = |A1pplane2,i,x +B1pplane2,i,y

+ C1pplane2,i,z +D1| ∗ (A
2

1
+B2

1
+ C2

1
)1/2 (5)

After that we determine all points that have the distance to both planes smaller
than dthresh and grater than dmin. dmin is utilized to cope with noise.

In order to define edge length dedge we take two points from pedge,1 . . . pedge,i
with maximum distance to each other. The distance between the points repre-
sents diagonal length ddiagonal of the cylinder of radius dthresh. Thus, the edge
length is determined on the basis of (6):

4 ∗ d2tresh + d2edge = d2diagonal (6)

Aggregation of planes into object. After determining plane intersections we
can build a graph whose node and edge represent a plane and its real intersection
with other plane, respectively. The graph permits us to determine in a fast
manner all trihedral angles as 3rd order cycles in the graph, see also Fig. 2.
Subsequently, we assume that all trihedral angles of the same plane-based object
have common edges.

If the object is presented by several trihedral angles the assumption men-
tioned above allows us to merge them angle-by-angle and extract plane-based
object. If the trihedral angle has no common edges then the object is represented
by single trihedral angle. All trihedral angles are represented by three planes,
see also Fig. 2. Let’s denote them by indexes of planes. Thus, the trihedral angle
1-4-7 has no common edges. Therefore, Box object from Fig. 2 is plane-based
object and is represented by single trihedral angle, whereas Locker 2 object is



8

represented by single trihedral angle 1-3-6. Locker 1 object from Fig. 2 consist of
two trihedral angles 1-8-9 and 1-5-8. These trihedral angles have common edge
1-8, so that Locker 1 is plane-based object represented by two trihedral angles.
In this way the aggregation is capable of adding trihedral angles, angle-by-angle.

Fig. 2. Graph representing scene that is observed by Nao robot with onboard Xtion
sensor. Orange stands for centers of trihedral angles. Circles with numbers stand for
segmented planes, whereas blue color points on the graph vertices. Black edges between
blue nodes on the graph represent real intersections between segmented planes. For
visualization purposes only selected trihedral angles were used for graph construction.

Classification of objects. After extracting all plane-based objects, a classifica-
tion step is executed. This step boils down to splitting the graph into sub-graphs
(for instance plane one in Fig. 2), and then matching the predefined patterns,
see Fig. 3.

Fig. 3. Predefined patterns to match objects in the graph representation.

Merging plane object-based high-level map representation. Merging
a pair of plane object-based high-level map representation is performed using a
graph representation. At the beginning, data association is performed, and plane-
to-plane correspondence is determined on the basis of matching normals and
distances between the considered planes. Afterwards, a transformation matrix



9

between frames is determined on the basis of closed-form solution for plane-
to-plane correspondence [20]. The transformation matrix is then refined by the
ICP algorithm. Next, frames are aligned. Subsequently, on the basis of plane-
to-plane correspondences we merge graph representations. This is done under
assumption that each edge length is the longest one from corresponding edges
in pair of frames. In this way the graph is reconstructed. In the last stage, we
reinitialize the plane-based object structure and execute classification, see Fig. 4.

Fig. 4. Algorithm of merging plane object-based high-level map representations.

Determining the main axis of the object. Let’s denote center of trihedral
angle as Tc(xTc

, yTc
, zTc

), and the three edge vectors containing edge length and
its direction as (e1, e2, e3). Then central point of the object C(xc, yc, zc) can be
calculated as follows:

C = Tc + (e1 + e2 + e3)/2 (7)

If object includes several trihedral angles then central point of the object is
identified as mean of central points of all trihedral angles in this object. The
axis is defined as normal N(A,B,C) of the plane described by the equation
P = Ax+By +Cz +D and representing object side chosen for grasping. From
one hand, the proposed algorithm can identify central point and appropriate
sides for grasping, as well as their axes for any plane-based object. From the
other hand, complex plane-based objects require complex control strategy for
grasping and it is an open problem. Figure 5 illustrates identification of sides
and axes of the object, which are appropriate for grasping, as well as calculating
object’s central point.

4.2 Navigation and Grasping

Given the point cloud, the robot extracts planes from it and identifies corre-
spondences between planes. Then, on the basis of such plane correspondences,
not less than three, not parallel planes are used for direct 6-DoF pose estima-
tion [20]. This pose is used as an initial point for further refinement by the
ICP algorithm. It is worth noting that the ICP algorithm uses no initial point
cloud, but it uses reconstructed point cloud on the basis of inliers of all extracted
planes. Such point cloud is constructed for the current frame and for the target



10

Fig. 5. Identification of sides and axes of the object, which are appropriate for grasping,
as well as calculating object central point. Motion planning was done on the basis of
extracted central point and axis of proper side. Red patches represent footsteps of right
leg, while green patches represent footsteps of left leg. Different objects on the scene
are represented by different colors, e.g. Box from Fig. 2 is represented by green color,
while Locker 2 is represented by red color. No axis is presented for Locker 2 because
no side is appropriate for the grasping.

frame to align. After alignment, not associated plane equations are added to the
first frame together with their inliers. The transformation for the next frame is
calculated with regard to the updated first frame. Therefore, transformation is
calculated not in frame-by-frame manner, but all frames are aligned to the up-
dated first frame. As a result of the alignment, final transformation matrix and
robot pose are determined. To cope with data association we keep transforma-
tion matrix for the last used frame, so that each new frame is firstly transformed
by this matrix.

5 Experimental Results

Our system is conceived to work with any RGB-D sensor. In the experiments
we utilized ASUS Xtion sensor, which has been mounted on the Nao humanoid
robot. It works at a frame rate of 30 Hz and delivers stream of color images of size
320×240 and depth map stream, whose images have resolution of 640×480 pix-
els. The system has been tested in scenarios similar to scenario shown on Fig. 2.
Figure 6 illustrates constructing plane object-based high-level map representa-
tion and merging it frame-by-frame. Figure 6a shows results of reconstruction
of point cloud using color image, depth map and intrinsic calibration parame-
ters. Figure 6b depicts extraction of planes from the reconstructed point cloud
using MSAC. Figure 6c shows results of systematic aggregation of trihedral an-
gles into objects. The top row presents results that were obtained for the first
frame, whereas bottom row presents results that were obtained in frame tenth.
In the discussed experiment we merged point clouds that were reconstructed
step-by-step from color images and depth maps, using estimated robot poses.



11

Fig. 6. An example of constructing plane object-based high-level map representation
and merging it frame-by-frame. (a) Reconstructed point cloud using color image, depth
map and intrinsic calibration data of the sensor. (b) Extracted planes from point cloud
using MSAC. (c) Systematic aggregation of trihedral angles into objects. Green points
of the graph denote centers of trihedral angles, while blue points denote estimated
centers of objects. Edges of trihedral angles are represented by black line segments,
while axis of objects appropriate for grasping are represented by black arrows.

As we can observe on Fig. 6b–c, the proposed algorithm for extraction of real
intersections of planes from point cloud gave satisfactory results. It is worth not-
ing that the trihedral angle permits the use of all three types of basic geometric
primitives: point, line and plane. However, how to combine transformation matri-
ces, which are calculated using different closed form solutions for our high-level
map representation is an open problem. In the discussed experiment we have
utilized plane-to-plane [13] correspondence in order to find the transformation
matrix between frames.

In the next stage we conducted experiments consisting in grasping the objects
by Nao robot. At the beginning we performed simulations to tune controllers for
path following. Afterwards, simulations aiming at tuning arm controllers were
conducted. Finally, Nao humanoid robot has been utilized in experiments with
object grasping. Figure 7a shows view of the simulated scene using Webots API
(see also images acquired by virtual cameras), Fig. 7b depicts view of the real
scene, whereas Fig. 7c contains example images that were obtained in simulation
of object grasping. In Figure 7a there are three sub-images that were acquired
by virtual cameras that the Nao robot was equipped with. The left sub-image
was acquired by camera (bottom) that is located in the Nao’s head, the middle
sub-image contains depth map that was grabbed by simulated RGB-D sensor,
whereas right sub-image depicts RGB image acquired by RGB-D sensor. As we
can notice, the RGB-D sensor has been mounted on the Nao’s head.

In order to show potential of the presented approach we calculated errors in
three scenarios. In the first one the Nao robot approached the object without



12

a) b)

c)

Fig. 7. View of the simulated scene a), real scene view b), simulated grasping of the
object c).

visual feedback using only footsteps determined in advance. In the second sce-
nario the robot followed path that was determined in advance. In the discussed
scenario the robot pose has been corrected using visual feedback in a predefined
number of control points. In the last scenario the robot followed first part of the
path using visual feedback in the predefined number of control points, whereas
in the last part of the path the information about the relative robot-object poses
was used to correct the robot motion. The actual robot pose in the world co-
ordinates has been determined on the basis of images acquired from on-board
camera, using algorithm discussed in Subsection 4.2. The pose and main axis of
the object were determined using algorithm described in Subsection 4.1. Figure 8
depicts representative results that were obtained in one of the simulations.

a) b) c)

Fig. 8. Left plot: distance between estimated position and the reference path vs. control
point number. Middle plot: distance between ground-truth and the reference path. Red
- no correction of Nao pose, green - path following using visual feedback, blue – path
following in the first eight control points and object approaching in remaining points.
Right plot: approaching pre-grasping position in Scenario 3.

Figure 8a depicts distance between estimated position and the reference path
vs. control point number in three scenarios. In the first scenario the robot walked



13

towards the object using motions that were determined in advance by the foot-
step planner. As we can notice, without a visual feedback the error grows over
time. Owing to using P controllers that were responsible by steering the robot to-
wards the reference path, the error between the reference path and the estimated
pose has been reduced. The control corrections have been calculated using the
estimated robot position and orientation with respect to reference position and
orientation and then used in moveTo function to correct robot motion. In the
discussed scenario, in each control point the robot corrects its motion to follow
the reference path using visual feedback. In the third scenario, the robot followed
first part of the path using the same control strategy as in scenario two, whereas
in the last part of the path the robot used information about the object location.
This means that in the control point the robot estimated relative position and
orientation with respect to the object of interest. On the basis of estimated ob-
ject position and orientation the robot exploited P controllers to reduce distance
to the object and angle between camera main axis and object main axis. As we
can notice on the plot shown on Fig. 8a, in the discussed scenario the error at
the pre-grasping position has been further reduced.

Figure 8b depicts distance between the reference path and the ground-truth,
i.e. distance between the reference path and the real position of the robot in three
scenarios. As we can notice, in the third scenario, in the pre-grasping position
the error between the robot and the desired position is equal to 6.6 cm. Table 1
contains errors that were obtained in discussed experiment. As we can see on
Fig. 8c the robot was able to achieve a pre-grasping position that was quite close
to desired one.

Table 1. Errors that were obtained in the simulated environment, c.f. plot on Fig. 8b.

Error [cm] Scenario 1 Scenario 2 Scenario 3
Average error 13.0 8.3 6.6
Error in pre-grasping position 24.5 9.1 6.1

Figure 9 depicts some color images with corresponding depth maps that were
acquired by virtual RGB-D camera mounted on Nao’s head in an experiment in
3rd scenario. The advantage of our simulator is that it not only provides precise
ground-truth for both the robot and the camera but it allows also contamination
of images and depth maps by noise that can arise during real experiments. This
means that it allows to investigate the influence of blur motion, rapid movements
and rotations as well as depth error on the performance of the object grasping.

Next, we conducted experiments using real humanoid robot. The ground-
truth of the robot pose has been determined using ArUco markers [23], which
were placed on the floor, see also Fig. 2. In 3rd scenario the error at the pre-
grasping position was between five and eight centimeters. The average error in
determining the physical dimensions of the rectangular object from Fig. 2 is



14

Fig. 9. Images acquired by virtual RGB-D camera mounted on Nao’s head in control
point #1, #6, #11 and #16, respectively.

about two centimeters, whereas the average error of the main axis is below three
degrees. Figure 10 depicts sample images that were acquired in one of the exper-
iments. As we can notice, due to rapid rotations the images are contaminated
by motion blur, and thus the ground-truth that has been calculated on the basis
of ArUco markers was not accurate enough to calculate supplementary quan-
titative results. The system operates at frame rate of about 5 Hz at Intel I7
CPU. Supplemental material from experiments with real robot is available at:
http://bit.ly/ECCV2018_Wksp_6DObjectPose.

Fig. 10. Images acquired by Xtion sensor mounted on Nao’s head in control point #1,
#6, #11 and #16, respectively.

6 Conclusions

We presented an approach for plane-based humanoid robot navigation towards
the object as well as object model construction for grasping. We presented a
novel algorithm for constructing plane object-based high-level scene representa-
tion. We discussed determining the object model and its dimensions, aggregation
of planes into object, and determining the main axis of the object. We presented
experimental results that were achieved in simulations with virtual camera and
robot as well as with real humanoid robot equipped with RGB-D camera, which
performed object grasping in low-texture layouts. The visual feedback acknowl-
edged its usefulness in achieving the pre-grasping pose by the robot.

Acknowledgment. This work was supported by Polish National Science Center
(NCN) under research grants 2014/15/B/ST6/02808 and 2017/27/B/ST6/01743.

http://bit.ly/ECCV2018_Wksp_6DObjectPose


15

References

1. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis – A
survey. IEEE Trans. on Robotics 30(2) (2014) 289–309

2. Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping:
A survey of current trends in autonomous driving. IEEE Trans. on Intelligent
Vehicles 2(3) (2017) 194–220

3. Miller, A.T., Allen, P.K.: Graspit! A versatile simulator for robotic grasping. IEEE
Robotics Automation Magazine 11(4) (2004) 110–122

4. Kragic, D., Miller, A.T., Allen, P.K.: Real-time tracking meets online grasp plan-
ning. In: Proc. of IEEE Int. Conf. on Robotics and Automation. (2001) 2460–2465,
vol. 3

5. Wongwilai, N., Niparnan, N., Sudsang, A.: SLAM-based grasping framework for
robotic arm navigation and object model construction. In: IEEE Int. Conf. on
Cyber Technology in Automation, Control and Intelligent. (2014) 156–161

6. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from RGBD images: Learn-
ing using a new rectangle representation. In: IEEE Int. Conf. on Robotics and
Automation. (2011) 3304–3311

7. Lin, Y.C., Wei, S.T., Fu, L.C.: Grasping unknown objects using depth gradient fea-
ture with eye-in-hand RGB-D sensor. In: IEEE Int. Conf. on Automation Science
and Engineering (CASE). (2014) 1258–1263

8. Ala, R., Kim, D.H., Shin, S.Y., Kim, C., Park, S.K.: A 3D-grasp synthesis algorithm
to grasp unknown objects based on graspable boundary and convex segments. Inf.
Sci. 295(C) (2015) 91–106

9. ten Pas, A., Platt, R. In: Using Geometry to Detect Grasp Poses in 3D Point
Clouds. Springer (2018) 307–324

10. Navarro, S.E., Weiss, D., Stogl, D., Milev, D., Hein, B.: Tracking and grasping of
known and unknown objects from a conveyor belt. In: ISR/Robotik 2014; 41st Int.
Symp. on Robotics. (2014) 1–8

11. Suzuki, T., Oka, T.: Grasping of unknown objects on a planar surface using a
single depth image. In: IEEE Int. Conf. on Advanced Intelligent Mechatronics
(AIM). (2016) 572–577

12. Klein, D.A., Illing, B., Gaspers, B., Schulz, D., Cremers, A.B.: Hierarchical salient
object detection for assisted grasping. In: IEEE Int. Conf. on Robotics and Au-
tomation (ICRA). (2017) 2230–2237

13. Grimson, W., Lozano-Perez, T.: Model-based recognition and localization from
sparse range or tactile data. Int. J. of Robotics Research 3(3) (1984) 3–35

14. Zhang, Z., Faugeras, O.: Determining motion from 3D line segment matches: A
comparative study. Image and Vision Computing 9(1) (1991) 10 – 19

15. Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4) (1991) 376–380

16. Chen, H.: Pose determination from line-to-plane correspondences: Existence con-
dition and closed-form solutions. IEEE Trans. on Pattern Analysis and Machine
Intelligence 13(6) (June 1991) 530–541

17. Nister, D.: A minimal solution to the generalised 3-point pose problem. In: IEEE
Conf. Computer Vision and Pattern Recognition (CVPR). (June 2004) 560–567

18. Ramalingam, S., Taguchi, Y.: A theory of minimal 3D point to 3D plane registra-
tion and its generalization. Int. J. of Computer Vision 102 (2012) 73–90

19. Cadena, C., Carlene, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,
Leonard, J.: Past, present, and future of simultaneous localization and mapping:



16

Toward the robust-perception age. IEEE Trans. on Robotics 32(6) (2016) 1309–
1332

20. Khoshelham, K.: Direct 6-DoF pose estimation from point-plane correspondences.
In: Int. Conf. on Digital Image Computing: Techniques and Applications (DICTA).
(2015) 1–6

21. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems 1(1) (2004) 39–42

22. Webots: http://www.cyberbotics.com Commercial Mobile Robot Simulation Soft-
ware.

23. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up de-
tection of squared fiducial markers. Image and Vision Computing 76 (2018) 38 –
47


