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Abstract. This paper presents a pipeline for stereo visual odometry us-
ing cameras with different fields of view. It gives a proof of concept about
how a constraint on the respective field of view of each camera can lead
to both an accurate 3D reconstruction and a robust pose estimation.
Indeed, when considering a fixed resolution, a narrow field of view has
a higher angular resolution and can preserve image texture details. On
the other hand, a wide field of view allows to track features over longer
periods since the overlap between two successive frames is more substan-
tial. We propose a semi-independent stereo system where each camera
performs individually temporal multi-view optimization but their initial
parameters are still jointly optimized in an iterative framework. Further-
more, the concept of lead and follow camera is introduced to adaptively
propagate information between the cameras. We evaluate the method
qualitatively on two indoor datasets, and quantitatively on a synthetic
dataset to allow the comparison across different fields of view.
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1 Introduction

Visual odometry (VO) and simultaneous localization and mapping (SLAM) have
been popular research topics in the past decades, and have recently become a
prominent part in many emerging technologies such as self-driving car, drone
delivery, virtual and augmented reality. Monocular cameras are widely used for
these challenging tasks due to their low hardware cost and relatively small size.
However, the absolute scale is not observable by using monocular camera ap-
proaches without introducing priors, and thus leading to scale drift [4,9]. Stereo
camera configurations allow to resolve this scale ambiguity by computing the
depth from a known fixed-baseline [12]. In many stereo VO and SLAM using
cameras with overlapping fields of view, two identical cameras are often con-
sidered to estimate more efficiently correspondences. The second camera is only
used to perform static depth estimation [10, 13] and/or to add a static constraint
term in the optimization [3, 14, 17]. Temporal multi-view stereo is thus neglected
for the latter since the gain of information would not be worth the computation
cost.
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This paper presents a proof of concept on how a strong constraint on the
focal length difference between the two cameras can result in both a higher re-
construction robustness and accuracy. Indeed, when using cameras with different
fields of view, performing temporal multi-view stereo for both cameras can be-
come meaningful as the stereo system will be able to exploit more independent
source of data when compared to the case of an identical pair of cameras. In
theory, a wider field of view allows to avoid occlusion and it is more likely that
the visible part of the scene contains well-suited information for visual meth-
ods. Visual odometry and SLAM using large field of view fish-eye cameras [2,
15] demonstrate more robust pose estimation, notably during rapid motion, as
there is more overlap between subsequent images such that landmarks can be
tracked over longer periods. However, the angular resolution of the image de-
creases as the FOV increases for a fixed image resolution. In [18], Zhang et al.
study the impact of the field of view for visual odometry, and show that large
field of view camera should be used in confined environment since features are
more evenly distributed which stabilizes the pose estimation and can be tracked
for a longer time. On the other hand, due to the loss of angular resolution of
higher FOV, the triangulation error is amplified with the depth range especially
for large scale outdoor environment such that small FOV cameras should be pre-
ferred. In this paper, we propose a semi-independent for stereo visual odometry
using cameras with different fields of view so that it can take advantage of both
the large and small fields of view properties by performing temporal multi-view
stereo for both of them.

1.1 Related Work

Using a stereo camera configuration, the scale becomes directly observable given
the fixed-baseline, but the implied triangulation can only be estimated for cor-
respondences from both images. As a result, a lot of stereo systems consider a
configuration where the common field of view area is maximized.

An early seminal work using a stereo camera setup was proposed by Nister
et al. [12], where static triangulation and sequential frame-to-frame matching for
sparse features were used to estimate the motion with the correct scale of the
stereo rig. In [13], Pax et al. present an approach based on extended Kalman
filter that considers information from both close and far features. The former
provides scale information through the stereo baseline and the latter are repre-
sented with an inverse depth parametrization that is useful to obtain angular
information. More recently, Mur-Artal et al. present ORB-SLAM?2 [10], an ex-
tension of their monocular SLAM framework based on ORB features [9]. The
system can work with different configurations such as stereo cameras. It includes
loop closing, relocalization, map reuse and follows a similar strategy to [13] by
treating differently close and far points.

While these methods are solely based on sparse interest points, recently pro-
posed semi-direct and direct methods have gained popularity due to their ability
to circumvent this limitation by exploiting information from all intensity gra-
dients in the image [11,6,4]. Foster et al. present SVO [7], a semi-direct visual
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odometry, that exploits both photometric error to estimate the initial motion,
and geometric error to jointly optimize the camera poses as well as sparse land-
marks positions over a window of frames. This method can be easily extended to
multiple cameras as the motion estimation and bundle adjustment can be gen-
eralized to include measurements from other cameras given their relative pose.
On the other hand, full direct methods that only optimize the photometric error
also demonstrate state-of-the art results. Based on the work of Engel et al. LSD-
SLAM [4], and DSO [3], extension to stereo camera systems have been presented
in [5], and [17], in which the authors couple temporal stereo and static stereo in
their optimization problem.

1.2 Motivation and Contribution

In this work, we propose a framework for stereo visual odometry using cameras
with different yet overlapping fields of view. In particular, we consider the com-
bination of a wide-angle (~ 80°) and a medium telephoto lens pinhole camera
(~ 30°). With this stereo configuration, our system is able to recover the scale
by estimating the depth using static stereo matching from the common FOV as
illustrated in Figure 1.

While our method is based on DSO [3], we extend it to work with a stereo con-
figuration such that information between the two different FOV cameras can be
shared. Furthermore, it differs from the stereo implementation presented in [17]
as we do not directly introduce any constraint from static stereo in the windowed
bundle adjustment pipeline. Instead, the back-end optimization is performed in-
dividually for each camera as if it were two independent monocular systems to
avoid instability that could arise from photometric error depending on the differ-
ence of FOV between the cameras. In other words, the temporal multiple-view
optimization is performed by both cameras allowing to take advantage of their
respective properties; e.g., angular resolution and robust tracking. Furthermore,
we introduce an iterative optimization pipeline such that the least reliable cam-
era is initialized in a way that it is more likely to lie in the basin of attraction
of the cost function. The front-end part is also modified to initialize the depth
variance of each keyframe with static stereo matching and share the depth map
used for tracking such that scale drift can be reduced.

Therefore, the proposed method is designated as semi-independent since the
two cameras independently execute monocular VO but their initial parameters
are jointly optimized. Our main contributions include:

— A stereo visual odometry using different fields of view that can fully exploit,
on the one hand, the precision and robustness of the pose of the large FOV
camera, and on the other hand, the angular resolution of the small FOV
camera, while recovering the reconstruction scale from the known baseline.

— An iterative optimization procedure with efficient front-end frame and point
management to avoid the joint optimization of two dissimilar cameras.

— Quantitative evaluations on a synthetic dataset with a comparison with DSO
and ORB-SLAM2.
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Fig. 1. Example of stereo image input with different fields of view: (a) 32°and (b) 77°.
(¢)-(d) Their respective color-coded depth map generated from static stereo matching.

2 Stereo Matching

Estimating the depth using images from different physical cameras but taken
at the same time (i.e. static stereo) is an important part of stereo VO since it
gives information about the scale as the relative position between both cameras
is known. Many stereo systems such as [10, 14, 17] use rectified images as input
so that the correspondences search can be performed efficiently along horizontal
epipolar lines. However, when considering cameras with notably different focal
lengths, there is a loss of the FOV for the wide-lens camera due to distortion
or cropping depending on the rectification method used. As a result, rectified
images cannot be directly input to our system, but they are still used during
static stereo matching for computation time. It can be noted that the 3D point
computed from the disparity given rectified images needs to be transformed into
the original camera frame since unrectified images are fed as input for the VO
pipeline.

Since commonly used matching cost functions were not robust to the differ-
ence of resolution between the two rectified images, we define an empirical cost
function combining NCC with BRIEF binary descriptor [1]. It allows to avoid
local maxima for the NCC by taking into account a sparse but bigger region us-
ing BRIEF descriptors. Furthermore, since rectification practically removes any
rotation and scale variance, BRIEF provides a good performance under image
blur for a low computation time [8]. By defining B,, as the min-max normalized
L1 distance between the pixel point p; in image I; and ps in image I3, and
similarly NCC,, as the min-max normalized NCC for the same points, the final
cost function C is defined as follows

C(p1,p2, 11, 12) =1 = Bp(p1,p2, 11, I2) + ANCCy,(p1,p2, 11, I2), (1)

where )\ is a weighting factor to balance the influence between NCC and BRIEF.
In our experiment, we use NCC with a 5 x 7 neighborhood, BRIEF with 256
location pairs, and A = 1.
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Fig. 2. Overview of our system, blue parts represent our contributions. After initial-
ization, a lead camera is decided and is firstly optimized with the monocular visual
odometry pipeline. Given additional information from the active window of the lead
camera, the second camera runs, in turn, the monocular pipeline.

3 Stereo VO with Wide and Narrow FOV Cameras

We present a stereo visual odometry method using a wide-angle and a narrow-
angle lens camera that combines multi-view stereo from both cameras and static
stereo matching from the overlapping FOV. DSO [3] is used as the backbone
visual odometry framework since it can benefit from its direct and sparse aspects.
In fact, direct method can use every points with high gradient as features so that
we can achieve higher resolution point cloud by exploiting the narrow-angle lens
camera. Moreover, the sparse nature of DSO allows to save stereo computation
time as correspondences are required for a smaller amount of points than dense
methods. An overview of our system is presented in Figure 2, where the blue
parts represent our contributions.

3.1 Direct Sparse Odometry back-end

We adopt the DSO framework as the core visual odometry in our system. DSO
proposes a direct probabilistic model with joint optimization of all model pa-
rameters including camera poses, camera intrinsic and geometric parameters
represented by inverse depths. It is a sparse method that does not incorporate
geometric prior so that the Hessian matrix can be solved efficiently using the
Schur complement. In [3], the photometric error for a point p in the reference
frame I;, observed in a target frame is defined as the weighted SSD over a 8-point
neighborhood N, and is formulated as

Epj = Z Wp

pEN,

tjeaj
t;e%

(I[p'] = b;) = (Lilp] = bi)|| 2)

Y

where p’ is the warped point of p in I;; t;, t; are the exposure times of the images
Ii, 1j; ai, aj, b;, bj are brightness affine transfer function parameters; ||.||., is the
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Huber norm and w,, is a gradient-dependent weighting defined as
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Each time a new keyframe is created, it is added to the active window which
results in an additional energy factor for every points that can be observed by
another keyframe in the window as defined (2). The full energy is optimized using
Gauss-Newton method, and in order to keep the sliding window of bounded size,
marginalization is employed to remove the old keyframes.

3.2 Semi-independent Stereo VO

Iterative Pipeline. Given a stereo configuration with different fields of view,
we propose an iterative approach to avoid the uncertainty coming from the dif-
ference of resolution during the photometric error optimization. In fact, when
comparing the pixel intensity in a reference frame and the one in a target frame
from a camera with a different focal length, the impact of noisy pose or depth
estimations can result in the non-convergence of the highly complex optimiza-
tion. The complexity is even more accentuated as we want to perform temporal
multi-view stereo for both cameras.

For these reasons, we decouple the problem by performing iteratively two
monocular visual odometry pipelines with independent windowed optimizations
as illustrated in Figure 2. At each incoming frame, the most reliable camera
(lead camera) is first optimized such that its refined parameters can be thereafter
shared with the visual odometry front-end of the other camera (follow camera).
As a result, the follow camera, that is considered less reliable, is more likely to
converge during its back-end optimization process.

Visual Odometry Front-end. The front-end part of the system handles how
frames and points are managed. In particular, it decides which frames and points
are added and removed from the windowed optimization. Similarly to DSO, new
keyframes are required when the current image becomes too distinctive compared
to the last keyframe. It is based on three criteria: when the field of view is
significantly different, when the translation part of the motion is high, and when
the camera exposure time considerably changes. Each time a keyframe is created,
well distributed candidate points with sufficient gradient are selected and their
inverse depth variance is directly initialized using static stereo. The front-end
also provides initializations for new parameters (camera pose, affine transform
parameters, and inverse depth of candidate points) required to optimize the
highly non-convex optimization in the windowed optimization.

It differs from stereo DSO [17] by taking advantage of having two semi-
independent systems running iteratively. When a new keyframe is created, all
active points from both windowed optimizations are projected into the latter
and then dilated to create a semi-dense depth map used for tracking the pose
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of new frames. Since feature points are selected to be well distributed, they
can be substantially different for the same area of the two cameras due to the
difference of FOV, and thus resulting in denser depth map. This depth map is
used to track the camera pose of new frames fed into to the system by minimizing
the photometric error using direct image alignment. During this optimization,
the inverse depth values are fixed and the two-frame direct image alignment is
performed on an image pyramid in a coarse-to-fine order.

Moreover, instead of assuming a constant motion model for the follow system,
it is directly initialized using the optimized pose of the lead camera given their
constant relative pose. This process is particularly important for the narrow
FOV camera as it can easily lose its tracking with respect to the last keyframe
during fast motion.

Lead and Follow Camera Selection. The selection of the lead camera is
critical as an incorrect pose initialization for the follow camera can result in a
divergence from the optimal solution. We propose a straightforward metric to
select the lead camera by comparing the latest RMSE results from the windowed
optimization. Since the narrow-angle lens camera is more likely to converge to
local minimum due to its limited FOV, the latter can become the lead only if
the following condition

RMSEna'rrow < fcRMSEwide (4)

is respected 3 keyframes in a row to avoid local minima and maxima results from
the optimization. In (4), f. is a factor to decide which camera should be more
trusted. We set f. = 0.8 in our experiment to let the small FOV camera leads
the large FOV only when the result of the back-end optimization is 20% lower
than the one from the other camera.

3.3 Asynchronous Initialization

Bootstrapping methods for stereo setup based on an initial depth map from static
stereo matching as employed in [10, 17] will not work efficiently for the wide-angle
lens camera. In fact, the estimated depth from static stereo is only limited to
the FOV of the narrow-angle lens camera, i.e. the common FOV between the
two cameras. We propose an asynchronous method to initialize both cameras in
the same coordinate system considering a small overlapping FOV.

Similarly to [17], a semi-dense depth map for the first frame of the small FOV
camera can be estimated from static stereo matching to initialize the system.
Once the small FOV system has created IN; keyframes, the corresponding poses
for the large FOV system are computed using the relative pose. Then, the point
candidates of its first frame can be tracked and their depth values are refined in
the subsequent N; — 1 frames by minimizing the photometric error. Moreover, to
constraint this discrete search along the epipolar line, all the active points from
the small FOV system are projected to the first image plane of the large FOV
camera to initialize the associated variance of the candidate points. Finally, the
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large FOV camera is initialized using the computed depth map and the poses
inferred from its counterpart so that both cameras are in the same coordinate
system.

4 Evaluation

For the evaluation of our method, we first demonstrate the ability to recon-
struct higher resolution point clouds with two indoor datasets, then we evaluate
the odometry on a synthetic dataset to be able to compare its accuracy with
ORB-SLAM2 and DSO. Since the aim of this paper is to give a proof of con-
cept about stereo systems with different focal lengths, a runtime analysis will
not be detailed. However, with an unoptimized implementation, it runs about
twice as slow as DSO considering it has to compute a second time the back-end
optimization and estimate stereo matches each time a keyframe is generated.

4.1 Point Cloud Reconstruction

The stereo configuration used to evaluate the point cloud accuracy is a 77°
and 32° FOV camera with a ~ 20cm baseline. The two datasets contain 800
frames representing around 15 sec of video of an indoor environment. Some
examples of input images are illustrated in Figure 3. It also shows the estimated
trajectory of the camera pair as well as the point cloud generated using our
semi-independent visual odometry method. The accuracy of the registration of
both system can be observed by comparing the 3D points from the large and
small FOV camera represented in red and green respectively. The color mapping
of the trajectory shows that for these two datasets, the camera lead was the
narrow-angle lens one. It can be explained by the fact that the motion was
relatively slow. However, for both datasets, the lead switches to the big FOV
because of the sudden change of direction. The last row illustrates the difference
of density between the 3D reconstruction of each camera. In particular, it shows
that using a medium telephoto camera, the point selection of DSO can focus
more on specific details of the scene. The point cloud is thus more detailed even
if the camera pair is at a reasonable distance from the scene.

4.2 Odometry Accuracy

We evaluate our method on the Urban Canyon model [18], where photorealistic
synthetic images were generated for a stereo pinhole camera setup with different
FOV (40°, 60°, and 80°) by using cycle raytracing engine implemented in Blender
(Figure 4). This way, many stereo configurations for the same trajectory can be
proposed to study the impact of the field of view. We compare the accuracy of the
visual odometry with ORB-SLAM2 and monocular DSO (since the stereo version
is not available publicly). The trajectories are aligned to the ground truth using
a rigid-body transform (6DoF) for the stereo methods and a similarity transform
(TDoF) for DSO. It can be noted that to allow a fair comparison between all
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Fig. 3. Qualitative examples on two indoor datasets. (First row) Example of input
images. (Second and third row) 3D reconstruction of the large and small FOV camera
are shown in red and green respectively. The camera trajectory is also represented on
the top row, and the same color mapping represents which camera was the lead. (Last
row) A zoomed view of the 3D reconstruction of the large FOV camera displayed on
the left and the small one on the right

methods, loop closure and relocalization were disabled for ORB-SLAMZ2, we also
disable real-time forcing and we use the default parameters for DSO and ORB-
SLAM?2. We use three different metrics proposed in [16] for our evaluation: the
absolute translation RMSE t,,s, the relative translation RMSE t¢,.;, and the
average relative rotation error ..
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In the remaining part of this paper, we denote the different results as follows:

— Ours40: our semi-independent stereo VO using 40°-80°FOV stereo camera
Ours60: our semi-independent stereo VO using 60°-80°FOV stereo camera
DS060: DSO using 60°monocular camera

— DS080: DSO using 80°monocular camera

— ORB/40: ORB-SLAM2 using 40°stereo camera

— ORBS&0: ORB-SLAM?2 using 80°stereo camera

Table 1 summarizes the visual odometry results for the different evaluated con-
figurations. Their trajectory can be observed on Figure 5. While it does not
prove the versatility of our method, Ours{0 and Ours60 have the best results
for the absolute trajectory error and relative rotation error. The reason is that
it is able to exploit the wide FOV camera and it slightly outperforms DS0O80 for
the absolute trajectory error since information from the narrow FOV is also ex-
ploited. While ORB-SLAM2 manages to estimate correctly the relative rotation,
the translational error is higher than the two other methods. A reason could be
that ORB features are not suitable for this synthetic data since increasing the
number of feature points resulted in higher errors in our experiment.

Table 1. Comparison of accuracy in the Urban Canyon dataset. tq,5s absolute trans-
lation RMSE (m), t, relative translation RMSE (%), rre; average relative rotation
error (deg/10 m). Best results are shown as bold numbers

tabs trel Trel

Ours40 0.275 1.236 0.896
Ours60 0.428 3.918 0.486
DSO60 0.906 1.352 0.612
DSO80 0.292 0.439 0.622
ORB40 1.599 2.120 0.533
ORB80 0.929 1.856 0.543

5 Discussion and Conclusion

In most of stereo VO and SLAM methods, homogeneous camera are considered
to take advantage of their overlapping fields of view and the ability to efficiently
estimate matches. As a result, temporal information from the second camera
is often omitted since it does not provide additional meaningful data to the
stereo system when compared to the first camera. In this paper, we suggest that,
by using heterogeneous stereo camera with different focal lengths, performing
temporal multi-view stereo optimization for both cameras can lead to better 3D
reconstruction while having a robust pose estimation. This proof of concept is
illustrated by our semi-independent stereo visual odometry for large FOV and
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Fig.4. (a) Top view of the Urban Canyon 3D model. Examples of synthetic images
with different fields of view: (b) 80°(c) 60°(d) 40°, each row corresponds to the same
camera position.

¥im)

440

Fig. 5. Qualitative results on the Urban Canyon dataset. (From left to right) Trajectory
of our semi-independent method, monocular DSO, and stereo ORB-SLAM2

small FOV cameras. Some preliminary results show the ability to reconstruct
high detailed 3D point clouds while standing at a reasonable distance and to
estimate with accuracy the camera pose when compared to DSO and ORB-
SLAM2 for the proposed synthetic dataset.

While it does not prove that our method is constantly better, it exposes the
ability to choose different focal lengths for a multiple cameras setup. For example,
this stereo configuration is already present in many smartphones to allow depth
of field rendering. Nevertheless, because of the limited range of the static stereo
depth estimation due to the small baseline and the difference of FOV, most of
common stereo VO and SLAM methods are not suitable. In this case, employing
a semi-independent approach could result in a better performance.
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