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Abstract. We study the problem of georeferencing artistic historical
maps. Since they were primarily conceived as work of art more than
an accurate cartographic tool, the common warping approaches imple-
mented in Geographic Application Systems (GIS) usually lead to an
overly-stretched image in which the actual pictorial content (like written
text, compass roses, buildings, etc.) is un-naturally deformed. On the
other hand, domain transformation of images driven by the perceived
salient visual content is a well-known topic known as “image retarget-
ing” which has been mostly limited to a change of scale of the image
(ie. changing the width and height) rather than a more general control-
points based warping.
In this work we propose a variational image retargeting approach in
which the local transformations are estimated to accommodate a set of
control points instead of image boundaries. The direction and severity of
warping is modulated by a novel tensor-based saliency formulation con-
sidering both the visual content and the shape of the underlying features
to transform. The optimization includes a flow projection step based on
the isotonic regression to avoid singularities and flip overs of the resulting
distortion map.
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1 Introduction

Content-aware image warping and retargeting has drawn significant attention so
that many studies have been proposed in recent years.

Broadly speaking, the main target application in existing literature has al-
most exclusively been the change of scale or aspect ratio of images, producing
“retargeted” outputs that kept in a tight rectangular image the unmodified per-
ceptually salient features of the source image, while eliminating or distorting the
less salient portions. Common to these applications is a constrained rectangular
boundary resulting in induced deformations that are mostly axis-aligned. Em-
blematic of this class of approaches is seam carving [3], which allows to shrink
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Fig. 1. Example of an historical map georeferencing process. Left: original map (1682,
Sebastiano Alberti, ASV). Right: georeferenced map with respect to 15 manually-
defined control points overlapped to a satellite view of the area (Google Earth
basemap). Map image courtesy of State Archive of Venice.

or expand images by removing or adding whole columns or rows of pixel found
through a minimum saliency path from the top to bottom or left to right bound-
aries of the image.

Existing image retargeting approaches can be classified into two categories:
discrete and continuous [10]. Discrete approaches alter the image size by elimi-
nating pixels through cropping or seam carving. Recently, Rubinstein et al. [9]
presented a multi-operator algorithm that combines cropping, linear scaling, and
seam carving while Pritch et al. [8] remove repeated patterns in homogeneous
regions.

Conversely, continuous approaches optimize mapping or warping using smooth-
ness and salient-region preserving constraints to retain perceptual content. Wolf
et al. [12] retargeted an image by merging less important pixels to reduce dis-
tortion. In this way, the distortion is propagated only along the resizing direc-
tion. Wang et al. [11] warp local regions to match optimal scaling factors, thus
distributing the distortion in all directions. However, large salient objects may
undergo inconsistent deformation throughout their extent. To ease this problem,
Zhang et al. [13] and Guo et al. [6] force highly salient objects to undergo similar-
ity transformations when resizing images, resulting in good preservation of local
shape. However, inconsistent deformations can occur along elongated structures.
Lin et al. [7] propose an approach to preserve both the visually salient objects
and structure lines by constraining patches of high saliency to undergo similarity
transformations. It is noteworthy to say that all the approaches are designed to
give their best on photographic content rather than human-made drawings

In this paper we address a different application for Content-aware image
warping: the georeferencing of historical maps (Fig.1). Historical maps provide
vital evidence to scholars in disciplines as diverse as history, archaeology, and en-
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vironmental sciences, which routinely use them to identify and map information
on past landscapes that is no more available on the ground and to compare their
content with current geomorphological and spatial data within GIS platforms,
where historical maps can be georeferenced. A number of tools available in these
platforms enable warping images to fit control points to known coordinates; gen-
erally, however, these are limited to global context-independent transformations
such as polynomial or spline based image warping. These global transformations
provide sufficiently accurate results with historical maps produced starting from
beginning/middle of 18th century, which where originated using more or less
accurate topographic criteria.

Maps created in previous centuries, instead, where generally conceived more
like a pictorial depiction of the landscape rather than a rigorous topographi-
cal representation of it. In this case, global context-independent transformations
tend to destroy the information-rich pictorial content, failing to warp the fea-
tures over the actual landscape due to the limited degrees of freedom of the
transformations available.

A retargeting process enabling the georeferencing of historical maps will dif-
fer from traditional retargeting approaches in several key elements. First, the
transformation is driven by control points resulting in different boundary con-
ditions: Dirichelet for the control points and Neumann for the actual boundary.
Second, salient visual content must be preserved after the transformation. Third,
the map has an orientation, so the warp should be smooth and non-decreasing
in both horizontal and vertical directions. Fourth, each iconographic element
should maintain the original shape and orientation. (eg. the compass rose present
in many historical maps should preserve its original direction and be minimally
distorted). Finally, maps are rich in linear elements, which can be stretched along
their direction, but not orthogonally. Hence, context-based constraint should be
directional.

In accordance to the these requirements, our approach provides three novel
contributions. First, we defined a continuous image retargeting approach based
on a set of control points. Second, we consider a tensor-based characterization
of the saliency map to favor or penalize strong warping across salient edges. In
other words, we generalize the saliency map from a scalar to a tensor field to
control both the amount of stretching and its directionality among the image
domain. Finally, we avoid the possible fold overs by embedding isotonic regres-
sion during the variational map optimization. This enables extreme stretches on
possibly small parts of the images, avoiding folds and guaranteeing orientation
and monotonicity of the map.

2 Problem formulation

We suppose to have a source image Is defined over a spatial scale-independent do-
main Ωs Ă R

2. Our goal is to transform the image on a new scale-independent do-
main Ωt (which can be affinely mapped to world coordinates) according to some
point-to-point correspondences Cp “ tpp1, q1q, pp2, q2q, . . . , ppn P Ωs, qn P Ωtqu
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that are manually defined with respect of some visual features that a human
operator has identified in Is. In Fig.1 (Left) we have a typical example of an
historical map held at the State Archive of Venice and drawn by geographer
Sebastiano Alberti in 1682. To georeference the picture, an algorithm should
ideally map each pixel of Is to a new world coordinate system so that the ge-
ographical features (like the rivers, islands, city locations etc.) are mapped to
their corresponding places. Since the historical map was not intended for car-
tographic purposes, local scale of the pictorial content is subject to a certain
degree of freedom introduced by the artist. In other words, we do not expect to
have a single explicit function to map the whole image into the world reference
frame. In this specific example, distances between the cities and the actual shape
of the shoreline is not consistent across the image.

Our objective is to find a function f : Ωt Ñ R
2 defining the displacement

of each point from target to source domain. This allows the creation of a target

image It by interpolating all the points of the source image with the mapping
function Mpqq “ q ` fpqq such that

Itpqq “ Is
`

Mpqq
˘

(1)

and Mpqiq “ pi @ppi, qiq P Cp (i.e. all the control points are mapped exactly
between source and destination). In computer-vision terms, f is the optical-flow
function densely mapping pixels from It to Is.

2.1 Saliency tensor map

The fact that the important pictorial information should be preserved when
transforming the source image implies a concept of perceptually salient content

that must be identified a-priori. In the field of image retargeting, the problem
is usually addressed by defining a saliency map Sppq : Ωs Ñ r0, 1s to quantify
the importance of each point of the source image. Such saliency map can be
computed automatically from the source image [2] or obtained by directly draw-
ing on it to customize the importance of each pixel [3]. In both the cases, the
saliency map is a scalar field over the image domain used to weight the amount
of stretching allowed in an area.

Since we require directional context-based constraints, we explicitly model a
possible non isotropic response of the saliency map. In other words, the amount
of stretching is made not only spatially but also directionally dependent. We
start by considering a scalar saliency field S provided by the user to create a
rank-2 tensor field T on Ωt. Such tensor assign to each point q P Ωt a 2 ˆ 2

matrix defined as:

T pqq “ k1S
`

Mpqq
˘

I ` k2Hpqq, H “ W ‹
`

∇It∇ITt
˘

(2)

where k1 and k2 are two parameters to weight the scalar and directional con-
tribution of the saliency, I is the identity matrix and H is a structure tensor
computed over a window W .
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(a) (b) (c) (d)

Fig. 2. Effect of the saliency map in our approach. (a) Synthetically generated source
image showing a regular grid. (b) A toy-sample saliency map with high values for the
pixels corresponding with the coloured square on the source image. (c) Retargeted
image with constant saliency (ie. all the pixels have the same visual importance).
Retargeted image using the saliency map in (b)

3 Variational functional

We pose our retargeting problem as the minimization of the functional:

Epfq “

ż

Ωt

trace

ˆ

J
T
f T pqqJf

˙

dq (3)

where Jf “

ˆ

Bfx{Bx Bfx{By
Bfy{Bx Bfy{By

˙

is the Jacobian of f . Equation (3) leads to a

variational optimization problem in which we set Neumann boundary conditions
for the image borders and Dirichlet boundary conditions fpqiq “ pi ´ qi on the
control points. The idea is to find a displacement function f between source and
target domains with pre-defined values on the control points and for which the
first-order partial derivatives (ie.the local stretching caused by the mapping) is
small in a quadratic sense. Additionally, the amount of stretching allowed in each
direction is modulated by the saliency tensor field computed as in (2). According
to the calculus of variations, Epfq has a stationary value if the corresponding
Euler-Lagrange equations:

BE

Bfx
´

B

Bx

BE

Bfx{Bx
´

B

By

BE

Bfx{By
“ 0

BE

Bfy
´

B

Bx

BE

Bfy{Bx
´

B

By

BE

Bfy{By
“ 0

(4)

are satisfied. This lead to a set of PDEs which are solved numerically as described
in the following sections.

3.1 Special cases

In its formulation, our method generalizes other variational warp-based image
retargeting techniques [5, 10] but with two main differences. First, the Dirichlet
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boundary conditions are set on the control points and not the image boundaries
which are free to overshoot or undershoot the source image borders. Second, the
saliency map is directional depending on the linear features of the source image
itself.

If we set k2 “ 0, we eliminate the latter so that the functional (3) can be
rewritten as:

ż

k1S
`

Mpqq
˘

„ˆ

Bfx
Bx

˙2

`

ˆ

Bfx
By

˙2

`

ˆ

Bfy
Bx

˙2

`

ˆ

Bfy
By

˙2

dq.

To simplify, we assume to already have a saliency map Ŝpqq, in target space,
giving a reasonable approximation of S

`

Mpqq
˘

. According to the Euler-Lagrange
equations, the resulting system of PDEs is:

´2k1Ŝ∆fx “ 0

´2k1Ŝ∆fy “ 0

(5)

where ∆ is the Laplace operator. Since the off-diagonal elements of T pqq are equal
to 0, each equation depends only on the horizontal and vertical component of f
respectively and thus can be computed in parallel as set of elliptic PDEs. The
only case in which Ŝpqq “ S

`

Mpqq
˘

is when the saliency is constant everywhere.
In this case, the deformation is not saliency aware but only depends on the local
deformation of the control points (Fig.2(c)). For all the other cases, we start
from an initial approximation of f and we alternate the computation of f and
Ŝpqq until convergence (See section 4 for details).

4 Numerical solution

To solve the general problem numerically, we consider a discrete approximation
of Ωs and Ωt into a regular grid with arbitrary resolution, depending on the
required level of detail. Consequently, we transform f into a M ˆ N ˆ 2 tensor
and transform the functional (3) to:

Epfq “
N´1
ÿ

u“0

M´1
ÿ

v“0

trace

ˆ

J
T
f T̂ pu, vqJf

˙

`

`
ÿ

pp,qqPCp

α
`

p ´ Mpqq
˘2
.

(6)

To let the computation more stable, we substituted the Dirichlet boundary
conditions on the control points with a soft L2 constraint on the flow values on
the control points. Note that, while with this formulation the exact mapping of
control points is not guaranteed, for high values of α the effect is negligible. The
corresponding Euler-Lagrange equations are thus:
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Fig. 3. Effect of the isotonic regression on the resulting distortion map. Left: with no
monotonicity constraint singualar solutions may cause bubbles around a control point.
Right: The isotonic regression step force the resulting mapping to a non-decreasing
solution thus removing such artifacts.

Lx “ 2δαpfx ´ f̂xq2 ´ 2T̂11∆fx ´ 2T̂12∆fy “ 0

Ly “ 2δαpfy ´ f̂yq2 ´ 2T̂21∆fx ´ 2T̂22∆fy “ 0

(7)

where δ is a mixture of Kronecker Deltas centered at q1 . . . qn and f̂ is the
known value of f at the control points. We consider an initial approximation
of f obtained by interpolating the control points via multiquadric radial basis

functions and iteratively modify f over time so that Bfx{Bt “ ´Lx and Bfy{Bt “
´Ly. We use a discrete approximation of the Laplace operator computed by
convolution and forward finite differences for the time differentiation to solve
the PDEs via forward Euler scheme. At each step t, we consider the function
computed at previous step f pt´1q to obtain T̂ according to equation (2).

4.1 Avoiding the fold overs

Variational functional of Eq. (6) pose only constraints on the smoothness of the
obtained warp but not on its monotonicity. Before starting the optimization,
we compute an initial global affine transformation of the control points so that
global rotations or flips of the source domain with respect to target domain are
eliminated. After that, we expect that Mpu, vq ď Mpu ` 1, vq and Mpu, vq ď
Mpu, v ` 1q for each point of the domain. If such constraint is violated, the
resulting topology of the retargeted It will be no longer consistent with the
original image lattice. In particular, we obtain flip overs on the warped image
that manifest themselves as bubbles around the control points (See Fig. 3).

To avoid this, during the optimization we alternate the computation of f

with a projection to a new space to obtain the closest approximation f i of
f (in L2 terms) but with the additional constraint that each row of f i

y and

each column of f i
x are non-decreasing. This is performed by using the isotonic

regression technique [4] applied in parallel to the rows and columns of f . Overall,
the numerical optimization is performed by alternating the following steps:

1. Let f0 be an initial interpolation of the control points using RBF
2. Compute T̂ as in eq. (2) using f pt´1q to approximate M and ∇It
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3. Use forward Euler schema to compute f ptq

4. Substitute f ptq with its non-decreasing approximation f i obtained via iso-
tonic regression

5. Return to step 2 until convergence.

5 Experimental evaluation

We qualitatively tested our approach on three historical maps held at the State
Archive of Venice (Italy). The first, (Fig.5, left), drawn by Giovanni Battista
Faventini in 1734, represents the costal line of the Marano and Grado’s lagoon
(NE Italy) and the mainland comprised between Tagliamento and Isonzo rivers3;
the second (Fig.5, right), drawn by unknown artist in 1624 circa, characterizes
the town of Grado and surrounding territories up to Terzo and Fiumicello vil-
lages4. The third map, (Fig. 7, top-left) also sketched by unknown artist in the
17th century, depicts the lower part of the Friuli region up to the marshes sur-
rounding Grado. These maps were chosen as good example of map content rich of
iconographic elements and loosely accurate with respect to the real cartographic
features.

In all the cases, the saliency map was generated in a semi-supervised way.
Specifically, we first computed the Difference of Gaussian of the input images
and then re-normalized the result in range r0 . . . 1s. Then, we manually painted
on top of the saliency map the areas in which interesting iconographic features
(like the compass rose or the place names) were present. For reference, saliency
maps for the images used in our experiments are shown in Fig.4 and Fig. 7
(top-right) respectively. Note that the intended usage of the saliency is not to
define areas of the historical map in which the cartographic information is more
accurate but simply to mark the elements (mostly iconographic) for which the
local deformation should be minimum. We ran our optimization using k1 “ 1.0,

3 Gio. Battista Faventini in 1734, ASV, Senato Rettori, F. 232, d. 1
4 Unknown,1624, Dispacci Rettori di Palma, F.21, d. 1 + part

Fig. 4. The saliency map of Faventini 1734 (Left) and Unknown 1624 (Right) used for
our experiments
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Fig. 5. Comparison between our algorithm and point-based warping methods for two
different historical maps (left column: Faventini, 1734; right column: Unknown, 1624).
First row: original map with the control points and saliency map superimposed. Second
row: Second degree polynomial warping. Third row: Thin-plate spline warping. Fourth
row: our proposed method. Note how our retargeting approach enables a better geo-
referentiation of the input picture while minimizing local distortions of the symbolism,
geomorphology and the place names. Images courtesy of State Archive of Venice.
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Fig. 6. Detail of the local stretching affecting the compass rose on the bottom of the
Faventini 1734 map shown in Fig.5 after processing with TPS (Left) and our method
(Right).

Fig. 7. Retargeting result on a complex pictorial map for which the control point
placement causes a highly non-uniform distortion. Top-left: Original image. Top-right:
Saliency map in which we manually gave high importance to the pictorial content of the
map (see the white blob corresponding to the compass rose). Bottom-left: warping via
cubic thin-plate spline. Bottom-right: retargeting computed with our proposed method.
Note how our result is less "extreme" while still preserving the correct positioning of
the elements. Moreover, the purely pictorial content expressed by the saliency map
is retargeted with almost no distortion. Images courtesy of State Archive of Venice
(Raccolta Terkuz, n. 34)
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Fig. 8. Detail of the local stretching of the upper part of the 1624 (Unknown) map
shown in Fig.5 (right column) throughout the optimization. From left to right: retar-
geted image after 0, 5000, 20000 and 40000 iterations. The saliency tensor allows the
rivers to warp more freely along their extent instead of between the banks. This way,
the thickness of the linear features is preserved. Note also how the appearance of the
two cities evolve toward a low distortion configuration without changing their relative
position in the georeferenced image.

k2 “ 10, α “ 100 and a Gaussian 5 ˆ 5 window W for the computation of
structure tensor in all the cases.

In Fig. 5 we compare the result obtained with our technique (bottom row)
against two common image warping techniques implemented in QGIS, namely:
second degree polynomial and thin plate splines (TPS). We superimposed the
actual national base map of the area (red lines) to highlight the overall map
fitting accuracy to the geographical features. Since both polynomial and TPS
are designed to work with cartographic maps and satellite images, they give the
same importance to each pixel of the map. This result in often too exaggerated
distortions in the attempt to satisfy each control point constraint. In both the
cases, our approach gives a more natural result minimizing the local stretch for
areas both far from the control points or subject to low visual saliency.

To better highlight this behavior, in Fig. 6 we show a magnification of the
bottom area of the first map comprising both the shoreline and purely icono-
graphic elements (ie. the compass rose and the scale bar). While the shoreline
correctly overlaps the actual cartography in both the cases, the shape and orien-
tation of the two iconographic elements are better preserved with our method. In
particular, the direction of the compass rose is correctly aligned with the cardinal
directions and the scale bar is maintained horizontal and free to strong defor-
mations. This is a peculiar feature of our method, that can exploit a saliency
tensor field to selectively limit the distortion on specific parts of the map. In
fact, we observe an actual re-positioning of all the high-saliency elements of
the map more than a typical warping we obtain with interpolation approaches
commonly implemented in GIS. This is further shown in Fig. 7 where we com-
pare our method against cubic thin-plate splines on what we consider the most
challenging historical map in our set.

To visualize the evolution of the flow during the optimization, in Fig. 8 we
show a magnification of the top area of the map shown in Fig. 5 (Left) at dif-
ferent iterations of our algorithm. The process starts with an RBF interpolation
(left-most image) of the displacement computed for each control point. Since the
interpolation is not aware of the saliency map, we can observe a strong deforma-
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Fig. 9. Left: Evolution of the energy functional (6) throughout the iterations. Right:
Optimization speed in iterations per second. Both plots refer to the map (Raccolta
Terkuz, n. 34) presented in Fig. 7

tion of the two stylized cities and their related captions. During the iterations,
the stretching affecting the two cities is smoothly reduced in accordance to the
high value on the saliency map. The effect is particularly visible on the most
southern city (Grado), far from any control point and hence implicitly allowed
to move. On the other hand, the control point just on top on the north-west
city cause a strong deformation of the land eastbound it since no salient content
is present. Other interesting observations can be made by analyzing the shape
of the rivers among the cities. Consistent with placement of the control points,
the intersection of the two main rivers moves easterly during the optimization.
However, thanks to the tensor form of the saliency component, the algorithm
smoothly modifies the relative angle of the two rivers (and thus their length)
without changing their thickness. This is notably evident on the river oriented
north-south for which the relative movement is orthogonal to its linear extent.
This behavior is remarkably important as it contributes to preserve the overall
visual appearance of the original map.

5.1 Implementation details and running times

We designed our method so that it can be implemented in terms of convolutions
and simple arithmetical operations among tensors of rank 2 and 3. In practice,
we observed that is computationally more efficient to use a very simple varia-
tional solver (Forward-Euler) with a small time-step instead of a sophisticated
integration scheme that do not scale well when retargeting high resolution maps.

We implemented our method using the Python version of the popular Ten-
sorFlow framework [1]. We performed our experiments on a consumer desktop
PC, with an Intel i7 CPU and a Nvidia GeForce 1060 GPU. In all the cases,
flow function was scaled during the optimization to a rank-3 tensor with shape
p256, 256, 2q and the time delta ∆t for the Forward-Euler scheme was set to
5E´6. In Fig. 9 we plotted the value of the energy functional (6) during the op-
timization (left plot) and the number of iterations per second (right plot) while
optimizing the map presented in Fig. 7. With the parameters used for our tests,
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the whole optimization took 25000 to converge to a minimum at a speed of 520
iterations per second on average. This implies a total time ranging between 40

seconds to a minute to perform a full map retargeting.

6 Conclusion

We proposed a novel technique to perform dense continuous image retargeting
driven by a set of control points. It was designed at georeferencing historical
maps for which the local distortion of the pictorial content is dynamically ad-
justed according to a saliency tensor depending both on a saliency map defined
by the user and the structure tensor computed on the image itself. This allows
part of the map to be warped smoothly to accomodate the control points while
preserving the local stretching of purely pictorial content (like the common com-
pass roses) that are seamlessly re-positioned in the resulting image.

Our algorithm involves an optimization of an energy functional based on the
calculus of variation that can be efficiently implemented in GPU by means of
convolutions and tensor operations, commonly implemented in many frameworks
designed for Convolutional Neural Networks and Deep Learning. During the
optimization, we included an isotonic regression step to avoid visual artifact in
the resulting displacement map. The isotonic regression guarantees that no flip-
overs will be present in the retargeted output, even in presence of extreme local
stretching that may happen when warping maps not created for cartographic
purposes. Qualitative tests performed on original historical maps demonstrate
the effectiveness of our approach especially when handling multiple pictorial
elements. At the present state, our method still requires human intervention in
the definition of the control points and the saliency map. For the near future, we
plan to automate the saliency map creation by exploiting some of the existing
approaches in the literature and implement our method as a QGIS plugin.
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