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Abstract. Trackers based on discriminative correlation filters (DCF)
have recently seen widespread success and in this work we dive into their
numerical core. DCF-based trackers interleave learning of the target de-
tector and target state inference based on this detector. Whereas the
original formulation includes a closed-form solution for the filter learn-
ing, recently introduced improvements to the framework no longer have
known closed-form solutions. Instead a large-scale linear least squares
problem must be solved each time the detector is updated. We analyze
the procedure used to optimize the detector and let the popular scheme
introduced with ECO serve as a baseline. The ECO implementation is
revisited in detail and several mechanisms are provided with alternatives.
With comprehensive experiments we show which configurations are su-
perior in terms of tracking capabilities and optimization performance.

1 Introduction

Visual tracking is the computer vision problem of estimating a target trajectory
in a video, given only its initial state. This is a challenge occurring in a wide
range of vision problems seen for instance in autonomous cars, UAVs, and surveil-
lance. For such applications, there is often a real-time constraint coupled with
a desire to track objects undergoing challenging appearance changes. In recent
years trackers based on Discriminative Correlation Filters (DCF) have shown
promising tracking performance while often attaining good speed [16][17]. These
trackers have repeatedly improved the state-of-the-art, recently due to the use
of powerful features [9, 20] and more sophisticated models [8, 7, 12, 19].

The aim in DCFs is to learn a filter that, when applied to an input sample,
produces a sharp and distinct peak at the target location. This is formulated
as an objective over the filter coefficients. Via application of Parseval’s formula,
this problem is transformed into a linear least squares loss over the Fourier
coefficients. In the general case, there is no solution in closed form, and the loss
is minimized with an iterative solver. A standard method for such situations is
the method of conjugate gradients (CG). A major advantage is that CG is able
to handle the large size of the problem. Each iteration is linear in the number
of parameters and it is known to converge to approximate solutions in a small
number of iterations.
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The effectiveness of the DCF-framework coupled with CG is well-supported
empirically. In the most recent visual object tracking challenge [17], four of the
top five trackers employed CG within the DCF-framework. Recent approaches
investigate: more powerful features and how they can be learnt; changes to the
model inference such as how scales are best handled; and additional components
or alterations to the loss. In this work we instead shift our gaze toward the op-
timization procedure itself. The visual tracking scenario contains repeated filter
optimizations of a loss that changes slowly over time, a very particular situation
unlike what is usually studied in optimization literature. This leads not only to
considerations regarding the objective, but also how previous optimizations are
best exploited to warm-start future optimizations. As the target may undergo
appearance changes, an additional concern is overfitting. A better optimization
method may yield improved performance in some cases, but may lead to severe
overfitting in others.

Our contributions: In this work we present a thorough description of the
implementation and optimization procedure employed in many state-of-the-art
visual tracking methods. Several new variants of this method are presented,
with different approaches to select the search-direction, step-length, and perform
warm-starts. We present comprehensive experiments and provide an analysis of
the different methods both from a tracking performance perspective, and from
an optimization perspective.

2 Related Work

In visual tracking, DCF-based methods have shown promising performance across
several benchmarks. In essence the DCF is a linear regressor, which is trained
in a supervised fashion to predict the classification score of the target object.
There are two unique characteristics of the DCF paradigm that are credited for
its success and popularity. First, the DCF implicitly performs a dense sampling
of training patches by modeling detection as a convolution operation. This is par-
ticularly important for tracking, where labeled training data is scarce. Secondly,
the convolution operation is approximated by a circular convolution, which en-
ables efficient training and detection to be performed in the Fourier domain
and exploitation of the O(n log n) FFT algorithm. Furthermore, the negative ef-
fects of the circular (i.e. periodic) assumption can be effectively mitigated using
windowing [2] and spatial regularization [7].

Since the DCF loss is convex, the minimizer can be expressed in closed form
as the solution of the set of linear normal equations. There are however two
special cases which admit particularly simple closed form expression. These only
require element-wise operations, enabling simple and efficient O(n) implemen-
tations. The two cases are: (1) multiple training samples with a single feature
dimension [2], and (2) a single training sample with multiple feature dimensions
[6]. In practice, however, it is essential to use both multiple samples and multi-
dimensional features to obtain a discriminative appearance model. As no closed
form solution is known for the general case, early works update the filter sequen-
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tially using simple update rules (KCF [15], ACT [10], DSST [6]). However, these
update schemes rely on harsh assumptions leading to suboptimal filters with sig-
nificantly reduced discriminability. Further, these methods cannot address the
periodic artifacts using spatial regularization [7] or constraints [12].

Several recent works employ iterative optimization strategies in order to min-
imize the full DCF objective in an online manner for tracking [7, 8, 12]. These
methods enjoy two key advantages. First, they benefit from asymptotic conver-
gence to the optimal filter, leading to a more discriminative model. Second, al-
ternate regularization approaches and filter constraints can be integrated, which
is important for addressing the periodic artifacts. While previous optimization
based approaches [7, 8, 12] suffered from significantly increased computational
complexity, recent work [5, 19] have demonstrated that state-of-the-art results
can be obtained at impressive frame rates.

3 DCF-Formulation Revisited

The DCF-paradigm solves the visual tracking task by constructing a correlation
or convolution filter that, when applied to an image, discriminates the target
from the background. The filter is learnt in the first frame where a label of the
target location is available, and is usually updated in subsequent frames treating
earlier frames with corresponding predictions as training data. For the training,
the formulation of a suitable loss is essential. In this section we formulate the
loss employed by several state-of-the-art trackers in the filter construction [8, 5,
14, 13]. We proceed to discuss appropriate methods of minimizing this loss.

3.1 Formulation of the Loss

The aim is to find the filter f that is the best fit to a set of sample-label pairs
{(x1, y1), (x2, y2), . . . , (xC , yC)}. Each sample xc ∈ R

D×T1×T2 is a multidimen-
sional feature map, with D feature channels and spatial extent T1 × T2. The
corresponding label yc ∈ R

T1×T2 attains a high value at the target location and
low values otherwise. This is achieved by a Gaussian function with low variance.
The DCF-framework finds the filter f ∈ R

D×T1×T2 by minimizing the loss

ǫ(f) =

C
∑

c=1

µc

∥

∥

∥

∥

∥

D
∑

d=1

xc
d ∗ fd − yc

∥

∥

∥

∥

∥

2

2

+ λ

D
∑

d=1

‖fd‖22 , (1)

where each sample is weighted by µc. The convolution (∗) is applied per dimen-
sion, where xc

d and fd denote the d’th feature channel of the sample and filter
respectively. The second term of (1) regularizes the filter weights with some
parameter λ. In DCFs, convolution is a key concept as it performs a dense sam-
pling of negative training data while being efficient to calculate. The Fourier
basis diagonalizes the convolution operation into multiplication, while the trans-
form itself is quick to calculate with the Fast Fourier Transform (FFT). There is
a caveat, however, in that the convolution is cyclic, introducing boundary effects
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which hampers performance and may allow the filter to learn the background,
rather than the target appearance. Two ways have been proposed to deal with
this. Galoogahi et al. propose to constrain filter coefficients far away from the
center to zero [12]. They solve the constrained minimization problem with the
Alternating Direction Method of Multipliers (ADMM) [3]. A disadvantage of this
approach is that it requires repeated transitions between the spatial and Fourier
domain, adding a substantial computational cost. An alternative proposed by
Danelljan et al. [7] is to replace the filter weight regularization with a term that
depends on the filter coefficients’ distance to the center

ǫ(f) =

C
∑

c=1

µc

∥

∥

∥

∥

∥

D
∑

d=1

xc
d ∗ fd − yc

∥

∥

∥

∥

∥

2

2

+

D
∑

d=1

‖wfd‖22 . (2)

The second term applies a cost wi,j to each filter coefficient, depending on its
position. The regularization function w typically attains small values in the filter
center, and increases as the position moves towards the borders. Experimental
results show that the spatial regularization indeed leads to a filter that further
emphasizes the target while obtaining improved tracking performance [7, 19].

Previously, the samples xc comprised handcrafted features such as Histogram
of Oriented Gradients (HOG) or Color Names (CN). However, with the advent
of deep learning, there emerged a desire to employ features extracted from deep
convolutional neural networks (CNN). The features extracted from the deeper
layers of a CNN exhibit robustness to severe appearance changes which would
otherwise lead to tracking failure. They are however of low resolution, and in
order to obtain accurate detections we have to rely on low level information
when it is available. We would therefore like to utilize shallow features, such
as HOG, CN, or features extracted from the earlier layers of a CNN. In order
to combine features of different resolutions, Danelljan et al. [8] proposed to
view the components of (2) as continuous functions. That is, the filter and the
labels fd, y

c are functions of two variables (t1, t2). The extracted feature maps
xc are interpolated to the continuous domain with some interpolation kernel b.
The continuous interpretation is possible as the DCF-formulation works with a
Fourier basis. A continuous function can be written as its Fourier series which
may be truncated for a finite representation. The loss is transformed into the
Fourier domain via Parseval’s formula,

ǫ(f) =

C
∑

c=1

µc

∥

∥

∥

∥

∥

D
∑

d=1

DFT{xc
d}b̂f̂d − ŷc

∥

∥

∥

∥

∥

2

2

+

D
∑

d=1

‖ŵ ∗ f̂d‖22, (3)

where ·̂ denotes the Fourier coefficients and DFT the Discrete Fourier Transform.

3.2 DCF-Loss Vectorization

In order to solve (3) a finite representation of the included terms is required.
The continuous functions are represented with infinite sequences of Fourier co-
efficients, which may be truncated. We use the first K coefficients from each
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feature channel, a total of N2 = (2K+1)2 coefficients per channel. We note that
including the same number of coefficients in each dimension is inefficient, as
fewer coefficients are required with decreasing feature channel resolution. This
will however not be a problem as we may constrain those coefficients to zero
in the formulation and employ an optimization scheme which exploits sparsity.
We will now rewrite the loss into matrix-vector-form in order to apply standard
optimization techniques. The vectorized filter is rewritten as

f̂ =











f̂1

f̂2
...

f̂D











, where f̂d =

















f̂d[−K,−K]
...

f̂d[−K,K]
...

f̂d[K,K]

















, (4)

which is a DN2 sized vector. The feature map components are contained in a
CN2 ×DN2 sized matrix

A =











A1,1 A1,2 . . . A1,D

A2,1 A2,2 . . . A2,D

...
...

. . .
...

AC,1 AC,2 . . . AC,D











, (5)

where

Ac,d = diag

















DFT{xc
d}[−K,−K] · b̂[−K,−K]

...

DFT{xc
d}[−K,K] · b̂[−K,K]

...

DFT{xc
d}[K,K] · b̂[K,K]

















. (6)

Here, diag is the transformation from a vector to a corresponding diagonal ma-
trix. The labels are stored in a size CN2 vector

ŷ =











ŷ1

ŷ2

...
ŷC











, where ŷc =

















ŷc[−K,−K]
...

ŷc[−K,K]
...

ŷc[K,K]

















. (7)

The sample weights are stored in the diagonal matrix

µ =











µ1IN2

µ2IN2

. . .

µCIN2











, (8)
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where IN2 is the identity matrix of sizeN2×N2. Lastly, the spatial regularization
is rewritten as







ŵ ∗ f̂1
...

ŵ ∗ f̂D






= W f̂ , (9)

where W is the block-diagonal matrix where each block is a convolution ma-
trix containing the elements of ŵ. With these definitions, the objective (3) is
expressed as

ǫ(f) =
∥

∥

∥

√
ΓAf̂ − ŷ

∥

∥

∥

2

2
+ ‖W f̂‖22 =

= (Af̂ − ŷ)HΓ (Af̂ − ŷ) + f̂HWHW f̂ =

= f̂H(AHΓA+WHW )f̂ − 2ŷHΓAf̂ + ŷHΓ ŷ , (10)

where ·H denotes conjugate transpose. The difference between (3) and (10) is
the truncation of the Fourier coefficients, and it is assumed that the difference is
small. In order to minimize the loss, we note that the problem is unconstrained
and convex. We can therefore set the derivative to zero and solve the arising
normal equations. The derivative is found as

∂ǫ(f)

∂ f̂
= 2f̂H(AHΓA+WHW )− 2ŷHΓA , (11)

and setting the derivative to zero leads to

(AHΓA+WHW )f̂ = AHΓ ŷ . (12)

It is important to note here that the left-hand side contains two terms with
exploitable properties. Namely, (i) the matrix-vector product AHΓAf̂ is very
sparse if it is calculated in the order AH(Γ (Af̂)); and (ii) the product W f̂ cor-
responds to a convolution that, if the kernel is small, is efficient to calculate.

3.3 The Conjugate Gradient Method

The size of the equation system (12) depends on the number of training instances
C and the feature dimensionality D. If the high-dimensional deep features are
employed, D can be very large. Furthermore, C should be sufficiently large in or-
der for the model to generalize the target appearance. The number of equations
and the number of variables may each be in the order 105, and we would there-
fore like to employ a first order optimization method that can exploit sparsity.
Danelljan et al. [8] proposed to employ the method of Conjugate Gradients (CG),
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which fulfills these priorities. It is a first order line-search method, which applies
a Gram-Schmidt procedure to the steepest descent direction. This makes sure
that the step directions are orthogonal with respect to a special inner product.
For this method, linear convergence has been proven and typically an acceptable
solution is reached in very few steps. CG furthermore does not need to store or
form any additional matrices like second order methods would. We will briefly
describe the method in order to later describe design choices. Details and proofs
regarding the convergence of CG are available in [22].

The idea is to apply CG to the normal equations (12). To simplify notation,
we apply the notation found in [22, 21]. Consider a system of n equations and n

variables

Ax = b . (13)

It should be noted that CG enjoys nice convergence properties if and only if the
left-hand side is positive definite. This is the case for normal equations such as
(12). The CG method solves the system by iteratively performing the update

xk+1 = xk + αkpk , (14)

that is, taking a step along direction pk of some step-length αk. The step direc-
tions are found as

pk = rk −
∑

i<k

pH
i Ark

pH
i Api

pi , (15)

where pi are previous search directions, and rk = b − Axk is the residual in
the k’th iteration. This step is the component of the negative gradient that is
orthogonal to all earlier steps, with respect to the inner product 〈u,v〉 = uTAv.
This is called conjugacy and lets CG avoid the inefficient zig-zag pattern that
often emerges with steepest descent. The step lengths αk are found as

αk =
pH
k b

pH
k Apk

. (16)

The step directions p form a basis and it is possible to show that our choice of
α leads to the minimizer in n steps. The convergence is typically much faster
however, and depends directly on the distribution of the eigenvalues of A. It
is therefore common to apply a preconditioner M to the system of equations,
which clusters the eigenvalues. In this case, we instead solve the system

E−1A(E−1)Hx′ = E−1b , (17)

where x′ = ETx and EET = M . The solution will remain the same, but the con-
vergence is faster if E−1A(E−1)T has a more favorable distribution of eigenvalues
than A. A common choice for the preconditioner that is efficient to calculate is
the diagonal preconditioner M that keeps the diagonal elements of A, but is
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zero everywhere else. It is not obvious what preconditioner should be used, as a
more sophisticated preconditioner may yield faster convergence but will instead
be more expensive to calculate.

As storing all the search directions pk would lead to quadratic memory con-
sumption, an equivalent recursive implementation is utilized instead [22]. The
step length and step direction are found as

αk =
rHk zk

pH
k Apk

, pk = zk + βk−1pk−1 , (18)

with

rk = rk−1 − αk−1Apk−1 , (19a)

zk = M−1rk , (19b)

βk−1 =
zHk rk

zHk−1
rk−1

. (19c)

The initial values of r, z, and p are

r0 = b−Ax0 , (20a)

z0 = M−1r0 , (20b)

p0 = z0 . (20c)

Next we look at how CG is applied to the normal equations in the DCF-
framework.

3.4 Applying CG to the DCF-problem

The conjugate gradient formulation is efficient as it only performs vector-vector
products, except for two cases. In the updates of α in (18) and r in (19a), the
matrix-vector products needs to be computed. As previously mentioned, the
sample matrix A is sparse, and the application of W can be done via a small-
kernel convolution as long as it is possible to represent the spatial regularization
function w with few Fourier coefficients.

The matrix-vector product performed by the CG method when applied to
the normal equations (12) is

q = (AHΓA+WHW )p . (21)

From (4) and (5) we obtain [8]

AHΓAp = AH











µ1

(

∑D

d=1
A1,dp

)

...

µC
(

∑D

d=1
AC,dp

)











=











(

∑C

c=1
Āc,1µ

c
(

∑D

d=1
Ac,dp

))

...
(

∑C

c=1
Āc,Dµc

(

∑D

d=1
Ac,dp

))











.

(22)
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That is, the calculation relies only on matrix-vector products with the diagonal
blocks Ac,d and is implemented as a vector-vector product. We also avoid storing
the entire matrix A. For the second part of the matrix-vector product, we note
that there is no need for the spatial regularization function w to contain high
frequences. A smooth function is sufficient, and we therefore select a regularizer
that is well represented by a few low frequency components. We then calculate

WHW f̂ =







ŵ ∗ ŵ ∗ f̂1
...

ŵ ∗ ŵ ∗ f̂D






, (23)

which is efficient as the filter ŵ contains few coefficients. The conjugate transpose
of the leftmost W was discarded here, as the functions w are usually symmetric
and real. Hence, the conjugate gradient method can exploit the sparsity and
performs only vector-vector products.

3.5 Subsequent Optimizations

In visual tracking we have a single labeled sample from which a model is learned
to track an object in subsequent frames. For that case, we apply the CG-
procedure and in a few iterations obtain an acceptable solution and information
required for the warm-starts. In order to improve the model, samples extracted
from subsequent frames and their labels are treated as additional training data.
The tracker ECO for instance, updates its model every five frames. As the loss
(2) does not change dramatically between subsequent optimizations, we warm-
start CG. As an initial guess, the previous filter vector f̂ is used. An additional
component of ECO is that the final search direction of the previous optimization
is used to select the initial components. The variables pold, zold, rold are used to
modify the initialization (20) into

p0 = z0 + β−1pold , (24)

where the denominator of the formula for β is calculated as

zHk−1rk−1 = (1− λ)−γzHoldrold . (25)

The learning rate λ is the same learning rate as that used to recursively weight
samples, and γ is a hyperparameter that describes the decay of the previous
search direction.

CG has remarkable convergence properties when minimizing a linear least
squares loss and employing a constant preconditioner. The presented procedure
introduces a somewhat different situation. It may be viewed as minimizing a loss
that changes slightly over time. The preconditioners will not be constant, and
the assumptions on which CG relies are violated. The literature proposes a way
to deal with loss nonlinearities and non-constant preconditioners, which may be
beneficial for our case. The strategy is to replace the β formula (19c), referred
to as the Fletcher-Reeves formula, with the Polak-Ribiere formula
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βk−1 =
zHk (rk − rk−1)

zk−1rk−1

. (26)

As the case presented in the literature differs somewhat from the DCF-
framework case, it is not obvious whichever is superior. For completeness, we
also include the gradient descent method. This is actually easily incorporated
into the CG framework by selecting βk = 0 as zk is the negative gradient of the
preconditioned loss. In this case, the way αk is selected within CG is the optimal
step length along the negative gradient. A fourth alternative is to employ the
Barzilai-Borwein method [1], which has shown favorable performance in prac-
tice. We integrate it in the CG-framework by noting that the method takes steps
in the direction of the negative gradient, where the step length is based on the
change of the parameters and the gradients

sk = xk − xk−1, yk = zk − zk−1 . (27)

The step-length is selected by interleaving the updates

αk =
sHk sk

sHk yk

, αk =
sHk yk

yH
k yk

. (28)

The motivation behind this choice is that it approximates the secant equation of
the quasi-Newton methods. Next we describe our experiments, where we compare
the four different updates and the impact of the conjugate direction warm-start.

4 Experiments

We analyze the optimization scheme and several of its components based on
tracking performance and the behaviour of the loss . First we introduce the eight
tracker configurations employed in our experiments including their respective
rationale.

4.1 Optimizer Configurations

In order to minimize the loss resulting from the continuous, spatially regularized
DCF-formulation, ECO relies on the conjugate gradient method with a special
heuristic for warm-starting filter optimizations subsequent the initial one. We
investigate the impact of this heuristic by comparing it with the two extremes:
(i) warm-starting subsequent optimizations only with the previous solution and
not with the previous search direction, that is, setting the forgetting rate γ = ∞;
and (ii) fully keeping the initial step conjugate to the final search direction of
the previous optimization, setting γ = 0. We further investigate the mechanism
to ensure conjugacy: (i) Fletcher-Reeves formula; (ii) Polak-Ribiere formula; (iii)
the removal of this mechanism, equivalent to gradient descent; and (iv) the re-
placement of this mechanism by another way of selecting the step-length, namely
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Table 1: The strategies to calculate α and β are shown for four configurations.

Fletcher-Reeves Polak-Ribiere Gradient Descent Barzilai-Borwein

α Eq. (18) Eq. (18) Eq. (18) Eq. (28)

β Eq. (19c) Eq. (26) 0 0

the Barzilai-Borwein method. They are described in Table 1. The importance of
the preconditioner is asserted via its removal. Finally, we try to hamper the base-
line CG-method by always multiplying its calculated step-length with a factor
0.8. The intuition is that a lower loss not necessarily provides improved tracking
capabilities, and such a heuristic could have a regularizing effect.

4.2 Evalulation Methodology

We run experiments on two tracking benchmarks. First we utilize the public
VOT2018-benchmark, where performance is measured in terms of Accuracy and
Robustness. Robustness measures the tracking failure rate and can be interpreted
as the probability of succesful tracking for S frames, where S is a constant. Accu-
racy is the average overlap during successfully tracked frames. A more thorough
description and analysis of the measures is given in [4]. There is typically a
trade-off between accuracy and robustness, and one may be improved at cost
of the other. Additionally we run experiments on a larger dataset formed by
pooling the sequences of OTB-2015 [23], TempleColor [18], and NFS [11]. Over-
lapping sequences are removed, leaving a total of 286 sequences. Performance is
measured in terms of area-under-the-curve (AUC) of the success plots.

We run each tracking algorithm at four different iteration configurations: (i)
the baseline setting where the initial filter optimization runs for 150 iterations,
and subsequent optimizations for 5 iterations; (ii) a fast setting where we run
90 and 3 iterations respectively; (iii) a setting with 30 initial iterations and only
a single iteration in subsequent runs; (iv) and an overfitting setting with 150
iterations are used initially, and 100 iterations in subsequent runs.

The trackers are analyzed based on their performance on the two benchmarks.
We would furthermore like to gain some insight on how well the different methods
minimize the loss and the relationship between this and tracking performance.
Therefore we run an additional experiment on the pooled dataset where the
loss is considered. The value of the loss after each optimization is stored as Li,j

where i enumerates the N sequences and j the Mi frames in sequence i. A single
performance number of the loss is obtained as

L̄ =
1

N

N
∑

i=1

1

Mi

Mi
∑

j=1

Li,j . (29)

Our initial experiments revealed that the value of the loss is heavily correlated
with the tracking performance, possibly due to contamination of the training
set after a tracking failure. As our intention is to study the optimization perfor-
mance, we provide all trackers with the same training set: the ground truth.
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Fig. 2: The results of the eight configurations are shown. The tracking performance
(a) and the mean average loss (b) on the pooled dataset are shown as a function
of the number of optimizer iterations. This dataset is the union of the OTB-2015,
TempleColor, and NFS datasets. The performance on the public VOT2018 benchmark
is shown in terms of accuracy and robustness (c).

4.3 Results

Figures 1a and 1c show the results on the VOT2018 benchmark and the pooled
dataset, respectively. The average loss on the pooled dataset is shown in fig. 1b.
We first consider the effect of the conjugacy warm-start. Removing the conjugacy
warm-start (γ = ∞) provides reduced performance on VOT2018 in the single
iteration setting, both in terms of accuracy and robustness. For 3 or more itera-
tions it is the most robust amongst all settings, but its accuracy is still hampered.
On the pooled dataset it performs slightly better than the baseline. Instead set-
ting the first search direction in each optimization to be fully conjugate to the
previous (γ = 0), leads to slightly improved robustness in all cases compared to
the baseline. The accuracy is decreased in the single iteration setting, but the
gap closes for 3 iterations and the accuracy is actually improved for 5 iterations.
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This setting is Pareto optimal for 1, 3, and 5 iterations. On the pooled dataset,
it outperforms the baseline for 3 and 5 iterations. Its average loss is very close
to the baseline loss for 3, 5, and 100 iterations, whereas removing the conjugacy
warm-start leads to significantly higher loss for 1, 3, and 5 iterations.

The alternative conjugacy mechanism, Fletcher-Reeves, provides inferior per-
formance compared to the baseline for the single-iteration setting on VOT2018.
However, its robustness increases with the number of iterations and surpasses
the baseline for 3 iterations. On the pooled dataset, its performance is worse for
1 and 100 iterations and slightly improved for 3 and 5 iterations. The average
loss is higher than that of the baseline in the 1 iteration setting, but the gap
decreases with the number of iterations. Gradient descent, which lacks the con-
jugacy mechanism, leads to slow convergence, something reflected in the high
average loss value. Performance is greatly diminished on the pooled dataset, and
on VOT2018 for 1 and 3 iterations. For 5 iterations it achieves slightly improved
robustness, and for 100 iterations improved accuracy at the cost of robustness.

The preconditioning is imperative in order to obtain a low loss. On the pooled
dataset its removal results in lower performance for any number of iterations. On
VOT2018, this leads to worse performance for 1 and 3 iterations, and improved
accuracy at the cost of robustness. Hampering CG by reducing the step-lengths
to 0.8α leads to reduced accuracy for 1 iteration. For 3 iterations this gap is
diminished, and for 5 iterations this results in higher accuracy. For 100 iterations,
they perform roughly the same. On the pooled dataset the hampering leads to
reduced performance for 1 iteration, but improved performance for 3, 5, and 100
iterations. The average loss is close to that of the Fletcher-Reeves configuration.

The alternative optimization method, Barzilai-Borwein, leads to a higher
loss than that of CG, close to that of removing the conjugacy warm-start from
CG. On the pooled dataset, their performance is similar for 5 iterations, but
Barzilao-Borwein is outperformed for 1, 3, and 100 iterations. On the VOT2018
dataset, Barzilai-Borwein leads to reduced performance compared to full conju-
gacy warm-start for 1, 3, and 5 iterations. For 100 iterations however, it provides
significantly improved accuracy at the cost of robustness.

4.4 Analysis

The experiments suggest that the partial conjugacy warm-start heuristic in the
baseline does not in general improve performance. Instead, making the initial
search direction fully conjugate to the last search direction of the previous opti-
mization improves performance for most cases, while resulting in a similar loss
value. Not warm-starting the conjugacy seems to lead to slower convergence,
but improved robustness if sufficiently many iterations are run. This remains
a competetive alternative. The performance of the Fletcher-Reeves formula ap-
pears sensitive to the number of iterations used. Removing the conjugacy mech-
anism strongly deteriorates performance in most cases, as is expected. There is
a surprising exception on VOT2018 for 5 iterations, where robustness slightly
increased at a small cost of accuracy. Removing the preconditioner also leads to
significant deterioration of performance, which is expected as normal equations
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have a problemetic distribution of eigenvalues. The step-length multiplier did not
hamper performance as much as expected, and actually improved performance
for the 5-iteration case on both benchmarks. Tampering with the step-length
leads to a method that does not converge to a solution. Possibly, the effect is
attenuated with the repeated optimizations, and that running 5 iterations with
the baseline leads to a case of overfitting that this heuristic is able to alleviate.
For the case of visual tracking, conjugate gradient seems to outperform Barzilai-
Borwein. It should be mentioned that the comparison is not entirely fair as the
Barzilai-Borwein method has not been as thoroughly investigated as CG.

Overall, the full conjugacy warm-start (γ = 0) seems to provide a good
trade-off between accuracy and robustness on VOT2018 while providing the
best performance on the pooled dataset. In comparison, removing the conjugacy
warm-start (γ = ∞) leads to a more robust but less accurate tracker. Both
these settings outperform the baseline. The merit of the baseline is its perfor-
mance from an optimization perspective, and if a very fast tracker is desired it
is probably a good alternative.

The baseline attained the lowest loss for all iteration configurations. In the
single-iteration setting it obtains the best performance on the pooled dataset
while providing a very good trade-off between accuracy and robustness on VOT2018.
For 3 iterations the Fletcher-Reeves, γ = 0, and 0.8α step-length settings pro-
vide the lowest loss values except for the baseline. These configurations obtains
the top 3 best performance on the pooled dataset, and all provide a good accu-
racy and robustness on VOT2018. A lower loss does seem to provide increases
to tracking performance in these cases, but as the number of iterations increase
this ceases to be true. An explanation for this is overfitting, and as future work it
may be beneficial to investigate strategies for stopping the optimization process
when an acceptable solution has been obtained, instead of running the process
for a fixed number of iterations.

5 Conclusion

In this paper we analyzed the optimization procedure of the popular ECO-
tracker. The procedure was described in detail and several mechanisms were
compared with their alternatives. Supported by experiments on the VOT2018-
benchmark and a large pooled dataset, we showed the impact of the different
configurations both in terms of tracking performance and in terms of optimiza-
tion performance. We showed that a lower loss corresponds fairly well to im-
proved tracking performance when the optimizers are run for a sufficiently low
number of iterations. However, as the number of iterations increases, inferior
optimizers may provide superior tracking performance.
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