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Abstract. Numerous computer vision applications rely on local feature
descriptors, such as SIFT, SURF or FREAK, for image matching. Al-
though their local character makes image matching processes more ro-
bust to occlusions, it often leads to geometrically inconsistent keypoint
matches that need to be filtered out, e.g. using RANSAC. In this paper
we propose a novel, more discriminative, descriptor that includes not
only local feature representation, but also information about the geo-
metric layout of neighbouring keypoints. To that end, we use a Siamese
architecture that learns a low-dimensional feature embedding of keypoint
constellation by maximizing the distances between non-corresponding
pairs of matched image patches, while minimizing it for correct matches.
The 48-dimensional floating point descriptor that we train is built on
top of the state-of-the-art FREAK descriptor achieves significant perfor-
mance improvement over the competitors on a challenging TUM dataset.
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1 Introduction

Matching images with local feature descriptors is a fundamental part of many
computer vision applications, including 3D reconstruction [1], panorama stitch-
ing [2] and monocular Simultaneous Localization and Mapping [3]. This topic
has therefore gained significant attention from the research community [4–7].
While traditional approaches rely on hand-crafted features [4, 6, 5, 7], more re-
cent descriptors use machine learning techniques such as boosting [8] or deep
learning [9, 10] to train discriminative transformation-invariant representations.
Although using local feature descriptors proposed in the literature increases
robustness of image matching methods to partial occlusions, it often leads to
incorrect descriptor matches, as presented in the upper right part of Fig. 1. In
this paper, we propose a more discriminative feature descriptor by encoding in-
formation about constellation of keypoints, as shown in Fig. 1. To that end, we
use a Siamese neural network that learns low-dimensional feature embeddings by
minimizing distance between similar keypoint constellations, while maximizing
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Fig. 1. Our proposed SConE descriptor uses information about neighbouring keypoints
(left figure) to construct a discriminative low-dimensional embedding of a keypoint
constellation. This way matching images with SConE reduces the number of incorrect
matches found with respect to those found using a standard feature descriptor FREAK
(coloured red in the top right figure) and increases the quality of resulting matches
(bottom right figure).

it for non-matching pairs. Instead of relying on a local intensity patch around the
detected keypoint, we construct our embedding by feeding into the neural net-
work information on a central keypoint and its nearest neighbourhood keypoints
on the image. The resulting 48-dimensional Siamese Constellation Embedding
descriptor, dubbed SConE for simplicity, is built using FREAK [5] as a base
descriptor, however our framework is agnostic to descriptor types and can be
generalized to other descriptors. Evaluation of our descriptor on the challenging
TUM dataset [11] shows that despite its compact nature, SConE outperforms its
competitors, while decreasing the computational cost of matching by eliminating
the need for a geometrical verification step.

In the remainder of this paper, we first discuss related work in Section 2. We
then describe the details of our method in Section 3. Finally, in Section 4 we
show that our descriptor is able to outperform the state-of-the-art descriptors
on a real-life dataset and we conclude the paper in Section 5.

2 Related Work

Due to the role of local features descriptors in many computer vision tasks,
significant amount of work has been focused on building those representations
effectively and efficiently [4, 6, 5, 9, 8]. Floating-point descriptors, such as SIFT [4]
or SURF [6], typically offer better performance at a higher computational cost.
Their binary competitors, such as FREAK [5] or ORB [7] approximate many
operations and simplify the resulting representation to a binary output. Our
proposed method is built on top of the binary FREAK descriptor, which offers
an efficient yet powerful alternative to floating-point competitors. Nevertheless,
the framework proposed in this paper is general enough to be applicable also to
other descriptors.
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Recently, due to their success in other domains, deep neural networks have
also been used to train feature descriptors [10, 9]. For instance, LIFT [10] uses
a neural network architecture to handle full pipeline of feature extraction and
computation. Another method called MatchNet uses Siamese neural network to
jointly learn feature representation and matching procedure [12]. In [13], they
use a triplet loss function coupled with convolutional neural network that aims
at training context-augmented descriptors based on FREAK. In our work, we
use a Siamese architecture to learn low-dimensional feature embeddings based
on FREAK descriptors. But instead of using an image patch around detected
keypoints, we incorporate data on the neighbourhood keypoints.

[14] [15] apply convolutional neural networks to graph data to learn use-
ful features. However our input data does not have a graph structure defined
by an adjacency matrix. Spatial positions of neighbourhood keypoints and its
attributes (binary descriptor, position and orientation) are important, not the
structural relationships between keypoints.

Once keypoint descriptors are extracted, they are typically matched with
each other to find correspondences between image regions. Depending on the
final application, the matching can be done using brute-force or approximate
nearest neighbour (ANN) search methods [16], [17]. Heuristic techniques (e.g.
two nearest neighbour ratio test [4]) are used to filter out outliers. In the final
stage, putative matches are typically subject to geometric validation using epipo-
lar constraint with a robust parameter estimation method, such as RANSAC [18]
or its extension USAC [19]. A recently proposed approach called GMS (Grid-
based Motion Statistics) [20] also aims at filtering out geometrically incorrect
matches using a simple heuristic based on the number of matches in the key-
point neighbourhood. Although often effective, above methods require additional
computational cost. In our method we propose to embed the geometrical infor-
mation useful for filtering the matches within the descriptor itself. This way we
can avoid the unnecessary post-processing step and increase the efficiency of the
image matching pipeline.

3 Method

Our method aims at improving precision of the descriptor matching step. Instead
of matching raw descriptors (e.g. 512-bit FREAK descriptors), we compare more
discriminative representations of keypoint constellations. We define a constella-

tion as a set of nearby keypoints in an image. It consists of a central keypoint

and its k nearest, in Euclidean distance sense, keypoints detected on the same
image. An exemplary constellation is visualized on Fig. 1 The following informa-
tion is taken into account when constructing a constellation: binary descriptor,
scale and orientation of a central keypoint; and binary descriptors, relative posi-
tion (with respect to the central keypoint), scale and orientation of each of its k
nearest neighbours. In this work, based on an initial experiments, we set k = 20.

Dimensionality of the data constituting a constellation is rather high. We
find low dimensional constellation embeddings by training the Siamese neural
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network [21]. This produces low dimensional, real valued, embeddings that can
be efficiently stored and processed. High-level architecture of our Siamese neural
network is depicted on Fig. 2. The network consists of two identical Siamese
modules (same network architecture with shared weights) that compute low
dimensional constellation embeddings. Representations computed by Siamese
modules can be matched using standard Euclidean distance between them.

The network is trained by presenting mini-batches consisting of pairs of sim-
ilar and dissimilar constellations. We consider two constellations similar if their
central keypoint is a projection of the same 3D scene point (landmark). Other-
wise constellations are dissimilar. We use a contrastive loss function, as formu-
lated in [22]. Let X1, X2 be a pair of constellations in the training set and Y a
binary label assigned to this pair. Y = 0 if constellations X1 and X2 are sim-
ilar, and Y = 1 if they are dissimilar. DW is a parametrized distance function
between constellations X1 and X2, defined as an Euclidean distance between
learned constellation embeddings GW .

DW (X1, X2) = ||GW (X1)−GW (X2) ||2 (1)

The loss L function minimized during the training is defined as:
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2 (DW )

2
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2
is a partial loss function

for a pair of dissimilar constellations.
As shown in Fig. 2, a constellation is fed to the constellation embedding mod-

ule as a high dimensional vector. We process binary descriptor (512 dimensions
for FREAK), scale and orientation (2 dimensions) of the central descriptor. For
each neighbourhood keypoint, we use its binary feature descriptor (512 dimen-
sions) and relative position, scale and orientation (4 dimensions). For a constella-
tion consisting of the central descriptor and its 20 nearest neighbours, this gives
514 + 20 × 516 = 10834 dimensions. We designed the constellation embedding

module (see bottom of Fig. 2) in a modular fashion. The design was based on
an extensive series of experiments to help us identify the best architecture of
each component. The best performing architecture is described below. The twin
constellation embedding module first computes k 32-dimensional embeddings of
k neighbour binary descriptors. The resulting embeddings are concatenated with
k neighbours relative position, relative orientation and relative scale with respect
to the central keypoint. This gives a sequence of k 36-dimensional vectors which
are further processed by RNN (recurrent neural network) module producing 32-
dimensional neighbourhood representation. Then neighbourhood representation



SConE: Siamese Constellation Embedding Descriptor 5

Constellation 

embedding 

module

target

Constellation 

embedding 

module

Euclidean 

distance

constellation 

embedding

constellation 

embedding

raw constellation 

data

raw constellation 

data

shared 

weights

Fig. 2. (Top) High level architecture of the Siamese neural network computing constel-
lation embeddings. (Bottom) Architecture of a constellation embedding module of a
Siamese neural network. We feed into the network information on central keypoint and
its nearest, in Euclidean distance sense, neighbourhood keypoints on the image. Central
keypoint FREAK descriptor, orientation and scale are used along with nearest neigh-
bours, in Euclidean distance sense, informations. That include FREAK descriptors,
their relative positions, orientations and scales with respect to the central keypoint.
Hence, our resulting SConE descriptor of the central keypoint offers better performance
of descriptor matching at a lower computational cost than competing descriptors.
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Table 1. Components of a twin constellation embedding module from Fig. 2. Scaled
Exponential Liner Unit (SELU) [23] activation is used after each fully-connected layer.

Component name Details

Embed descriptor 3 fully-connected layers with 512/256/32 units

Embed NN 2 layer bidirectional LSTM [24] with 32/32 units followed
by 3 fully-connected layers with 64/64/32 units

Fully-connected module 3 fully-connected layers with 64/64/48 units

is concatenated with the central keypoint binary descriptor, orientation and scale
resulting in 66-dimensional vector. This is processed by a final fully connected
module resulting in the 48-dimensional constellation embedding called SConE
for Siamese Constellation Embedding descriptor. Details of each component are
given in Table 1. The size of the final embedding (48 real values) was chosen
as a compromise between the descriptor discriminative power and the storage
requirements.

Siamese neural network training is conducted using data acquired with structure-
from-motion solution embedded in a Google Tango tablet. The device produces
datasets containing keypoints and feature descriptors detected on the recorded
video sequences. Camera poses and scene structure, in the form of sparse 3D
point sets, are reconstructed using reliable structure-from-motion techniques.
The training set was constructed by concatenating samples from multiple video
sequences. It consists of almost 10 thousand keyframes with over 4 million
FREAK descriptors linked with 259 thousand landmarks. The validation se-
quence, used to measure the performance of the trained networks, contains al-
most 5 thousand keyframes with over 2 million feature descriptors linked with
120 thousand landmarks. In both sequences, almost half of the feature descrip-
tors are linked with reconstructed 3D scene points (landmarks) whereas the rest
of them is not linked with any landmark.

We experimentally choose the number of neighbours used to form the con-
stellation, that produces the most discriminative SConE descriptor. This is done
by training the Siamese network multiple times using constellations of various
size and evaluating the performance of the trained network. We use nearest
neighbour search precision on the embeddings of the validation set as the per-
formance measure. The precision is calculated as follows. First, embeddings of
validation set elements are calculated using the constellation embedding module
of the trained Siamese network. Then 10 thousand embeddings is randomly cho-
sen from the validation set. For each sampled embedding, its nearest neighbour
in embedding space (that is in Euclidean space, as embeddings are real-valued
vectors) is found. If the nearest neighbour is linked with the same 3D scene point
(landmark) as the sampled element we declare a match. Precision is calculated
as the percentage of correct matches. The results are depicted on Fig. 3. As the
number of neighbours increases the precision grows, to reach a maximum for
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Fig. 3. The influence of k nearest neighbours on the nearest neighbour search precision
in the validation set. The best results are achieved when 20 neighbourhood keypoints
are used to form a constellation.

20 neighbours. Compared to using raw FREAK descriptors we get increase of
nearest neighbour search precision from 0.807 to 0.851 on our validation set.

4 Evaluation

This section describes evaluation procedure and its results. The evaluation dataset
is described in Section 4.1. In Section 4.2 we present our evaluation protocol.
Finally, in Section 4.3 we show the results of our evaluations.

4.1 Dataset

For the evaluation procedure, we use a challenging TUM dataset [11], often
used in other works to compare descriptors’ performance [20]. TUM is a large
dataset with sequences recorded using Microsoft Kinect sensor and we choose
seven of them for evaluation: fr1/plant, fr2/dishes, fr2/metallic sphere2,
ft3/cabinet, fr3/large cabinet, fr2/flowerbouquet and fr3/teddy. Sam-
ple sequences can be seen in top of Fig. 4. In addition to images, sensor ground-
truth trajectory and depth-maps are provided. We divide each sequence into 100
long subsequences. First frame is treated as a reference and 99 others are used
for matching. Bottom of Fig. 4 presents four different frames from a sequence.
They differ significantly, the last one being rotated almost 360 degrees. It makes
it hard for matchers to find any correct matches between first and last frame in
such scenario.

Due to a lot of blurred images and changes in lighting, the TUM dataset
is considered to be rather challenging. Additional difficulty comes from the fact
that color images, depth maps and camera positions are not perfectly consistent.
They were collected in different moments of time, so timestamps cannot be per-
fectly aligned and to address this problem we approximate them to minimize the
time gaps between frames. Furthermore, due to the limitation of the capturing
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Fig. 4. (Top) Exemplary images from TUM [11] video sequences used in evaluation
of our method. (Bottom) 1st, 25th, 50th and 99th keyframes from one test sequence
(fr1/plant). There’s a large viewpoint variation in frames forming one sequence.

device, a large portion of depth maps does not provide correct depth values,
especially on the edges of objects where a large portion of keypoints is detected.
Hence we use an epipolar geometry condition and ground truth camera poses to
verify correctness of a match.

4.2 Evaluation procedure

We test our descriptor in a demanding scenario of a real application, strictly
connected with SLAM and Structure from Motion pipelines. We use TUM’s
ground truth presented as a trajectory and calibration data for each camera
in the set. The TUM dataset is specifically designed to evaluate Structure from
Motion algorithms and therefore its frame resolution is low and graphical content
is often lacking the details necessary to track dense feature sets. Nevertheless,
such characteristics create a demanding benchmark for camera pose estimation
and we therefore use it in our evaluation.

We compare our method to the state-of-the-art methods for image matching:
FREAK [5], SURF [6], SIFT [4], ORB [7] (implementations comes from OpenCV
[25] package), GMS [20] and embeddings calculated by our custom artificial
neural network (SConE). For SConE, we first use FAST [26] key point detection
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Fig. 5. Number of true positives in matching feature descriptors between a pair of
images as a function of an angular distance between keyframes. Results on fr2/dishes

(left) fr2/flowerbouquet (right) sequences from TUM [11] dataset are presented.
SConE consistently yields better results than FREAK descriptor due to encoding ad-
ditional information about the neighbourhood keypoints.
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Fig. 6. Pose estimation errors on TUM [11] dataset for SConE and competing descrip-
tors. SConE outperforms the state-of-the-art descriptors, including SIFT and SURF,
across all error thresholds.
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algorithm. Then we compute FREAK feature descriptors at detected keypoints.
SConE descriptors are calculated using the constellation embedding module of
the trained Siamese network. The network training is performed as described in
Section 3. For each 100 frame subsequence from the evaluated TUM sequence,
we compute matches between the first frame and all others, resulting in 99 image
pair matches. For each image pair we find pairs of corresponding features with
a brute-force approach. Matches are then filtered using standard ratio-test.

We compute essential matrix from the key point correspondences for each
image pair. From them we estimate relative camera pose for each pair of images
in form of a rotation matrix and translation vector. We use the OpenCV [25]
implementation with RANSAC for this purpose.

RANSAC is needed in the process because of two reasons. The first is its
ability to filter out matches considered good given a 3D model, but giving per-
turbations in affine transformation estimation. This situation happens when the
scene contains moving or deforming objects. The second factor is connected with
a level of locality in SConE. SConE makes use of constellation, incorporating
structural data of a bigger area than the base descriptor itself, but still is con-
sidered as a local descriptor. If duplicate elements of the scene appear, SConE
is prone to generate bad matches. Feature duplicates can be seen in various real
case scenarios where textures contain patterns or multiple features of the same
appearance, for instance in windows or buildings’ facades.

We compare the relative pose recovered using abovementioned procedure
against ground truth and calculate qualitative metric for each image pair. The
metric is presented as an error in translation and rotation estimation, calculated
according to the procedure described in the Odometry Development Kit from
KITTI benchmark [27]. KITTI benchmark defines a method of error calculation
for 3D tracks with six degrees of freedom with asynchronous sampling. In our
case the data is synchronized, so the formulas are straightforward. Error in trans-
lation is calculated as a translation vector difference in 3D. Error for rotation is
calculated from relative 3x3 rotation matrix dR according to the formula:

d =
tr (dR)− 1.0

2
(4)

Rerr = acos (max (min (d, 1.0) ,−1.0)) (5)

In addition to GMS and basic matchers, we use DeepMatching (DM [28]),
Bilateral Functions Matching (BM [29]) and Bounded Distortion (BD [30]) as
state-of-the-art image matchers. We use original implementations of its authors,
so its computational efficiency may be considered as far from optimal. Where
possible, we use only one computing thread for better comparison.

4.3 Results

We analyse our results using pose estimation errors obtained for various descrip-
tors. Fig. 6 shows the results of this experiment. SConE outperforms all basic
features with ratio tests. The performance gap is substantial, and shows gain
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Fig. 7. Pose estimation errors on TUM dataset for SConE and significantly more com-
plex matching procedures. Performance of SConE is au pair with much more advanced
keypoint matching procedures.

over basic FREAK descriptor. SConE uses FREAK keypoints as a base descrip-
tor for learning, thus it has the same keypoints pool before filtering stage. This
characteristic lets us build simple comparison based solely on true positives after
ratio test. Fig. 5 shows number of true positives on FREAK keypoint locations,
using both FREAK descriptors and SConE embeddings. The X-axis contains ab-
solute distance between frames calculated as the difference between quaternion
rotations for each camera position.

SConE gives very good results in comparison with advanced matching meth-
ods, as shown in Fig. 7. All of the descriptors give very similar results in transla-
tion estimation. Rotation estimation is much more prone to keypoint localization
perturbations, thus shows more variance between methods. Our approach out-
performs GMS with its default keypoints pool (10 000 ORB keypoints).

Furthermore, we evaluate the computational complexity of our proposed
SConE descriptor-based matching and compare it with the competing methods.
We measure both descriptor extraction and matching times. For raw descriptors
we use brute force matcher. Fig. 8 shows the results of this comparison. SConE
adds very little overhead to FREAK computation, which is used as base. It’s
much faster then GMS, while obtaining better results.

5 Conclusions

In this paper, we propose a novel low-dimensional feature descriptor that in-
corporates geometrical information about the layout of neighbouring keypoints.
This way we are able to reduce the importance of additional post-processing
step that typically aims at filtering out incorrect matches. To train our descrip-
tor we use Siamese neural network architecture and feed it with central keypoint
descriptor, as well as neighbouring keypoints and their descriptors, relative po-
sition, orientation and scale. Although our framework is agnostic to descriptor
type, we use as our base descriptor FREAK and show that the SConE descrip-
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Fig. 8. Descriptor extraction and matching time for matching descriptors between a
pair of images. SConE offers very competitive performance compared to more sophis-
ticated matching methods.

tor generated by our neural network outperforms competitors on a challenging
TUM dataset.
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