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Abstract. We address the deployment of perceptual attention to social
interactions as displayed in conversational clips, when relying on multi-
modal information (audio and video). A probabilistic modelling frame-
work is proposed that goes beyond the classic saliency paradigm while
integrating multiple information cues. Attentional allocation is deter-
mined not just by stimulus-driven selection but, importantly, by social
value as modulating the selection history of relevant multimodal items.
Thus, the construction of attentional priority is the result of a sampling
procedure conditioned on the potential value dynamics of socially rele-
vant objects emerging moment to moment within the scene. Preliminary
experiments on a publicly available dataset are presented.

Keywords: Audio-visual attention · Social interaction · Multimodal
perception.

1 Introduction

When humans are immersed in realistic, ecological situations that involve other
humans, attention deployment strives for monitoring the behaviour, intentions
and emotions of others even in the absence of a given external task [16]. Under
such circumstances, the internal goal of the perceiver is to control attention so
to maximise the implicit reward in focusing signals that bear social value [1].

Despite of experimental corroboration gained for such tendencies, their gen-
eral modelling is far from evident (cfr., Section 2). Indeed, in order to put into
work the mechanisms of selection, integration and sampling underlying the mul-
tifaceted phenomenon of attention, sensory systems have to master the flood of
multimodal events (e.g., visual and audiovisual) captured in the external world.
Thus, the research question we address in this note boils down to the following:
is it possible to mine from behavioural data the implicit value of multimodal cues
driving observer’s motivation to spot socially interesting events in the scene?

Here, we propose a novel probabilistic model for grounding the inferential
steps that lead to the prediction of a number of potential value-based attractors
of multimodal attention (Section 3 and 4).
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To this end, a clear case is represented by observers naturally viewing con-
versational videos conveying audiovisual information. Conversational clips are
relatively controlled stimuli, while having the virtue of displaying real people
embedded in a realistic dynamic situation [16]. Put simple, they allow affordable
analysis and modelling of where and how people look when viewing such clips,
namely, the fundamental questions entailed by spatiotemporal distribution of
attention in a social context. Cogently, Foulsham et al [16] have shown that ob-
servers spend the majority of time looking at the people in the videos, markedly
at their eyes and faces, and that gaze fixations are temporally coupled to the
person who was talking at any one time.

In what follows, to meet such experimental paradigm, we exploit the publicly
available dataset by Coutrot and Guyader [13], who gathered data of eye-tracked
subjects attending to conversational clips (Section 5). The free-viewing task
given to subjects allows for dynamically inferring the history of their “internal”
selection goals as captured by the resulting attentive gaze behaviour. As such it
is suitable for both learning and testing the proposed model.

Model input, at the training stage, is represented by the audiovisual stream
together with eye-tracking data. Inference is performed to obtain dynamic value-
driven priority maps resulting from the competition of visual and audiovisual
events occurring in the scene. Their dynamics integrates the observer’s current
selection goals, selection history, and the physical salience of the items compet-
ing for attention. The model output is a number of attractors, namely clusters
of potentially interest points sampled from priority maps, and suitable to guide
attention control [29]. At the test stage, the latter can be compared with ac-
tual foci of attention selected by human subjects. Section 5 presents simulation
results, and a conclusive discussion is given in Section 6.

2 Background and rationales

Whilst attentional mechanisms have been largely explored for vision systems,
there is not much tradition as regards models of attention in the context of sound
systems [18]. In vision, by and large, prominent models of attention foster a di-
chotomy between top-down and bottom-up control, with the former determined
by current selection goals and the latter determined by physical salience [2, 31,
27]. Yet, the majority has retained a central place for low-level visual conspicuity
[31, 5, 6], where the perceptual representation of the scene is usually epitomised
in the form of a spatial saliency map, mostly derived bottom-up (early salience).

In a similar vein, such taxonomy has been assumed in the auditory attention
field of inquiry. Since the seminal work by Kayser et al [19], efforts have been
spent to model stimulus-driven attention to the auditory domain, by comput-
ing a visual saliency map of the spectrogram of an auditory stimulus (see [18]
for a comprehensive review). In this perspective, the combination of both vi-
sual and auditory saliencies supporting a multimodal saliency map that grounds
multimodal attention becomes a viable route [23, 15].
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However, the top-down vs. bottom-up taxonomy of attentional control should
be adopted with the uttermost caution (cfr., [2, 31]). On the one hand, the weak-
ness of the bottom-up approach has been largely weighed up in the visual at-
tention realm [31]). Early salience has only an indirect effect on attention by
acting through recognised objects [14]. Thus, either object knowledge has been
exploited (e.g., [9], in particular when dealing with faces [8], or contextual cues
(e.g, the scene gist, [33]) for top-down tuning early salience. As a matter of fact,
in the real world, most fixations are on task-relevant objects and this may or
may not correlate with the saliency of regions. Further, the recent theoretical
perspectives on active/attentive sensing promote a closed loop between an ideal
observer, that extracts task-relevant information from a sequence of observa-
tions, and an ideal planner which specifies the actions that lead to the most
informative observations [35]. The ultimate objective of active behaviour should
be maximising the total rewards that can be obtained in the long term. On the
other hand, there is a large body of evidence pointing at cases where strong
selection biases cannot be explained by the physical salience of potential targets
or by current selection goals. One such example is perceptual selection being
biased towards objects associated with reward and selection history [2].

The dichotomy between top-down and bottom-up control assumes the for-
mer as being determined by the current “endogenous” goals of the observer and
the latter as being constrained by the physical, “exogenous” characteristics of
the stimuli (independent of the internal state of the observer). However, the
construct of “endogenous” attentional control is subtle since it conflates control
signals that are “internal” (such as the motivation for paying attention to so-
cially rewarding objects/events), ”external” (induced by the given current task
voluntarily pursued), and selection history (either learned or evolutionary in-
herited), which can prioritise items previously attended in a given context. If
the ultimate objective of the attentive observer is total reward maximisation,
one should clearly distinguish between “external” rewards (incentive motiva-
tion, e.g, monetary reward) and reward related to “internal” value. The latter
has different psychological facets [3] including affect (implicit “liking” and con-
scious pleasure) and motivation (implicit incentive salience, “wanting”). Indeed,
the selection of socially relevant stimuli by attention reflects the overall value of
such selection [1].

3 Overview of the model

Under such circumstances, we generally assume attention as driven by goals G
that, in turn, set the appropriate value V to events/objects occurring in the
audiovisual scene. Also, in the work presented here, we assume that no explicit
task is assigned to the perceiver; thus, value V is modulated by the “internal”
goal (drive) towards spotting socially relevant objects/events. We consider two
main inferential steps:

1. to infer a spatial-based priority map representation of the audio-visual land-
scape;
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Fig. 1. An overall view of the model as a Probabilistic Graphical Model. Graph nodes
denote RVs and directed arcs encode conditional dependencies between RVs. Grey-
shaded nodes stand for RVs whose value is given. Time index t has been omitted for
simplicity.

2. to exploit the priority map distributions, in order to sample value-based
attractors suitable to guide attentional deployment.

Random variables (RVs), involved and their conditional dependencies are repre-
sented via the Probabilistic Graphical Model (PGM) outlined in Fig. 1.

Priority map representation. Perceptual spatial attention driven by multi-
modal cues mainly relies on visual and audio-visual priority maps, which we
define as the RVs LV and LAV , respectively. Formally, a priority map L is the
matrix of binary RVs l(r) denoting if location r is to be considered relevant
(l(r) = 1) or not (l(r) = 0), with respect to possible visual or audio-visual “ob-
jects” occurring within the scene. Thus, given the video and audio streams defin-
ing the audio-video landscape, {I(t)}, {A(t)}, respectively, a preliminary step is
to evaluate at any time t, the posterior distributions P (LV (t) | LV (t − 1), I(t))
and P (LAV (t) | LAV (t − 1),A(t), I(t)). The steps behind such estimate can
be derived by resorting to the conditional dependencies defined in the PGM in
Fig. 1. Backward inference {A(t), I(t)} → {LV (t),LAV (t)} stands upon a set of
perceptual features F(t) = {f(t)} that can be estimated from the multimodal
stream. From now on, for notational simplicity, we will omit time indexing t,
unless needed.

As to the visual stream, we distinguish between two kinds of visual features:
generic features F|I - such as edge, texture, colour, motion features-, and object-
dependent features, F|O. As to object-based features, these are to be learned
by specifically taking into account the classes of objects that are likely to be
relevant under the goal G, via the distribution P (O | G). Here, where the task
is free viewing/listening, and internal goals are biased towards social cues, the
prominent visual objects are faces, OV = {face}. Both kinds of visual features,
F|Iand F|O, can be estimated in a feed-forward way. Note that in the literature
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face information is usually referred to as a top-down cue [27] as opposed to
bottom-up cues. However, much like physically driven features, they are phyletic
features, and their distribution P (F|OV

| OV = face) is learnt by biological
visual systems along evolution or in early development stages.

In order to be processed, features F|I and F|OV
need to be spatially organised

in feature maps. A feature map X is a topographically organised map that
encodes the joint occurrence of a specific feature at a spatial location [9]. It can
be considered the probabilistic counterpart of a salience map [9] and it can
be equivalently represented as a unique map encoding the presence of different
object dependent features Ff |OV

, or a set of object-specific feature maps, i.e.
X = {Xf} (e.g., a face map, a body map, etc.). More precisely, Xf is a matrix
of binary RVs x(r) denoting whether feature f is present or not present at
location L = r. Simply put, Xf is a map defining the spatial occurrence of
Ff |OV

or Ff |I. In our case, we need to estimate the posteriors P (X|I | F|I) and
P (X|OV

| F|OV
).

As to the processing of audio, similarly to visual processing, auditory ob-
jects form across different analysis scales [29]. Formation of sound elements with
contiguous spectro-temporal structure, relies primarily on local structures (e.g.,
onsets and offsets, harmonic structure, continuity of frequency over time), while
social communication signals, such as speech, have a rich spectro-temporal struc-
ture supporting short-term object formation (e.g. formation of syllables). The
latter are linked together over time through continuity and similarity of higher-
order perceptual features, such as location, pitch, timbre and learned meaning.
In our setting, the objects of interest OA are represented by speakers’ voices [16],
and features Ff |OA

suitable to represent speech cues. In this work, we are not
considering other audio sources (e.g, music). From a social perspective, we are in-
terested in inferring the audio-visual topographic maps of speaker/non-speakers,
X|OAV

, given the available faces in the scene and speech features via the pos-
terior distribution P (X|OAV

| X|OA
,X|OV

,F|OA
,F|OV

), where X|OAV
= x(r)

denotes whether a speaker/non-speaker is present or not present at location r.

At this point, audio-visual perception has been cast in a spatial attention
problem and priority maps LV and LAV can be eventually estimated through
distributions P (LV (t) | LV (t−1),X|I,X|OV

) and P (LAV (t)|LAV (t−1),X|OAV
).

Note that, in general, the representation entailed by a priority map differs from
that provided at a lower level by feature maps X (or classic salience). It can
be conceived as a dynamic map of the perceptual landscape constructed from
a combination of properties of the external stimuli, intrinsic expectations, and
contextual knowledge [9, 33]. Also, it can be designed to act as a form of short
term memory to keep track of which potential targets have been attended. Thus,
L(t) depends on both current perceptual inferences on feature maps at time t

and priority at time t− 1. Denote πAV = P (X|OAV
| X|OA

,X|OV
,F|OA

,F|OV
),

πI = P (X|I | F|I) and πOV = P (X|OV
| F|OV

), πLV
= P (LV (t) | LV (t −
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1),X|I,X|OV
), πLAV

= P (LAV (t)|LAV (t− 1),X|OAV
). Then,

πLV
(t) ≈ αV (πI(t)πOV (t)) + (1− αV )πLV

(t− 1), (1)

πLAV
(t) ≈ αAV πAV (t) + (1− αAV )πLAV

(t− 1). (2)

where αV and αAV weight the contribution of currently estimated feature maps
with respect to previous priority maps.

Priority map dynamics requires an initial prior P (L), which can be designed
to account for spatial tendencies in the perceptual process; for instance, human
eye-tracking studies have shown that gaze fixations in free viewing of dynamic
natural scenes are biased toward the center of the scene (“center bias”, [32,
20]), which can be modelled by assuming a Gaussian distribution located on the
viewing center.

Sampling value-based attractors of multimodal attention. The next main in-
ferential step involves the use of priority map distributions L(ℓ), ℓ being an index
on {V,AV }, to sample attention attractors. Sampling is based on their value or
potential reward V for the perceiver. In accordance with object-based attention

approaches, we introduce proto-objects O
(ℓ)
p , where p = 1, · · · , N

(ℓ)
P , N

(ℓ)
P being

the number of proto-objects detected in the priority map ℓ. These are the actual
dynamic support for attention, conceived as the dynamic interface between at-
tentive and pre-attentive processing [4]. Given a priority map L

(ℓ), a set of proto-

objects O(ℓ) = {O
(ℓ)
p }

N
(ℓ)
P

p=1 is computed. Each proto-object has a sparse represen-

tation in terms of a cluster of points {ri,p}
N

(ℓ)
I,p

i=1 and parameters Θp = (M
(ℓ)
p , θ

(ℓ)
p ).

In the general case, where the priority map distribution is a complex distribution
with multiple modes (which is much likely to occur for LV ) such parameters must

be estimated. Here, the set M
(ℓ)
p = {m

(ℓ)
p (r)}r∈L(ℓ) stands for a map of binary

RVs indicating the presence or absence of proto-object p, and the overall map

of proto-objects is given by M(ℓ) =
⋃N

(ℓ)
P

p=1 M
(ℓ)
p , where M

(ℓ)
p

⋂
M

(ℓ)
k = ∅, p 6= k.

Location and shape of the proto-object are parametrised via θ
(ℓ)
p . Assume in-

dependent proto-objects. In a first step we estimate the proto-object support
map from the landscape, i.e., M̂(ℓ) ∼ P (M(ℓ)|L(ℓ)). Then, in a second step,

θ̂
(ℓ)
p ∼ P (θ

(ℓ)
p (t)|M̂

(ℓ)
p ), location and shape parameters θ

(ℓ)
p = (µ

(ℓ)
p , Σ

(ℓ)
p ), µ

(ℓ)
p

are derived, Σ
(ℓ)
p being an elliptical representation of the proto-object support

(location and axes).

As stated above, each proto-object relies on a sparse representation, i.e. the

samples {ri,p}
N

(ℓ)
I,p

i=1 representing candidate interest points (IPs). Sampling takes

place conditionally on proto-object parameters θ
(ℓ)
p , and crucially it is modulated

by value V(ℓ) that the perceiver is likely to gain from attending to the proto-

object in map ℓ. Thus, considering O
(ℓ)
p derived from the ℓ-th priority map,

Õ(ℓ)
p , {w

(ℓ)
i,pr

(ℓ)
i,p}

N
(ℓ)
I,p

i=1 ∼ P (O(ℓ)
p | θ(ℓ)p ,V(ℓ)). (3)
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In Eq. 3, the posterior on O
(ℓ)
p is a Gaussian distribution and the number of

samples N
(ℓ)
p and the weight w

(ℓ)
i,p assigned to each particle r

(ℓ)
i,p is a function of

V(ℓ) attributed to the priority map ℓ.
Value V(ℓ), moment-to-moment updates according to the pdf P (V(ℓ)(t) |

V(ℓ)(t − 1),G), depending on previous history and goal G. Thus, by consider-
ing the time varying random vectors, V(t) = {V(ℓ)(t)} (hidden continuous state)
and O(t) = {O(ℓ)(t)} (observable), value dynamics is best described by the
following stochastic state-space system:

Ṽ(t) ∼ P (V(t) | V(t− 1),G) (4)

Õ(t) ∼ P (O(t) | Ṽ(t)) (5)

Online inference is performed by solving the filtering problem P (V(t) | O(1 : t))
under Markov assumption. This way current goal and selection history effects
are both taken into account [2]. Such dynamics is set at the learning stage as
detailed in the following section.

4 Current implementation of the model

The simulation of the model relies on a number of processing stages. At the lowest
processing stages (in particular, face detection, audio-visual object detection),
since we are dealing with feed-forward processes, thus we take advantage of
efficient kernel-based methods and current deep neural network architectures.
We give a brief sketch of the methods adopted.

Visual processing. In order to derive the physical stimulus feature map X|I,
we rely on the spatio-temporal saliency method proposed in [28] based on local
regression kernel center/surround features. It avoids specific optical flow process-
ing for motion detection and has the advantage of being insensitive to possible
camera motion. By assuming uniform prior on all locations, the evidence from
a location r of the frame is computed via the likelihood P (I(t) | xf (r, t) =

1,F|I, rF (t)) =
1∑
s

exp
(

1−ρ(Fr,c,Fr,s)
σ2

)
, where ρ(·) ∈ [−1, 1] is the matrix cosine

similarity (see [28], for details) between center and surround feature matrices
Fr,c and Fr,s computed at location r of frame I(t).

The visual object-based feature mapX|OV
entails a face detection step. There

is a huge number of methods currently available: the one proposed by Hu and
Ramanan [17] has shown, in our preliminary experiments, to bear the high-
est performance. It relies on a feed-forward deep network architecture for scale
invariant detection. Starting with an input frame I(t), a coarse image pyramid
(including interpolation) is created. Then, the scaled input is fed into a Convolu-
tional Neural Network (CNN) to predict template responses at every resolution.
Non-maximum suppression (NMS) is applied at the original resolution to get the
final detection results. Their confidence value is used to assign the probability
P (X|OV

| F|OV
,LV = r) of spotting face features F|OV

at LV = r, according
to a gaussian distribution located on the face center modulated by detection
confidence and face size.
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Audio visual processing. The features F|OA
used to encode the speech stream

are the Mel-frequency cepstral coefficients (MFCC). The Mel-frequency cep-
strum is highly effective in speech recognition and in modelling the subjective
pitch and frequency content. The audio feature map X|OA

(t) can be conceived as
a spectro-temporal structure computed from a suitable time window of the audio
stream, representing MFCC values for each time step and each Mel frequency
band. It is important to note, that the problem of deriving the speaker/non-
speaker map X|OAV

when multiple faces are present, is closely related to the
AV synchronisation problem [10]; namely, that of inferring the correspondence
between the video and the speech streams, captured by the joint probability
P (X|OAV

,X|OA
,X|OV

,F|OA
,F|OV

,LAV ). The speaker’s face is the one with
the highest correlation between the audio and the video feature streams, whilst
a non-speaker should have a correlation close to zero. It has been shown that the
synchronisation method presented in [10] can be extended to locate the speaker
vs. non-speakers and to provide a suitable confidence value. The method relies
on a two-stream CNN architecture (SynchNet) that enables a joint embedding
between the sound and the face images. In particular we use the Multi-View
version [10, 11]), which allows the speaker identification on profile faces and does
not require explicit lip detection. To such end, 13 Mel frequency bands are used
at each time step, where features F|OA

(t) are computed at sampling rate for a
0.2-secs time-window of the input signal A(t). The same time-window is used
for the video stream input.

Priority maps and value-based proto-object sampling Priority maps are com-
puted from feature maps, by simply using α = αV = αAV , with α = 0.8 ex-
perimentally determined via ROC analysis with respect to evaluation metrics
(cfr. Section 5); such value grants higher weight to current information in order
to account for changes in the audio-visual stream. From an experimental stand-
point, we take into account four priority maps; namely, the visual priority map
LV as sensed from the video stream, the speaker/non-speaker maps, which we
denote LAVS

,LAVNS
, and the one supporting the spatial prior P (LV ) (center

bias), say Lcb. To derive proto-objects from priority maps, markedly for esti-
mating LV (t), we need first to estimate their support M M(t) = {m(r, t)}r∈L,
such that m(r, t) = 1 if P (L(t)) > TM , and m(r, t) = 0 otherwise. The threshold
TM is adaptively set so as to achieve 90% significance level in deciding whether
the given priority values are in the extreme tails of the pdf. The procedure is
based on the assumption that an informative proto-object is a relatively rare
region and thus results in values which are in the tails of the distribution. Then,
M(t) = {Mp(t)}

NP

p=1 is obtained as Mp(t) = {mp(r, t)|lab(B, r, t) = p}r∈L,
where the function lab labels M(t) around r. We set the maximum number of
proto-objects to NP = 15, to retain the most important ones. The proto-object
map provides the necessary spatial support for a 2D ellipse maximum-likelihood
approximation of each proto-object, whose location and shape are parametrised
as θp = (µp, Σp) for p = 1, · · · , Np.

As previously stated, when sampling proto-object O
(ℓ)
p (Eq. 3), with refer-

ence to the priority map L
(ℓ), the number of samples N

(ℓ)
p and the weight w

(ℓ)
i,p
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assigned to each particle r
(ℓ)
i,p is a function of value V(ℓ) attributed to the priority

map ℓ. Thus, here the crucial issue is to determine the distribution update rule
P (V(ℓ)(t) | V(ℓ)(t−1),G). This is in general a difficult modelling issue, since value
V(t) = {V(ℓ)(t)} depends on current goals G, either internal or external under a
given task. However, the experimental eye-tracking data we use here are derived
under a generic free-viewing task (external goal). Thus, we expect that atten-
tion allocation of observers in such context had been mainly driven by internal
(endogenous) goals, most important the motivationally rewarding drive to de-
ploy attention to conversational events/actors within the scene. Next, we exploit
the d-separation property that holds for head-to-head dependencies in directed
PGMs. When O(ℓ) and L

(ℓ) are observed, it is possible to learn the dynam-
ics of V(t) as the dynamics of a vector of time-varying parameters V(ℓ)(t). The
latter control a function g({L(ℓ)},V(ℓ)(t)), which suitably combines the priority
maps. This way the observation model in Eq. 5 can be expressed in the form
ĝ(t) ∼ P (g({L(ℓ)},V(ℓ)(t) | Ṽ(t)). By assuming that ĝ(t) is an approximation of
observers’ attention allocation as summarised by the time-varying gaze heatmap
H(t) computed from eye-tracked fixations, ĝ(t) ≈ H(t), then value dynamics can
be learned by using H(t) as a ground-truth measurement. Generalising methods
previously proposed for low-level saliency map weighting [25, 12, 30], value-state
learning can be formulated as a time-varying regression, where the hidden-state
evolution is that of the random vector of parameters V(ℓ)(t). To such end, at
the learning stage we exploit the time-varying version of the Bayesian Lasso [24]
to infer the joint hidden state dynamics

∏
ℓ P (V(ℓ)(t) | V(ℓ)(t − 1)) - under the

assumption of independence between Gaussian distributed parameters - by using
H(t) obtained from a subset of observers.

For the simulations and results presented in the following, the number of

points N (ℓ) to be sampled from priority map ℓ, is set as N (ℓ) = V
(ℓ)

(t)Ntot,

where Ntot = 500 is the total number of points to be sampled and V
(ℓ)

(t) =
E
[
V(ℓ)(t) | V(ℓ)(t− 1)

]
the value conditional expectation on map ℓ. Analogously,

the weight w
(ℓ)
i,p assigned to each particle r

(ℓ)
i,p, is determined as w

(ℓ)
i,p = V

(ℓ)
(t)P (r

(ℓ)
i,p)

(cfr., Eq. 3). One typical result that shows the overall process at a glance is out-
lined in Fig. 4. The effect of value-based sampling is evident in the number of
sampled points for the different priority maps; along a conversation, as expected,
audio-visual events captured by LAV are granted higher value with respect to
the visual priority map LV and the initial center bias prior P (L). Figure 5 shows
a snapshot of model output, where value assigned to sampled points is explicitly
shown (colour coded).

5 Simulations

Stimuli and eye-tracking data. The adopted dataset [13] consists of 15 one-shot
conversation scenes from French movies, involving two to four different actors
for each scene. The duration of the videos goes from 12 to 30 seconds, with a
resolution of 720×576 pixels at a frame rate of 25 fps. The dataset includes eye-
tracking recordings in four different auditory conditions, but for the purposes of
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[t]1

Fig. 2.

[t]

Fig. 3.

Fig. 4. Probability density functions (a) and value-based sampling (b) related to pri-
ority maps (top to bottom) LV (visual), LAV (non-speaker), LAV (speaker); for con-
venience, the initial prior P (L) (center bias, bottom panel) is also shown.

our work, the one with the original audio information has been employed. The
experiment involved 18 different participants, all French native speakers and not
aware of the purpose of the experiment. The eye-tracker system recorded eye
positions at 1000 Hz, downsampled in accordance with the video frame rate,
with a median of 40 raw consecutive eye positions [13].

Evaluation. In the present study 13 of the 15 clips were used; the jeuxinterdits
video was excluded due to anomalous false positives rising in the face detection
step (which is not matter of assessment here); the fetecommence clip was used
for preliminary validation of parameter tuning and it was not included in the fi-
nal performance assessment reported below. For each clip, the 18 observers have
been randomly assigned to training (11) and test (7) sets. The learning stage,
as previously discussed, was devoted to learn, from observers in the training set
and for each video, the hidden state dynamics of value parameters {V(ℓ)(t)},∏

ℓ P ({V(ℓ)(t)} | {V(ℓ)(t−1)}), governing the time-varying Bayesian Lasso (Sec-
tion 4). The eye-tracked data in the training set were used as the targets for
supervised learning. To such end, the time-varying empirical distribution of ob-
servers’ fixations was derived (the ground truth); the model-based distribution
(apt to predict attention deployment and to be matched against the empirical
one) was blindly obtained via standard Kernel Density Estimation on sampled
points (cfr., Fig. 5). In the test stage, the empirical and model-based distribu-
tions have been eventually compared by adopting four widely adopted standard
evaluation metrics [7]: Area under ROC Curve (AUC), Pearson’s Correlation Co-
efficient (CC), Normalized Scanpath Saliency (NSS) and Kullback-Leibler diver-
gence (KL). AUC is the most commonly-used metric for this kind of evaluation,
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Fig. 5. Comparing human vs. model. From left to right: the overall sampling result
overlaid on the video frame, colour representing value assigned to sampled points;
the empirical distribution of human fixations; the model kernel-based distribution of
sampled points.

mainly driven by high-valued predictions and largely ambivalent of low-valued
false positives. CC is a linear correlation between the prediction and ground
truth distributions, and treats false positives and false negatives symmetrically.
NSS is discrete approximation of CC that is additionally parameter-free and op-
erates on raw fixation locations. KL has a natural interpretation where goal is
to approximate a target distribution while highly penalising mis-detections. The
theoretical best performance limits of such metrics are 0.92, 1.00, 3.29 and 0 for
AUC, CC, NSS and KL, respectively [7]. The overall quantitative evaluation of
the simulation is summarised in Table 1, in terms of the mean value of the four
metrics for each video over 7 model simulation trials.

Table 1. Mean value (and standard dev.) of the metric scores obtained for each video
on the test set.

Video KLD NSS AUC CC

arrogants 1.25± 0.78 2.61± 0.54 0.90± 0.05 0.63± 0.12
conversation 1.80± 1.89 2.53± 0.66 0.85± 0.09 0.65± 0.19
equipier 1.22± 0.70 2.25± 0.69 0.83± 0.08 0.61± 0.17
hommedeneuve 1.07± 0.70 2.58± 0.53 0.87± 0.07 0.66± 0.12
hommeface 1.39± 1.27 2.69± 0.80 0.81± 0.09 0.70± 0.22
jeuxdenfant 1.04± 1.16 2.94± 0.36 0.84± 0.06 0.80± 0.09
moustacheassis 1.73± 1.29 2.58± 0.53 0.89± 0.06 0.63± 0.12
moustachepolicier 1.38± 0.79 2.32± 0.70 0.87± 0.09 0.57± 0.15
periljeune 1.58± 1.19 2.15± 0.57 0.87± 0.06 0.50± 0.18
pleincoeurbistrot 2.15± 1.86 2.53± 0.66 0.83± 0.08 0.66± 0.18
quatrevingtdixneuf 1.36± 0.19 1.99± 0.51 0.90± 0.04 0.50± 0.10
saveurspalais 1.36± 1.01 2.63± 0.49 0.88± 0.06 0.66± 0.10
unsoir 1.85± 1.79 2.39± 0.65 0.86± 0.10 0.58± 0.17

MEAN 1.48± 1.23 2.48± 0.6 0.86± 0.08 0.63± 0.15

Figure 6 provides an interesting snapshot of the evolution over time (video
frames) of the four metrics. The transition to the onset of a speech event results
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in higher uncertainty among observers (and thus model prediction) is captured
by the absolute minimum of AUC, CC, NSS and the maximum KL; uncertainty
is reduced after such onset, and scores evolve toward a steady-state of valu-
able performance with respect to their theoretical limits. Beyond notable results
achieved in simulations, it is worth remarking that the comparison condition
we adopted is somehow unfair with respect to the model. The ground truth is
derived from actual observers’ fixations, whilst model-based distribution is com-
puted from the sampled points that only represent candidate fixation points,
conceived to be subsequently exploited for deciding the actual gaze shift (which
also explains in Fig. 5 the slightly bigger spread of model distributions with
respect to the ground truth ones) .

Fig. 6. A snapshot of metrics evolution after the 10th second of the video ”Faces

conversation”, when a change of speaker occurs.

6 Conclusions

This study gauged the importance of social information on attention in terms
of gaze allocation when perceiving naturalistically rich, multimodal dynamic
scenes. Hitherto the problem of modelling the behaviour of active observers in
such context has seldom been taken into consideration, in spite of the exponen-
tially growing body of audio-visual data conveying social behaviour content. The
involvement of value is still in its infancy in the attention field of inquiry [31],
as opposed to salience and objects that have been largely addressed both in
psychology [27] and computer vision [5].

Preliminary experimental results show that the model is suitable to infer from
behavioural data the implicit value of audio-visual cues driving observer’s mo-
tivation to spot socially interesting events in the scene. The model is conceived
in a probabilistic framework for object-based multimodal attention control [29].
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Such formulation is far from evident. The notion that observers’ visual atten-
tion is driven towards potential objects in the scene has been widely exploited,
whilst sound might not always be allocated between objects; it could be con-
ductive to multiple objects or to no object. Yet, the social context provides a
thorough understanding of what is a potential auditory object and promotes the
segmentation of ecologically consistent and valuable audio-visual entities (e.g.,
a speaking person). A mean to ground consistency has been synchronisation
between audio and visual events an issue that has been previously addressed,
e.g., [26, 12, 21]. To such end we have adapted to our framework recent results
gained by deep network techniques [10, 11]. As a result, spatially-based proba-
bilistic priority maps are built-up from the visual and auditory objects across
different analysis scales. These maps are dynamic loci that moment-to-moment
compete on the base of their activities. The latter are formalised in terms of
value-driven proto-object sampling, to generate attractors for attention deploy-
ment. Cogently, sampling is conditional on the value dynamics (current history
and “internal” goals) of the perceiver. This choice is consistent with theoretical
model building trends [35] positing active attentional deployment as the problem
of maximising the total rewards that can be gained by the active perceiver. Fur-
ther, the broader perspective of “internal” value/reward, as brought forward by
socially relevant stimuli [1, 3], paves the way to a wider dimension of attentional
processing, e.g. including affective modulation of attention.

Value attribution dynamics is learnt on a video clip on the basis of eye-
tracked gaze allocation of a number of observer and can be used, at the testing
stage, to predict attentional deployment of novel observers on the same clip.
In this respect, one may raise the issue that the inferred viewing behaviour
might not generalise to novel kind of stimuli content. This objection is true but
with reference to the specific unfolding in time of value dynamics on a given
video clip, as provided by the current regression-like implementation of Eqs 4
and 5. Even so, on the one hand, the model simulation as such (that is, in
the same experimental setting we have presented here) could be applied to a
variety of investigations of social attention behaviour in groups that are likely to
differentiate with respect to the given stimulus (e.g., clinical populations). On the
other hand, the model captures and, cogently, quantifies across the different video
clips some general patterns of value attribution in attentional allocation: low-
level, physically driven cues (early salience) play a marginal role when social cues
are present; effects due to spatial tendencies, such as the center bias, are relevant
at the onset of the stimulus, and rapidly decrease in time; attention deployment
is rapidly devoted to people in the video, speakers bearing the highest value for
the observer. Yet, issues of generalisation across different video clips were out of
the scope of the study presented here and are currently part of ongoing research.

A key feature of our approach is the inherent stochasticity of the model
(sampling). This is per se apt to account for either observers’ inter- and intra-
variability in audio-visual perceptual tasks. More generally, randomness in actual
attention deployment (as eventually gauged through gaze shifts) is likely to be
originated from endogenous stochastic variations that affect each stage between
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a perceptual event and the motor response: sensing, information processing,
movement planning and executing [32]. At bottom, it should be always kept
in mind that the actual process involving eye movement behaviour is a closed
loop between an ideal observer, that extracts task-relevant information from a
sequence of observations, and an ideal planner which specifies the actions that
lead to the most rewarding sampling [35]. The latter issue involving the actual
gaze shift (motor action) is often neglected in the literature [31]. In point of fact,
oculomotor behaviour encapsulates either noisy motor responses and systematic
tendencies in the manner in which we explore scenes with our eyes [32], albeit
modulated by the semantic category of the stimulus [20]. Overall and most im-
portant, this approach paves the way to the possibility of treating reward-based
visual exploration strategies in the framework of stochastic information foraging

[34, 4, 22], a promising research line for which the model presented here is likely
to offer a sound basis.
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