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Abstract. Virtual Reality provides an immersive and intuitive shop-
ping experience for customers. This raises challenging problems of re-
constructing real-life products realistically in a cheap way. We present a
seamless texturing method for 3D reconstructed objects with inexpen-
sive consumer-grade scanning devices. To this end, we develop a two-step
global optimization method to seamlessly texture reconstructed mod-
els with color images. We first perform a seam generation optimization
based on Markov random field to generate more reasonable seams lo-
cated at low-frequency color areas. Then, we employ a seam correction
optimization that uses local color information around seams to correct
the misalignments of images used for texturing. In contrast to previous
approaches, the proposed method is more computationally efficient in
generating seamless texture maps. Experimental results show that our
method can efficiently deliver a seamless and high-quality texture maps
even for noisy data.

Keywords: Texture Mapping, Markov Random Field, Seamless Color
Optimization

1 Introduction

Texture mapping plays an important role in reconstructing virtual versions of
real-life products for E-Commerce applications with inexpensive consumer-grade
scanning devices. This raises challenging problems to reconstruct seamless, high-
quality texture maps from noisy data, such as inaccurate geometry, imprecise
camera poses, and optical distortions of consumer-grade cameras. Existing meth-
ods such as Waechter et al. [24] efficiently select suitable images to texture faces
on geometric models, but their method may generate visible seams, blurring and
ghosting artifacts on the generated texture maps. Recently, Zhou and Koltun [26]
use dense, global color information to correct the misalignments of images used
for texturing, which produces impressive color maps. However, their approach
suffers from large computational consumption. In this paper, we improve seam-
less texture maps by generating optimal seams with a bypass optimization and
correcting the misaligned seams efficiently using local color information.

Our approach achieves both efficiency and seamless texture maps by a two-
step global optimization. For the first step, we present a novel optimization based
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Fig. 1. The pipeline of our texture mapping process: (a) A set of images registered to
a corresponding geometry (b) are taken as input, then the seam generation process (c)
selects suitable images to texture faces on geometry, which creates most of the seams
across low-frequency color areas. Finally, a seam correction optimization (d) corrects
misalignments around seams (shown in translucent orange blocks) and generates a
high-quality texture mapping output (e)

on Markov random field (MRF) that selects suitable images to texture geometric
meshes and generates optimal seams located at low-frequency texture regions on
texture maps. Our optimization incorporates color discrepancies between the
textures of adjacent faces on meshes. As a result, low-frequency texture regions
will be more appropriate to create seams, which results in lower energy for MRF-
based optimization, and visible seams are thus diminished. As the seams cannot
be completely eliminated by the first step, we perform a joint optimization in the
second step in order to maximize the color consistency around the seams, which
further eliminates the misaligned seams. We estimate camera poses and local
warping of images used for texturing geometry. Specially, we only estimate the
color consistency of vertices around seams and warp local image patches where
seams exist for efficiency.

The contributions of our approach can be summarized as follows. Firstly, we
present a seam generation optimization based on MRF to create optimal seams
on low-frequency color areas. Then, we propose a seam correction optimization
which can efficiently correct misaligned errors. Finally, we present a two-step
optimization framework that can efficiently generate seamless texture maps, a
main problem of texture mapping. Experimental results demonstrate that our
approach can provide a better color representation with much lower computa-
tional cost compared to existing methods.

2 Related Works

3D Acquisition. As consumer-grade depth cameras make 3D acquisition more
and more affordable and convenient, geometric acquisition using RGB-D is highly
anticipated [19, 23, 25]. The pioneer work of KinectFusion proposed by Izadi et al.
[11] reconstructs the scene’s geometry with a volumetric representation. Nießner
et al. [20] propose a real-time online 3D reconstruction system using an efficient
geometric representation based on hashing. Zhou and Koltun [25] reconstruct
dense scenes with points of interest using RGB-D cameras. Another popular
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method of geometric reconstruction is structure from motion. Ackermann et

al. [1] propose a photometric stereo technique to reconstruct outdoor scenes.
These methods based on structure from motion and RGB-D images are flexible
enough to reconstruct geometry ranging from fine-scale objects to large-scale
scenes. However, they generate 3D models with much noises [4, 10, 14]. Accurate
geometric reconstruction can be obtained by structured light scanning systems
[9, 18]. Gupta et al. [8] present a structured light system to reconstruct high-
quality geometry with global illumination. In this paper, we use data scanned
from a low-cost structured light system, which consists of an ordinary projector
and a RGB industry camera.

Vertex Texturing Methods. Vertex texturing methods encode color infor-
mation as per-vertex color. Nießner et al. [20] and Shan et al. [22] integrate
multi-view color samples, which lead to blurring and ghosting artifacts due to
the misaligned errors. Zhou and Koltun [26] use dense, global color information
to estimate the photometric consistency of all vertices on the object’s mesh.
Their method corrects misaligned errors and improves texture mapping fidelity.
However, in order to describe the high-quality details of objects, their approach
estimates the color for lots of vertices on the objects’ meshes, which is time-
consuming and may lose the advantage of texture mapping that represents high-
quality details with low geometric representations.

Face Texturing Methods. Face texturing methods such as [24, 7, 15] are based
on Markov random field, and they select one single image to texture each face
on the objects’ meshes. These methods can generate texture maps with lots of
details. However, these methods cannot perfectly address the misalignments of
images resulting in blurring and ghosting artifacts. Lempitsky and Ivanov [15]
diminish visible seams by performing a global color adjustment following with
Poisson editing [21]. However, blurring and ghosting artifacts around seams may
still occur due to noisy input data. Other approaches are proposed to gener-
ate seamless texture maps using geometry information. For example, Barnes et
al. [3] provide an interactive method to manually correct misaligned errors be-
tween the geometry model and images, which is not suitable for E-Commerce
applications. Bi et al. [5] propose a patch-based optimization that incorporates
geometry information. Their method estimates the bidirectional similarity of dif-
ferent images, which suffers from high computational cost. Recently, some deep
learning-based approaches are developed for real-world texture reconstruction
using texture synthesis [16, 17].

3 Overview

As shown in Fig. 1, our pipeline takes an object’s mesh and a set of images reg-
istered to the mesh as input, and generates a high-quality and seamless texture
map for the object. Our approach starts with the seam generation process that



4 B. Wang, P. Pan, Q. Xiao, L, Luo, X. Ren, R. Jin and X, Jin

takes advantage of a novel MRF formulation to select the “best view” textur-
ing per face on the mesh. Existing methods consider “best view” selection as a
Graph Cuts optimization [6]. The main idea of our seam generation optimiza-
tion formulation consists of two energy terms. The first term (data term) selects
high-resolution images to texture each face, and the second term (smooth term)
provides a smooth representation. The energy function can be solved by a MRF
solution [13]. However, traditional methods are not robust for noisy data, result-
ing in blurring and ghosting artifacts [24]. We redefine the energy function of
MRF by employing an easy-to-compute data term and a smooth term by taking
advantage of the color differences between adjacent faces, which generates more
reliable invisible seams. Details of our seam generation are presented in Section
4.1.

To reduce the remaining visible seams that cannot be fully diminished by the
seam generation step, we develop a seam correction optimization to deal with
misalignments in Section 4.2. Inspired by Zhou and Koltun [26] and Bi et al. [5],
we correct the texture regions around the seams to generate a consistent color
3D representation. Compared to the existing method [24], we design a close-form
solution (Fig. 1(d)) to obtain plausible results with a low computational cost.
Finally, we use the color adjustment method of Waechter et al. [24] to deal with
luminance inconsistency caused by variance of lighting on the textured results.

4 Approach

Our approach can texture a 3D object with less perceptible texture seams and
higher fidelity. This section details the two key steps. Section 4.1 describes the
seam generation optimization step, and Section 4.2 describes the seam correction
step.

4.1 Seam Generation Optimization

Our seam generation optimization divides the mesh into blocks of faces (as shown
in Fig. 2), and the faces in a block corresponds to the same image. The boundaries
between blocks are perceived as texture seams in the textured mesh. The input
of our method includes an object’s triangle mesh and a set of object’s images
registered to the object mesh. We represent the triangle faces on the mesh as F =
{F1, F2, · · · , Fm}, and the corresponding texture images as I = {I1, I2, · · · , In},
where Ii is the texture image for view i. The projection between images and
faces are calculated according to camera intrinsic and extrinsic parameters.

The generation of optimized blocks of faces or texture seams is formulated as
a labeling problem, and we label each face Fj with a suitable image Ili . We as-
sume a vector to represent the label relationshipL = {L1, L2, · · · , Lj , · · · , Lm} ∈
{1, 2, · · · , i, · · · , n}m, and Lj = i indicates that image Ii is used for texturing
face Fj . As multiple images may correspond to one face, we should select the best
candidate image view for each face. Here, we adopt MRF to solve this problem,
and a common MRF energy function can be defined as:
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(a) Generated mesh blocks (b) Generated seams

Fig. 2. A mesh labeling example. Each color block in (a) represents a rendering texture
to a face, and (b) shows the texturing result where pink contours indicate seams

E(L) = Ed(L) + α · Es(L) . (1)

The first energy term, namely the data term Ed(L) represents the cost of tex-
turing faces with texture images from a certain selection of views. The second
term Es(L) represents the energy measuring the smooth level of the generated
texture. α is a parameter to adjust the weight. In this paper, we propose a novel
data term and a smooth term to effectively generate more accurate seams at
low-frequency color areas, which cannot be solved by existing MRF techniques.

We aim to reconstruct textures of objects with an ordinary size, and there are
no scaling issues in our image data. Thus, it’s not necessary to consider scaling in
the data term as in Waechter et al. [24] which is time-consuming. Besides, Allene
et al. [2] utilize a projected size as the data term, which is easy to calculate, but
they cannot deal with blurring artifacts. Inspired by the method in [15], the
metric employed by our data term is to measure the angle between the normal
of a face and the camera view direction of an image. This metric accelerates our
algorithm since it is computationally efficient. For face Fj ∈ F , we use f(Lj)
to evaluate the texturing quality of Fj with view image ILj

∈ I (Lj = i). If
we can observe Fj from image ILj

, we have f(Lj) = 1− (nj · nLj
)2; otherwise,

f(Lj) = ∞, where nj is the normal vector of face Fj and nLj
is the unit camera

view vector of image ILj
. We then have our data term Ed(L) as follows:

Ed(L) =

j=m
∑

j=1

f(Lj) . (2)

For the smooth term, we minimize the average color difference between co-edged
faces along the texture seams. We suppose that ejk ∈ Edge is the edge shared
by face Fj and face Fk, Edge is the set of edges shared by adjacent faces of the
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mesh. Since faces have greater color differences than edges, the average color
of faces can better express discrepancies than method [15], which utilizes color
discrepancies on the edges. Let CLj

be the average color of pixels on the area
where Fj is projected onto an image ILj

, we use the following function to measure
the cost of edge ejk:

D(Lj , Lk) =

{

0, if Lj = Lk

d(CLj
,CLk

)2, otherwise,
(3)

where d(·, ·) is the Euclidean distance on RGB color space. Thus, we have the
smooth term Es(L):

Es(L) = α ·
∑

ejk∈Edge

D(Lj , Lk) . (4)

The overall seam generation energy in Eq. (1) can be re-written as:

E(L) =

j=m
∑

j=1

f(Lj) + α ·
∑

ejk∈Edges

D(Lj , Lk) . (5)

The energy function in Eq. (5) can be formulated as a probability distribution
problem with Markov random field, which can be efficiently solved by the α-
expansion Graph Cuts [6].

4.2 Seam Correction Optimization

Seam generation optimization produces reasonable seams that are less percepti-
ble. There are still some noticeable seams as shown in Fig. 4 in the reconstructed
model due to large misalignments of images. Seam correction optimization is de-
signed to correct such seams by adjusting the content of selected images used
for textures. Different from other global optimization methods such as Zhou and
Koltun [26] that estimate colors for all vertices, our approach is more efficient
since our optimization is only performed for a small set of vertices around seams.

When performing seam correction optimization, we take the following two
factors into consideration. First, the color along seams should be consistent.
Second, the textured appearance of the area around seams should be similar to
the corresponding area in the selected images. To this end, we estimate the colors
for all vertices within the ranges on geometry where seams exist, as well as the
camera poses for all images used for texturing geometry and the local warping
of images patches that contain the seams to maximize the color similarity of the
mapping around seams.

After seam generation, we divide the mesh into different blocks textured
with some selected images.We represent the image patch corresponding to each
mesh block respectively as P = {P1,P2, · · · ,Pk}. One image can be used to
texture multiple blocks (e.g. {P1,P2,P3} ∈ Ii). We define the mesh blocks as
B = {B1,B2, · · · ,Bk}. The relationship between an image patch and its corre-
sponding mesh block is a perspective transformation calculated as Pk = KTkBk
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(a) Waechter et al. [24] (b) Ours (c) Waechter et al. [24] (d) Ours

Fig. 3. The seam generation results of our method are tested on several datasets. We
compare our results with Waechter et al. [24]. Our method outperforms the state-of-
the-art view selection methods

(T = {T1,T2, · · · ,Tk} denotes the external camera parameters, and K denotes
the internal camera parameters). E = {E1, E2, · · · , Ek} denotes the edges set
for each mesh block Bk. F = {F1,F2, · · · ,Fk} denotes the control lattices for
each image patch Pk, which is used to warp image patch Pk. We choose a ver-
tex v ∈ Bk as a candidate vertex for optimization, and the shortest geodetic
distance from vertex v to edge set Ek is defined as g(v, Ek). We define a proper
control range in each image patch for correction, in which only the vertex v with
g(v, Ek) less than γ is used. The objective function can then be described as:

Ecorrection(C,F ,T ) =
∑

k

(
∑

v∈Bk,
g(v,Ek)<γ

w(v) · e2 + β · F⊤
k Fk), (6)

where C = {Cv|g(v, Ek) < γ} denotes the set of gray-scale color estimated for
vertices around seams on the mesh, F denotes the pixel color corrections and T

denotes the camera pose transformations. During optimization, the variables are
optimized to correct visible seams. The second term is a regular term penalizing
image patches from excessive deformation F . w(v) is the weight of vertex v

representing the color discrepancies of the faces around vertex v:

w(v) =
1

|E(v)|

∑

ejk∈E(v)

d(CLj
, CLk

)2, (7)

where E(v) is the set of edges that connect with vertex v. Since we texture each
face on geometry in the seam generation step, w(v) can be precomputed and
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is constant in the seam correction step, which gives more weight to the vertex
located at high-frequency color areas around seams.

The first term of the objective function estimates the color similarity for each
vertex in {v|g(v, Ek) < γ}, e2 is the residual value, and is described as:

e = Cv − L ◦Fk(K · Tk · v) . (8)

For each vertex v, we project v into the image plane of Pk according to camera
intrinsic parameter K and camera poses Tk (we assume that u = K ·Tk ·v), and
then warp image patch Pk according to the following color correction function:

Fk(u) = u+B(u) · Fk, (9)

where B(u) is a vector of B-spline base function which controls the vector of
control lattices. To this end, we use L(u) to evaluate the gray-scale intensity of
the projective point of vertex v.

We solve Eq. (6) using an alternating optimization approach to optimize the
image correction inspired by Zhou et al. [27]. We first fix F and T to optimize
C, then fix C to optimize F and T , and vice versa. When F and T are fixed,
Eq. (6) degenerates to a least-square optimization problem, and we use the
following equation to calculate the average gray-scale value of vertex v:

Cv =
1

|Iv|

∑

k,
Pk∈Iv

L ◦Fk(K · Tk · v), (10)

where Iv is the set of image patches that can observe v.
When C is fixed, we perform an inner iterative strategy to solve F and T .

We fix F and assume that we perform little rotation for each image. With this
assumption, we can solve the camera pose as a linear system. By approximating
the external camera matrix as a 6-vector Tk = {αk, βk, λk, ak, bk, ck}, we can
independently solve a linear system with 6 parameters for each image patch Pk.

After that, we fix C and T to optimize F . Then u = K ·Tk ·v is a constant,
and Fk(u) is a linear combination of Fk, and we have:

Ecorrection(F ) =
∑

k

(
∑

v∈Bk,
g(v,Ek)<γ

w(v) · (Cv − L ◦Fk(Fk))
2 + β · F⊤

k Fk) . (11)

Eq. (11) is a least-square system and can be efficiently solved. We continue
the alternating optimization iteratively until it converges.

5 Results

We evaluated the performance of our proposed method using our test datasets.
All experiments were performed on a commodity workstation with an Intel i5
3.2GHz CPU and 8GB of RAM. We first presented details about the test data,
and then evaluated the seam generation process and seam correction process.
Finally, we compare our method to the state-of-the-art approaches.
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Fig. 4. Some noticeable seams still remain in the textured object due to the mis-
alignment of texture images that cannot be completely avoided by seam generation
optimizations

Test Datasets. Our datasets were captured from real-life products (shoes, arts,
crafts, etc.) and were reconstructed by the following steps. For each object, we
first used a consumer-level structured light 3D scanner to generate a registered
point cloud. The scanner contained an RGB industry camera and a normal pro-
jector, which was inexpensive. Calibration was performed before the scanning
procedure. Then we meshed the point cloud by surface reconstruction [12]. Since
the calibrated parameters changed slightly due to the heat transfer in the en-
vironment (especially for the parameters of projector), the reconstructed 3D
geometry, camera poses and images suffered from noises. Besides, geometric er-
rors would also be introduced by the point cloud registration step. In general,
the error of the geometry model was about 3 mm to 5 mm, and the texture re-
projection error was about 5 pixels to 15 pixels (the resolution of the captured
images was 3456 × 2304).

Seam Generation Evaluation. We first evaluated the contribution of the
weight α in Eq. (1). As discussed in Section 4.1, the weight α kept a balance
between the data term and the smooth term. As shown in Fig. 6, we found that
seams will bypass most of the high-frequency color areas on texture images if
we set a larger α. Since a larger weight of Es(L) might result in a larger value
of Ed(L), the resolution of texture might be reduced. Hence, we need to find an
appropriate α value which will not increase Ed(L) significantly. We estimated
the incremental percentage of Ed(L) for different values of α:

∆Ed,αi
(L) =

Ed,αi
(L)− Ed,αi−1(L)

Ed,αi−1(L)
(i > 2) . (12)

We set different α values (from 50 to 300) marked as αi, and tested its influence
on Ed(L). Estimated data were shown in Table 1 and Fig. 5, when α 6 200, the
average incremental percentage of Ed(L) was about 5% and increased to about
15% when α > 200. It meant that if we set α too large for the seam generation
optimization, the optimization will select images with larger intersection angles
between the view direction and the face normal to texture geometric meshes,
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which decreased the resolution of the texture. Thus, we set α= 200 as a trade-
off to balance the seam visibility and the resolution of texture.

Since [24, 7, 15] used similar ideas dealing with seams considering color dif-
ferences, labels of vertices or edges for faces along seams, we compared our
seam generation strategy to the method of Waechter et al. [24]. The method of
Waechter et al. [24] integrated the colors of image patches projected to a face
as the data term energy, which favored close-up views. This approach is suitable
for large-scale models. Different from their method, we used the angle between
the face normal and the camera view direction for the data term. In addition,
the smooth term in [24] is based on the Potts model, while our smooth term
was based on the color difference between faces adjacent to seams. As shown in
Fig. 3 and Fig. 8, our method can generate more reasonable seams.

We also compared the computational cost of the MRF-based optimization
between Waechter et al.’ method and our approach. As the authors described in
[24], their main computational bottleneck relied on the data term, while the main
computational cost of our MRF-based optimization relied on the smooth term,
which calculates the average color of each face. Theoretically, the computation of
average color was cheaper to calculate than the computation of Waechter et al.’
data term, which needs to compute the projected size and integrate pixel colors.
In Table 2, we compared the MRF computational cost between our method
and Waechter et al.’ method quantitatively. The listed statistics conform to our
theoretical analysis. Our computational advantage is more obvious when the
data size grows large.

Table 1. Some experimental examples of α in Eq. (1). For our datasets, we set α = 200
as a trade-off to balance the seam effect and the resolution of texture

αi value
Ed(L) for different test data

car chicken pig doll1 shoes1 doll2

50 47,612 29,041 55,178 29,194 100,692 68,859
100 47,633 30,582 56,603 29,512 101,789 69,503
150 48,310 32,477 57,420 30,368 105,036 71,893
200 48,826 34,698 59,387 32,152 108,605 74,337

250 55,781 38,424 69,164 34,896 157,398 80,641
300 65,812 52,109 82,636 48,177 212,607 89,603

Table 2. The comparison of computational cost between our seam generation and
Waechter et al. [24] for datasets with different sizes (Ours/Waechter et al.’ method).
Our approach is more computationally efficient than Waechter et al. [24] ( “k”, “m”
represent thousand and million, respectively)

view number
computational cost for different numbers of views and faces

50k 0.1m 0.2m 0.5m 1m 2m

8 6.2s/6.8s 7.2s/9.6s 8.7s/12.2s 12.5s/15.4s 14.5s/19.2s 23.9s/35.2s
12 8.9s/10.7s 10.5s/13.9s 13.8s/16.1s 18.5s/23.9s 21.7s/28.4s 37.8s/53.1s
24 19.6s/21.3s 22.4s/29.7s 27.2s/37.4s 38.1s/49.5s 44.6s/58.5s 75.2s/108.2s
32 25.1s/27.6s 29.1s/38.7s 35.2s/50.3s 51.4s/63.6s 58.3s/78.3s 96.7s/143.8s
48 41.4s/46.8s 48.2s/61.1s 51.6s/70.4s 73.6s/98.5s 87.3s/114.4s 152.8s/225.1s
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Fig. 5. The incremental percentages of Ed(L)
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Fig. 6. The seam generation results. The seam generation scheme can bypass more
high-frequency color areas as α increases

Seam Correction Evaluation. We first compared our results to the approach
of Zhou and Koltun [26]. Their approach used images of all views to optimize
color for each vertex. However, if some images were blurred, it generated blurring
artifacts. Different from them, our approach selected the best images to texture
faces on meshes. As a result, our method can avoid blurring effects effectively.
Moreover, since we used high-resolution images to texture faces, we can generate
high-quality texture maps even for low-resolution meshes. Results shown in Fig. 7
indicate that our approach can generate better results for blurring cases.

To evaluate the optimization performance quantitatively, we defined a nor-
malized residual error by dividing it with the number of vertices used for opti-
mization, and was described as:

REnormalized =

∑k

i=1

∑

e2

|v|
. (13)

In this way, the residual errors of ours and Zhou and Koltun’ method [26] were
comparable. We have shown the REnormalized results in Table 3.

From Table 3, we can find that our method converges faster than the method
by Zhou and Koltun [26] (see the column named “Time per iter.” and “ # of
iter.”). Moreover, the computational cost of our approach outperforms Zhou
and Koltun’ method [26], especially for high-resolution meshes (see the column
named “Total time” in Table 3). This can be explained as follows. Zhou and
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Koltun [2] utilized all vertices for optimization. Different from them, we only
utilized related pixels around the seams for color optimization, and our compu-
tational cost was related to the number of edges of seams instead of the number
of vertices.

Table 3. Normalized residual error and average time cost per iteration. Our optimiza-
tion converges faster and has a lower computational cost in each iteration

Model Method/# of vertices
Normalized Residual Error

Time per iter. # of iter. Total time
Initial 50 iter. 100 iter. 200 iter. final

Fig. 7(a)
Zhou et al./50k 0.061 0.043 0.031 0.022 0.018 0.062s 302 18.8s

Ours/50k 0.061 0.033 0.021 0.020 0.018 0.042s 276 11.6s

Fig. 7(b)
Zhou et al./0.2m 0.065 0.047 0.038 0.028 0.019 0.180s 353 63.5s

Ours/0.2m 0.065 0.039 0.029 0.020 0.019 0.046s 298 13.7s

Fig. 7(d)
Zhou et al./1m 0.063 0.051 0.045 0.037 0.018 0.420s 868 364.5s

Ours/1m 0.063 0.038 0.027 0.021 0.018 0.058s 325 18.85s

Texture Maps Evaluation. Finally, we compared our final results to the
approaches of Shan et al. [22], Waechter et al. [24] and Zhou and Koltun [26]
qualitatively. For a fair comparison, all methods shared the same inputs. The
results were shown in Fig. 8. Both [22] and [26] produced color for all vertices
only. Shan et al. [22] blended color for vertices from views, resulting in blurry and
ghosting artifacts shown in Fig. 8(a) and 8(e). Zhou and Koltun [26] generated
better results in Fig. 8(b) and 8(f), but their performance was limited by the
number of vertices. Waechter et al. [24] performed texturing per face on mesh
with a single image, their approach generated obvious seams because of noises
(shown in Fig. 8(c) and 8(g)). With our two-step optimization, our approach was
able to produce visually seamless texture maps (see Fig. 8(d) and 8(h)). The
comparison results show that our approach can substantially improve texture
mapping.

6 Conclusions

It is a challenging problem to reconstruct virtual versions of real-life products
realistically with inexpensive consumer-grade scanning devices. We have pre-
sented a two-step optimization solution for seamless texture mapping with noisy
data. The seams are generated from imperceptible texture regions, and the seam
misalignments are corrected by the color consistency strategy. We evaluate our
approach on a number of objects. Experimental results have shown that our
method can efficiently generate visually seamless high-fidelity texture maps with
realistic appearance at a low cost. More experimental results are shown in the
supplementary video.

It is worth noting that our approach uses a small set of data around seams to
correct misalignments, and thus may not be able to correct large noisy data. We
mainly focus on indoor objects, and the occlusion problem is not yet addressed.
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We plan to extend our approach to data with even larger noises in our future
work.

(a) (b) (c) (d) (e)

Fig. 7. (a)-(d) are the results of Zhou and Koltun’ method by rendering meshes with
vertex color. From left to right, the number of vertices of the models are 0.05 million,
0.2 million, 0.5 million, and 1 million, respectively. (e) is our result with 0.05 million
vertices. We reconstruct high-quality texture maps with low geometric complexity
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21. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH
2003 Papers (2003)

22. Shan, Q., Adams, R., Curless, B., Furukawa, Y., Seitz, S.M.: The visual turing test
for scene reconstruction. In: International Conference on 3D Vision (3DV) (2013)

23. Song, S., Xiao, J.: Tracking revisited using rgbd camera: Unified benchmark and
baselines. In: Proceedings of the 2013 IEEE International Conference on Computer
Vision (ICCV) (2013)



16 B. Wang, P. Pan, Q. Xiao, L, Luo, X. Ren, R. Jin and X, Jin

24. Waechter, M., Moehrle, N., Goesele, M.: Let there be color! large-scale texturing
of 3d reconstructions. European Conference on Computer Vision (ECCV) (2014)

25. Zhou, Q., Koltun, V.: Dense scene reconstruction with points of interest. ACM
Transactions on Graphics 32(4), 112:1–112:8 (2013)

26. Zhou, Q., Koltun, V.: Color map optimization for 3d reconstruction with consumer
depth cameras. ACM Transactions on Graphics 33(4), 155:1–155:10 (2014)

27. Zhou, Q., Park, J., Koltun, V.: Fast global registration. In: European Conference
on Computer Vision (ECCV) (2016)


