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Abstract. State of the art pose estimators are able to deal with differ-
ent challenges present in real-world scenarios, such as varying body ap-
pearance, lighting conditions and rare body poses. However, when body
parts are severely occluded by objects or other people, the resulting poses
might be incomplete, negatively affecting applications where estimating
a full body pose is important (e.g. gesture and pose-based behavior anal-
ysis). In this work, we propose a method for predicting the missing joints
from incomplete human poses. In our model we consider missing joints as
noise in the input and we use an autoencoder-based solution to enhance
the pose prediction. The method can be easily combined with existing
pipelines and, by using only 2D coordinates as input data, the resulting
model is small and fast to train, yet powerful enough to learn a robust
representation of the low dimensional domain. Finally, results show im-
proved predictions over existing pose estimation algorithms.

Keywords: Human Pose Estimation, Generative Methods

1 Introduction

2D human pose estimation is a well-known research topic that has been studied
for years by the computer vision community. The problem consists in finding the
location of body parts in an image depicting one or more persons.

Early works [11, 23, 6] used handcrafted features to detect local body parts
and graphical models to infer global pose estimates. These works have shown
promising results but they were not good enough to be applied in real-world sce-
narios. Recently, the creation of huge annotated datasets [4,20] and the use of
deep learning techniques [28, 29] led to significant improvements, not only in spe-
cific 'ad-hoc’ datasets but also in generalizing to wider and more unconstrained
scenarios.

Even though existing methods produce high precision results, the problem of
human pose estimation still remains challenging. For instance, real world images
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present several complexities, such as body appearance variability due to differ-
ent clothing and lighting, uncommon body poses and crowded scenarios which
introduce occlusion problems. Specifically, when parts of the body are severely
occluded, the resulting missing visual information might lead to the generation
of incomplete or wrong body poses. We show an example in Figure 1, where the
image is taken from Salsa [3], a well known dataset for human behavior analysis
and social signal processing; the scene represents a typical indoor crowded sce-
nario, with challenging lighting conditions and people occluding each other. The
resulting estimated body joints and poses (Fig. 1, generated by the tool Open-
Pose [7], one of the state of the art and most famous pose estimators) present
several missing joints (typically wrists, ankles or entire legs) and some wrong
limbs. When human poses are used as features for social interaction analysis or
as inputs for other tasks, the missing information might severely harm the final
accuracy of the entire system. Another example is when 2D poses are used for
(bottom-up) 3D pose estimation: Fig. 2 shows how the missing joints dramati-
cally harm the final 3D reconstruction. Therefore, the need of a method that is
able to estimate the whole set of joints correctly is of paramount importance.

In this paper, we tackle this problem by proposing an algorithm that es-
timates the position of the missing joints and completes partial human poses
generated by pose estimation algorithms. We cast the task as a denoising prob-
lem, where the corrupted signal is represented by the partial human pose, and the
resulting uncorrupted signal is the full reconstructed pose. Inspired by the archi-
tecture of the denoising variational autoencoders [26, 30] we propose a network
that generates complete poses from the noisy or missing 2D joints coordinates
generated by any human pose estimator. Our model does not require RGB data,
is simple, lightweight and fast to train. Despite its simplicity, we show, both
quantitatively and qualitatively, improved predictions. Additionally, by ditching
image data, our model is also able to estimate joints positions which are outside
the camera view, and thus not detectable by standard 2D pose estimation al-
gorithms. Finally, our algorithm is easily pluggable in any existing architecture
and can be used as a pose-based feature extractor for high-level human behavior
understanding in the wild.

The rest of the paper is organized as follows. In Section 2, we review the re-
lated work in human pose estimation. Section 3 describes our proposed model. In
Section 4, we show quantitative and qualitative results. Finally, we present con-
cluding remarks in Section 5, together with a discussion about how the proposed
method can be utilized for higher level computer vision tasks.

2 Related Work

Pose Estimation. For many years, human pose estimation algorithms focused
on single person pose estimation (SPPE). Recently, interest has shifted to ”in
the wild” multi-person pose estimation (MPPE), which presents a different set
of challenges, including detecting an unknown number of people, possibly highly
dense scenarios with severe occlusions and complex body interactions. In this



Predicting Missing Joints of Human Poses Using Denoising Autoencoders 3

Fig. 1. Examples of incomplete and wrong 2D poses estimated on a frame from Salsa
[3] using the tool OpenPose [7].

Fig. 2. Effect of complete and incomplete 2D poses on bottom-up 3D pose estimation
(3D poses estimated using [27]). A complete 2D pose a) leads to the estimation of a
plausible 3D pose b), while an incomplete 2D pose ¢) (with missing arms) leads to a
wrong 3D pose estimation d).
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work, given that we focus on multi-person scenarios, we mainly review previous
MPPE works. These approaches can be categorized into two families: top-down
and bottom-up approaches [7].

Top-down approaches require person detectors on the whole image and use
SPPE algorithms to infer poses on the single detections. Having a body centered
in the input image is a strong prior that enables SPPE algorithms to use both
local and global information for the final predictions [22], resulting in robust
predictions. Unfortunately, one of the biggest disadvantages of these approaches
is that the final predictions are heavily influenced by the initial person detector
results, which, in very crowded scenarios, can lead to poor detections, bounding
boxes not centered on a single person or that cut parts of the body. Igbal and Gall
[15] use Faster R-CNN [25] as person detector, and a convolutional pose machine
[32] as an SPPE algorithm to generate candidate joints. The resulting bounding
boxes might show multiple people; thus, in order to associate each joint to the
correct person and remove the wrong candidates, inference is performed locally
on a fully connected graph for each person using integer linear programming.
Fang et al. [10] tackle the problems of bounding box error, i.e. bounding boxes
which are not perfectly centered on a person, and of redundant detections, i.e.
when multiple bounding boxes are generated for a single person. The problem of
the bounding box error is attenuated by a network which generates higher quality
bounding boxes from existing ones, based on spatial transformer networks [16].
Finally, poses generated by redundant detections are merged into a single, most
confident one by using a novel technique called parametric pose non-maximum
suppression. Chen et al. [8] focus on detecting "hard to predict” joints, i.e. joints
which are occluded, invisible or in front of complex backgrounds. They devise
a two stage network, where, during training, the first stage predicts the visible
joints, while the second stage focuses on the hard joints by selecting the top M
losses and backpropagating only their gradient.

Bottom-up approaches, on the other end, take the whole image as an input,
without any prior information on person location and number. Their pipeline
is usually composed of two stages (which can be sequential or parallel), where
the first one predicts candidate locations for all joint types, and the second one
groups the joints into individual human poses. These algorithms do not need to
rely on the performance of person detectors and the computational time does not
depend on the number of detections. However, as a downside, the lack of prior
information, such as person location and scale, makes the resulting poses less
precise. Pishchulin et al. [24] propose a bottom-up method which jointly detects
a set of candidate body joints and associates them to single people by casting the
problem as a graph partitioning one, where nodes are joint detections and edges
are scores based on spatial offsets and appearance features. The partitioning
is solved via integer linear programming on a fully connected graph of all the
detected joints, which requires a long computational time. Insafutdinov et al.
[14] propose an improved approach over [24], by using better part detectors,
improved regressors for the score generation, and a faster partitioning algorithm
based on incremental optimization, although it still requires several minutes
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of computational time. Cao et al. [7] focus on improving computational time by
proposing a real-time approach which jointly learns to detect and associate joints.
Extending the work from [32], the proposed network has two branches: one for
joints and one for part affinity fields (PAFs) prediction, where a PAF can be seen
as encoding the probability of a pixel to belong to the limb between two predicted
joints. Finally, a bipartite graph matching solver is used to get the final estimated
poses. In contrast to the previously mentioned multi-stage pipelines, Newell et
al. [21] propose a novel approach where the network is taught to simultaneously
detect and group joints, without the need of additional aggregation steps. For
each joint, the network outputs a corresponding embedding vector, and these
vectors are then used to cluster joints into final human poses.

Our proposed method does not estimate poses and it differs from all the ex-
isting works in two fundamental ways: ) its primary goal is to correct existing
predictions, by regressing missing joints in an incomplete input pose, estimating
a most likely pose given the actual detection; i) the proposed method uses only
2D coordinates as input, not RGB data; even if we discard rich information, we
show that partial 2D coordinates provide enough information for robust predic-
tions.

Data Denoising and Restoration. The problem of dealing with missing or
incomplete data in machine learning arises in many applications. Recent strate-
gies make use of generative models to impute missing or corrupted data. Ad-
vances in computer vision using deep generative models have found applications
in image/video processing, such as denoising, restoration, super-resolution and
inpainting. In [17], Jain and Seung train convolutional layers in an unsupervised
way for the task of denoising images, by reducing the error between the original
(input) and the reconstructed images, the latter obtained by applying gaussian
noise to the former. Xu et al. [34] state that image degradation can be modeled as
a translation-invariant convolution operation and that image restoration can be
achieved with the inverse process, i.e. deconvolution; thus, a deep convolutional
neural network (CNN) is used to learn the deconvolution operation in a data
driven way, without the need to have any prior knowledge of the cause of image
degradation. Xie et al. [33] propose the use of stacked denoising autoencoders
with layer wise training for image denoising and inpainting.

Inspired by these methods, we cast the problem of missing joints prediction
as a denoising and restoration problem.

3 Methodology

The choice of our model is motivated by two main reasons. In the first place, the
model should be able to predict missing information and, second, has to deal
with low dimensional data. Occlusions and degraded visual data might cause a
pose detector to miss some types and number of joints in an unpredictable way.
The resulting partial human pose can, thus, be seen as a noisy, stochastically
corrupted version of the original data which is the complete human pose in our
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case. The model must, then, be able to learn a robust representation of the
data even when parts of the data are missing. Unlike RGB images, which are
composed by hundreds, or thousands of pixels, our domain data are small vectors
of a few concatenated 2D coordinates (see Section 3.2), therefore we choose a
model which is simple, yet powerful enough to learn a robust representation of
this low dimensional domain data. Auto-encoders, as seen in previous works [26,
30], are a powerful tool for learning representations of complex data distributions,
and their denoising variant [30] is specifically designed to deal with incomplete
input data.

We now proceed with a short review of the theory behind auto-encoders,
denoising auto-encoders and one of their most recent variants, variational auto-
encoders (Section 3.1). Finally, we describe in detail the architecture of the
network we use (Section 3.2).

3.1 Auto-Encoders

Auto-encoders have been introduced long ago by Rumelhart et al. [26] they
consist in an unsupervised learning model and have been used for different pur-
poses such as dimensionality reduction, feature extraction [30], pre-training of
deep nets [5,31], data generation and reconstruction [13]. Concretely, an auto-
encoder is a type of multi-layer neural network trained to map the input to a
different representation of it, so that the input can be reconstructed from that
representation. The simplest form of an auto-encoder has a single hidden layer
which maps (encodes) an input x to its new representation y

y =s(Wx+b) (1)

where s is a (usually non-linear) activation function, while W and b are, respec-
tively, the weights and bias of the layer. The encoded input y is, then, mapped
back (decoded) to a reconstruction x, of the input

xr = s(W'y +b). (2)

Training is performed by minimizing a loss function

L(x, %) (3)

which, in our case, is the mean squared error MSE, calculated between the
reconstructed input x, and the target output, which is the input x itself. If
the dimension of y is smaller than the dimension of x, the auto-encoder is called
undercomplete; on the other end, if the dimension of y is larger, the auto-encoder
is called overcomplete.

If the dimension of the hidden units is larger than the original input, the auto-
encoder might learn the identity function; however, there are different techniques
to avoid this occurrence. One of these techniques introduces randomness during
training: the network is fed with a stochastically corrupted version of the in-
put xc, while the target output remains the original uncorrupted input x. This
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training approach has been introduced by Vincent et al. in [30] and the resulting
models are called denoising auto-encoders. Their original purpose was to make
the learned representation more robust to partial corruption of the input, but
they present an additional useful property, i.e. the ability to reconstruct miss-
ing data from the input, which is well suited for our problem of missing joints
prediction.

One downside of standard auto-encoders is that they tend to map similar
input samples to latent vectors which might be very close to each other, result-
ing in almost identical reconstructions. This behavior is acceptable when input
data represents classes (e.g. images of numbers or letters). On the contrary,
preserving small input differences in the reconstruction is very important when
dealing with human poses, which do not form a clustered space, but a continu-
ous, smooth domain. Variational auto-encoders [19] can learn such a continuous
representation by design, making them more suited for our problem. Similarly
to classic auto-encoders, they have the same encoder/decoder structure (where
the encoder maps the input to a latent representation, and the decoder recon-
structs the input from such representation). The main difference is that the
latent variables are not a ”compressed representation” of the domain data itself,
but they encode the parameters (i.e. the mean p and standard deviation o) of a
distribution (typically an n-dimensional Gaussian one) modeling the input data.
In order to force this, another term is added to the loss (see Eq. 3), i.e. the
Kullback-Leibler divergence (D) [2], which measures the divergence between
two probability distributions and has the form

Dkr(P|Q) = — ZPiZOQ(Qi/Pi) (4)

where P is the encoded n-dimensional Gaussian distribution N (u, 02) and Q is
the target standard normal distribution.

3.2 Modeling the Human Pose

Since the chosen reconstruction loss needs a complete human pose as the target
output, we need to select full human poses from the dataset as training data.
Each pose is represented by a set of n 2D locations, where n is the number of
joints (see Sections 4.1 and 4.2). The concatenation of these joints produces a
vector of n x 2 elements (the x and y coordinates) which is the input of the
network. Since the coordinates of the annotated joints are labeled in the image
space, poses which are very similar to each other might appear in different parts
of the image, resulting in input vectors with very different values. We, thus, nor-
malize them using the following procedure: first we find the center of the torso
(Cr) by averaging the coordinates of the neck and at least one of the shoulders
and hip joints; the pose is then translated to the obtained 2D point and finally
scaled by the distance between the neck and Cp. At testing time, this normaliza-
tion technique requires an incomplete pose to have all the aforementioned joints,
negatively affecting the number of poses that is processed by the network (see
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Section 4.4). Given that we are using a denoising auto-encoder, the training data
must also be corrupted. We do this by adding noise to the previously normalized
poses, randomly masking a small number of joints.

Fig. 3 shows the overall architecture: since the input vector is small com-
pared to the space of the data we want to reconstruct, we choose to implement
an overcomplete auto-encoder. The encoder and decoder are composed by 2 hid-
den layers, each one gradually encoding (and decoding) more robust features.
Layers p and o represent, respectively, the mean and standard deviation of the
distribution we want to learn, while the final layer of the encoder represents a
sample of it.

Fig. 3. The pipeline of our method. Given an RGB image, a human pose prediction
algorithm is used to generate one or more poses. The incomplete ones are, then, nor-
malized and fed to the auto-encoder, which outputs the corresponding full human
poses.

4 Experiments

In this section, we report quantitative and qualitative results of our method, eval-
uated on two datasets, MPII Human Pose [4] and Microsoft’s COCO Keypoint
Detection [20], which are the most famous and widely datasets for multi-person
pose estimation.

4.1 MPII Human Pose Dataset

The MPII Human Pose dataset [4] consists of around 25000 images and a total
of 40000 annotated human poses. The training set is composed of 28000 of these
poses, while the test set is composed of 11000 poses. Images contain people
engaged in numerous activities and a variety of contexts, with a high variable of
articulated poses and camera perspectives. People can be fully visible, severely
occluded or partially out of the camera field of view. A full pose is composed
of 16 landmarks, each one corresponding to the location, in image coordinates,
of a body joint (head, neck, thorax and left and right shoulders, elbows, wrists,
hips, knees and ankles).
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4.2 COCO Keypoint Detection Dataset

The Microsoft’s COCO Keypoint Detection dataset [20] is a subset of the whole
COCO dataset, focused on the localization of person keypoints. The training
and validation sets contain, respectively, around 260000 and 11000 annotated
human poses. Unlike MPII, a full pose is composed of 17 joints, corresponding
to nose and left and right shoulders, elbows, wrists, hips, knees, ankles, eyes and
ears.

4.3 Experimental Settings

Our model takes a pose as the input and generates its reconstruction. If the
pose is incomplete, i.e. with one or more missing joints, a prediction of the cor-
responding full pose is generated as output. As described in Section 3.2, the
loss function needs a fully annotated pose; thus, we need to select a subset of
the training data containing only complete poses. For the MPII dataset, this
results in a total of, approximately, 20000 samples; we, then, use our own split
(85%/15%) on the obtained data for training and validation purposes, and aug-
ment the remaining training data following a standard procedure for single pose
estimation algorithms [22, 9], obtaining a total of approximately 500000 training
samples. In particular, we perform data augmentation by flipping and rotating
the original poses (4/-30 degrees). We then normalize each pose, mask a random
number of joints (from 0 up to 5, which roughly corresponds to 35% of the total
number of joints) and feed the obtained data to the network.

The COCO dataset, on the contrary, has only a few thousands of complete
poses, which, even after data augmentation, would not be enough for training
purposes. Therefore, we decide to use the dataset only for testing. Since COCO
and MPII have different annotated joint types, we feed the network (trained on
MPII) with only the joints that are common between the two datasets (i.e. left
and right shoulders, elbows, wrist, hips, knees and ankles) and set to zero the
missing ones (head, neck and thorax).

The encoder is composed of 2 fully connected hidden layers, with 64 and 128
hidden units. Symmetrically, the decoder is composed of 2 hidden layers, with
128 and 64 hidden units, and an output layer with the same dimension as the
input one. As in [19,12], we use 20 latent dimensions. Every fully connected
layer has RelLu non-linearities. The loss function is the sum of MSE (between
the uncorrupted input and the reconstructed pose) and the Dy (Section 3.1).
The network is implemented using TensorFlow [1] and trained with the Adam
optimizer [18] with a learning rate of le-3.

4.4 Quantitative Analysis

In this section we show quantitative results of the proposed pipeline on the
datasets described in Sections 4.1 and 4.2. For the generation of the input poses,
we use the bottom-up multi-person pose estimator OpenPose [7,32] and its mat-
lab implementation, without modifying its preset parameters. Although Open-
Pose is not the best performing method on MPII and COCO anymore, and it’s
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less precise in predicting complete human poses compared to other top-down
approaches, we found it to be the more robust when tested on real-life datasets
not strictly related to pose estimation and on which it wasn’t trained on (such
as Salsa [3]). Fig. 4 shows a comparison between poses generated by OpenPose
and those generated by the state of the art top-down approach called Regional
Multi-Person Pose Estimation (RMPE) [10]. In a), OpenPose (left) produces a
complete and better estimation of the pose, compared to RMPE (right). In b),
OpenPose (left) cannot predict the head, the wrists and the right ankle, while
RMPE (center, right) predicts all joints; however, RMPE generates two poses
for the same person, due to redundant detections, and their quality is worse
than the OpenPose one. Clearly, the underlying person detector is an important
factor in the final performance of a top-down pose estimation algorithm. Also,
top-down approaches learn not just local information (i.e. joints appearance)
but also global information (i.e. joints relative location and appearance) and
this information might be harder to generalize to unseen data.

Fig. 4. Comparison between OpenPose and Regional Multi-Person Pose Estimation
(RMPE) [10]. a) and b) left show OpenPose predictions, while a) right and b) center,
right show RMPE predictions. Orange joints have a confidence score below 0.2.

We compare OpenPose’s results with the results generated by our method
using two metrics, the Miss Rate (MR) and the Percentage of Correct Keypoints
(PCKh). MR is computed as

#jointsmissed/ #jointsg, (5)

where #70intsmisseq is the number of missed (annotated) joints and #jointsg,
is the number of all (annotated) joints. PCKh is a standard metric in pose
estimation introduced in [4] for evaluation on the MPII dataset, where a keypoint
is considered as correctly predicted if its distance from the ground truth is less
than a fixed threshold (specified as a fraction of the person’s head size). The
corresponding ground truth is assigned to each pose according to the highest
PCKh.
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While MR quantifies how many joints are failed to be predicted, PCKh quan-
tifies the actual ”quality” of the predictions.

We do not perform a comparison using the standard mean Average Precision
(mAP) metric, which is commonly used in MPII for multi-person pose estima-
tion, because it penalizes joints with no ground truth correspondence as false
positives.

Table 1 shows that our method outperforms OpenPose in terms of number of
missing joints. As can be seen, the highest missing rate differences correspond to
joints which are body extremes (i.e. wrists and ankles) and thus more prone to
be occluded. Even though our method is supposed to predict all missing joints,
the missing rate is not 0 because it relies on the detection of the subjects by the
baseline human pose estimator.

The quality of the predictions generated by our method can be seen in Table
2, where its PCKh is better than the OpenPose one, especially (as for the missing
rate) for those joints which are frequently occluded. The highest difference in
PCKh can be seen when computed over joints labeled as ”occluded” only. Results
on head and neck are omitted because they are never occluded.

One advantage of our method is that, by using 2D coordinates as input
domain, it can be easily applied to different datasets it has not been trained on:
Tables 3 and 4 show, respectively, the Missing Rate and the PCKh computed
on COCO.

Table 1. Joints Missing Rate on the MPII dataset

Method Ankle Knee Hip Wrist Elbow Shoulder Neck Head Average
(All Joints) MR

OpenPose [7]  0.072 0.040 0.021 0.066 0.037 0.019 0.011 0.019 0.039
Our Method 0.020 0.015 0.016 0.012 0.011 0.010 0.011 0.011 0.014

Table 2. PCKh@O0.5 on the MPII dataset, computed on all joints and only on joints
labeled as occluded

Method Ankle Knee Hip Wrist Elbow Shoulder Neck Head Average
(All Joints) PCKh
OpenPose [7] 79.87 87.17 93.0 79.15 89.03 9597 97.71 96.11 88.73
Our Method 80.93 87.44 93.06 80.38 89.92 96.41 97.75 96.53 89.33
Method Ankle Knee Hip Wrist Elbow Shoulder Average
(Occluded Joints) PCKh
OpenPose [7] 59.07 73.26 87.71 57.06 76.71 91.23 74.47

Our Method 61.18 73.83 87.80 60.78 78.70 92.32 75.77
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Table 3. Joints Missing Rate on the COCO dataset

Method shoulder elbow  wrist hip knee  ankle Average
(All Joints) MR

OpenPose [7] 0.0021 0.0104 0.0214 0.0371 0.0752 0.0539 0.0333
Our Method 0.0021 0.0032 0.0068 0.0150 0.0093 0.0052 0.0069

Table 4. PCKh@O0.5 trained on MPII and tested on COCO, computed on all joints

Method Shoulder Elbow Wrist Hip Knee Ankle Average
(All Joints) PCKh

OpenPose [7] 80.22 54.91 63.71 39.48 35.74 23.60 49.61
Our Method 80.07 56.25 65.44 41.25 41.40 28.43 52.14

Finally, we report the computational time for training and testing. The anal-
ysis is performed on a laptop with 16GB of RAM and an NVIDIA GeForce
GTX 960M with 4GB of RAM. Training requires only 3 hours, while reconstruc-
tion of a single pose requires, on average, 0.88 ms. This shows that our method
can be easily combined with any existing pose estimation architecture without
significantly affecting the overall computational time.

4.5 Qualitative Analysis

In this section we show qualitative results of our predictions. In Fig. 5 (images
taken from MPII), the top row shows (in blue), predictions obtained from Open-
Pose, while the bottom row shows the corresponding complete poses generated
by our model (the predicted missing joints are in magenta). In column a) and b)
ankles are missing from sitting poses and our model is able to predict a plausible
locations of them. In column c¢) a man is standing but both ankles are completely
occluded by a foreground object and missing from the pose generated by Open-
Pose; however, our model is able to predict their position and produce a plausible
complete standing pose. In column c) the right arm (elbow and wrist) is missing;
our model generates the missing joints in a spatial configuration which is similar
to the joints of the visible left arm. The last column shows an extreme case
where the number of missing joints is very high, thus providing little context for
the final prediction: a man is standing, with raised arms and head occluded by
a foreground object. Although our model generates arms which are completely
lowered, the resulting pose is still a plausible human pose.

Fig. 6 shows more examples of predictions obtained from OpenPose (top row)
and the corresponding complete poses generated by our method (bottom row).
In column a), not just an ankle but the entire left leg (knee and ankle) is missing;
the predicted complete pose closely resembles the sitting person pictured in the
image. In column b), the right wrist is not detected and both arms are raised,
but our prediction is very close to the real wrist. Ankles (columns b), ¢) and d)),
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are outside the camera field of view; however our model is able to predict a full
pose even when RGB information is missing.

Finally, Fig. 7 shows predictions on frames from Salsa (another dataset our
model was not trained on), where it can be seen that our method can generate
plausible human poses even when half of the body is missing (see columns c)
and d), with completely occluded legs and arms).

Fig. 5. Examples of predictions obtained from OpenPose (top row, in blue) and the
corresponding complete poses generated by our method (bottom row, in magenta) on
MPII.

5 Conclusions and Future Work

In this paper, we presented a method for the prediction of missing joints from
incomplete input poses. We approached the task as a denoising problem and
showed that a simple model leads to a satisfactory boost in performance. We
reported quantitative and qualitative results on several datasets and showed in-
creased prediction performance over a well-known multi-person pose estimation
algorithm and the ability to predict joints locations even when entire limbs are
occluded.

Although state of the art pose estimators are able to cope with different
challenging scenarios, occlusions are still a problem and can lead to missing
joints predictions. The resulting incomplete poses might negatively affect the
performance of applications based on 2D poses, such as behavior analysis based
on body pose and gestures or bottom-up 3D pose estimation algorithms which
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Fig. 6. More examples of predictions obtained from OpenPose (top row, in blue) and
the missing joints predicted by our method (bottom row, magenta) on MPII. As can
be seen, the model is also capable of predicting joints which are outside of the camera
field-of-view.

Fig. 7. Examples of predictions on Salsa. Top row: OpenPose results (in blue). Bottom
row: missing joints predicted by our method (in magenta).
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liftt 2D coordinates to 3D. Our method can, then, be an aid in these contexts,
providing ”complete” information. Future work will explore in detail the effects
of our method in the context of human behavior analysis.
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