
Image Splicing Localization via

Semi-Global Network and Fully Connected

Conditional Random Fields.

Xiaodong Cun and Chi-Man Pun

University of Macau, Taipa, Macau
{mb55411,cmpun}@umac.mo

Abstract. We address the problem of image splicing localization: given
an input image, localizing the spliced region which is cut from another
image. We formulate this as a classification task but, critically, instead
of classifying the spliced region by local patch, we leverage the features
from whole image and local patch together to classify patch. We call this
structure Semi-Global Network. Our approach exploits the observation
that the spliced region should not only highly relate to local features
(spliced edges), but also global features (semantic information, illumina-
tion, etc.) from the whole image. Furthermore, we first integrate Fully
Connected Conditional Random Fields as post-processing technique in
image splicing to improve the consistency between the input image and
the output of the network. We show that our method outperforms other
state-of-the-art methods in three popular datasets.

Keywords: Image Splicing Localization, Image forgery Localization,
Multimedia Security
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Fig. 1: These images are taken from dataset [1] where spliced regions own differ-
ent illumination condition. Our network can classify spliced patches by mixing
the global feature, while [2] fails because their method only learns from patches.

1 Introduction

The magic of computer makes digital photos edit possible. Softwares, such as
PhotoShop, bring user-friendly interface for tampering image. With the growth



2 XD. Cun and C-M. Pun

Operations

post-

processing

Host Image

Donor Image Donor Mask

Spliced Image

Fig. 2: This figure shows the spliced image is created by two authentic images.
By masking the part of donor image, the selected region is pasted to the host
image after some operations(translation and rescale the donor region). Some-
times, several post-processing techniques(such as Gaussian filter on the border
of selected region) are used to the spliced region for the harmony of the selected
region and host image.

of user-uploaded images on the Internet, it is more likely a serious security
problem to detect whether an image has been tampered or not and localize
the corresponding forgery region. Because artificial tampered images will send
wrong message to others. For example, tampered images will make fake news
more reliable and throw dust in the eyes of the public; it also convinces people
on the impossible natural views and confuses the historian researchers.

In this paper, we focus on image splicing localization, a common forms of
photographic manipulation. Image splicing means a particular region of donor
image is cut and paste to the host image. Fig. 2 is an example procedure to
create a spliced image. The detection of image splicing has a long history in the
digital image processing community. Many splicing algorithms[3–6] only detect
the candidate image has been spliced or not. As for a more challenge task, few
techniques[7, 8] attempt to localize the spliced area in the image.

The state-of-the-art approaches in image splicing localization analyze the
features in frequency domain and/or the properties of statistic [9–11] because
the donor image and host image maybe have different feature responses on the
edges between splicing region and non-splicing region. Recently, Convolutional
Neural Network shows a great success in many Computer Vision tasks, such as
image classification[12], object detection[13], and there are also some papers[14,
15, 7] trying to solve image splicing by deep learning. However, current deep
learning-based image splicing algorithms often solve image splicing localization
from two viewpoints. One type of method often relies on the assumption that
some specific features between the spliced region and non-spliced region are
different. For example, [14] assume the donor image and host image are taken
by different types of cameras, [2, 15] assume that the features in authentic edge
and the spliced edge are different. Another type of methods rely on the power of
deep learning and the distribution of large dataset. These methods learn splicing
region from ground truth label directly, such as [7] propose a splicing localization
method based on Fully Convolutional Network[16].
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Different from previous methods which only consider certain assumptions or
learn from the large dataset, we rethink image splicing from the beginning of the
human intuition. Human often identifies the splicing region from the candidate
image by the clues from many aspects. For example, as the spliced image in Fig.
2, the first observation aspect from human is local edge: the spliced region will
have a sharper edge because these borders are manufactured by human/software
which is not 100% perfect. Another observation viewpoint is the consistency of
light: the sunshine in the face and clothes of the girl is weird when the background
is an underground metro station. These evidence means people will not only
search the details in the local edges to identify the spliced region but also try
to classify the regions from the global level, such as illumination consistent and
semantic consistent.

By above observation, we formulate our network as a multi-inputs classifi-
cation network. To classify each candidate region, the network will preserve the
local details features by the input of local patch and calculate the global features
by the input of the whole image. From the features of global image and candi-
date region, the network classifies the candidate region is spliced or not. We call
this structure Semi-Global Network. Furthermore, to design a high-performance
network structure, we argue that both the relationships of neighbourhood pixels
in local patches and the global image features are important. Thus, we use a
structure which preserves the local relationship between pixels in [2] as our lo-
cal feature branch of the network. Furthermore, we borrow the framework from
image classification[12] as global feature network. The idea of combining the
global and local structure is not only used in the training network, we also add
a Fully Connected Conditional Random Fields(CRF) to constraint the output
mask should own the similar shape with the original image. As shown in Fig. 1,
our method show a significant better result than the method which only consider
the local patch.

Our main contributions are as follows:

– By considering the prerequisite of image splicing task is the combination of
global features and local features, we propose a Semi-Global network to solve
this problem.

– Besides the combination of global features and local features in patch based
classification, we firstly add the Fully Connected CRF as post-processing
technique in image splicing task.

– We add a new smooth term in loss function for the task harmony in patch-
based classification and patch-based segmentation.

– Our method can achieve state-of-the-art performance in several popular
datasets.

2 Related Works

Traditional Image Splicing Method. Localizing spliced region in the image
has been long studied as part of detecting and localizing manipulated region from
images. Some researches[9–11, 17] assume that different images will own different
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noise levels because of the combination of camera model or the post-processing
techniques when manipulating. A significant direction of image splicing have
assumed that different cameras will show different internal patterns. Such as,
Color Filter Array (CFA)[18, 19], CFA transforms incoming light to different
color channels and reconstructs the color image. Another important pattern is
Camera Response Function [20]. Camera Response Function maps the incoming
light to linear for making the image more visually appealing. These two internal
image features are highly related to the whole image which means the images
are taken by different cameras will show different internal patterns. Another
important direction in image splicing is JPEG compression features [21, 22].
These techniques squeeze the feature by the observation that different images
will have different JPEG compression levels or JPEG features. Such as, Li et al.
[22] extract the block artifacts from the JPEG image for comparison with other
block.

Deep Learning for Image Splicing. Recently, Deep Learning-based tech-
niques have been utilized in many Computer Vision and Digital Image Process-
ing tasks. A lot of interests in learning to localize the image splicing region from
a single image has been driven by the ability of Convolution Neural Networks[8,
7, 14, 15, 23, 2]. Liu et al.[8] predict the mask of forgery region by a combination
of a multi-scale neural network. With the similar idea, Salloum et al. [7] propose
a multi-task fully convolutional network to localize image splicing region. They
not only optimize the splicing region by ground truth mask directly but also
constrain the edge in the output of predicted mask. These two methods only
rely on the power of deep learning and the structure of network often design for
image classification, which will ignore the low-level features. Inspired by tradi-
tional camera internal pattern-based method, Bondi et al. [14] use a pre-trained
camera identification neural network to predict the original camera in input
patches levels and analyse the results by the clustering algorithm. This method
has strong assumption that splicing region and the original images are taken by
the different camera. Following the traditional Camera Response Function based
method, a novel feature designed by [15], is proposed for image splicing localiza-
tion. Chen et al. [15] extract the Camera Response Function firstly and then try
to classify the splicing regions in the feature domain by Neural Network. How-
ever, this method only can classify the patches in the edge of splicing region.
Currently, Wu et al. [23] propose an algorithm for constrained image splicing
problem which focuses on finding the spliced region by two images. Thus it is
not design for single image splicing localization. Most recently, Bappy et al. [2]
propose a hybrid deep learning based method by jointing the training of classifi-
cation and segmentation for image forgery localization. However, by considering
the splicing region often only connect to the local patches, this method is only
trying to classify the local patch.

Unlike most deep learning based methods in image splicing which only con-
sider the patches[15, 2, 8, 14] or global image based end-to-end training[23, 7], we
argue that image splicing is a task not only relate to local feature, such as the
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features of edge between splicing region and the host image [15], but also global
features, such as light condition[24], camera models[14, 15], etc. Thus, in this
paper, we consider from the viewpoint on the combination of global feature and
pixel-level local patch classification in the task of image splicing.

3 Methods

We model image splicing localization as a conditional classification task with
post-processing. As shown in Fig. 3, the whole overview of our framework can
be divided into training network and post-processing.

In training network, giving a candidate image I and its non-overlapped patch
sets Ip, the goal of our neural network SGN is to identify each patch is in the
spliced region or not (classification of the patch) and which pixels in the patch
Pi(Pi ∈ Ip) belong to spliced region (segmentation of the patch). So our model
can be written as:

Li,Mi = SGN(I, Pi) Pi ∈ Ip

where Li is the label of current patch Pi and Mi is the segmentation results of
the spliced region.

Combining the global image and local patch is not only used in network
classification, it also performs in post-processing stage in our framework. In post-
processing stage, we utilize the Fully Connected CRF to force the connection
between colour and position. Notice that we only use the output of segmentation
mask as the unary probability of Conditional Random Fields. The final splicing
mask Mpp of input image I can be formulated as:

Mpp = CRF (I,M)

where M =
∑

i∈Ip
Mi is the output segmentation probability mask of our net-

work.
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Fig. 3: The overview of our framework.
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3.1 Semi-Global Network

As shown in Fig. 3, our Semi-Global Network can be divided into Global Feature
Network and Patch Feature Network. These two parts learn different features
from the patch and whole image, respectively. The two branches of the network
are trained synchronously in end-to-end style by ground truth label and ground
truth mask.

Patch Feature Network We use the network described in [2] as our local
feature extraction network. To achieve the goal of feature extraction from local
patch, as shown in the Patch Feature Network of Fig. 3, in each forward of the
neural network, one of the non-overlap patches from the original image is fed to
the neural network for classification and segmentation.

In patch-based classification, a patch with 64x64 spatial resolution is fed into
two convolutional layers for extracting a 2D low-level feature map firstly, then
the feature map is uniformly divided into 8x8 blocks where each block owning
8x8 pixels. For modelling the relationships between the pixels of neighborhood,
every block can be viewed as the input of Long-Short Term Memory[25] (LSTM)
cell with 256 dimension features. LSTM models the relationship between pixels
in the patches without decreasing the size of feature maps. because low level
feature is important for coarse edge detection. Next, the output of LSTM is
not only used for image classification but also can be reconstructed into 2D fea-
ture map for final segmentation task. As shown in Fig. 3, the output of LSTM
is reshaped to the original image according to the blocks we divided. Then two
Convolutional layers model the reconstructed feature map for final segmentation
results. A Softmax layer is added at the end of network for segmentation pre-
diction and classification, respectively. This model can essentially extract pixel
level features from patch while traditional coarse-to-fine network structure will
break the relationship between pixels.

Compared with Bappy et al. [2], our method utilizes their network structure
for local feature extraction in image splicing localization because their network
model the local relationship between pixels. However, Bappy et al. [2] just rebuild
the image from patch output. And we only use the output of patch segmenta-
tion as the input of post-processing method we provided. But [2] mixed the
results of label and segmentation for final results. More results are discussed in
experiments.

Global Feature Network Whether the goal of our global feature network is to
extract the global features(such as light, semantic information) from the input
image, networks, we interpolate the pre-trained image classification network on
large available dataset for global feature extraction. For global feature extrac-
tion, a ResNet18[12] network structure, which is pre-trained on ImageNet[26], is
added for global feature extraction. In our task, we remove the fully connected
classification layer by replacing it with a new fully-connected layer in 256 dimen-
sions. This new layer can learn the global features we need automatically from
ResNet18 by the back-propagation of training data. We also freeze all the weights
in Convolutional Layers and Batch Normalization layers in ResNet18, because
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comparing with ImageNet, our dataset is too small for the global features ex-
traction. Thus, by leveraging the weights learning from ImageNet, our network
has the ability to learn from small dataset. Notice that the global feature is only
connected to the features of patch classification because the feature of patch
segmentation is highly related to the position of pixels. So we can not add the
global feature to segmentation branch as classification branch. However, feature
concatenation in patch classification can also benefit the results of segmentation
task because we train the network synchronously.

3.2 Loss Function

By considering the spliced region and host image are two categories, our net-
work is a hybrid system of binary classification task Φclassification and binary
segmentation task Φsegmentation. We use Weighted Cross Entropy to model this
two losses. So the loss function of classification is:

Φclassification(L,Lgt) =
1

N

∑

i∈Ip

Wn(1− Lgt)log(1− Li) +WsLgtlog(Li)

where N is the number of patches totally, Li is the probability of the patch i in
the spliced region, Lgt is the ground truth label of current patch, and Ws, Wn

are the weight of spliced region and non-spliced region, respectively.
The segmentation loss is almost the same as classification loss except the

input mask Mi and the ground truth mask Mgt are 2D probability maps on
each pixels:

Φsegmentation(M,Mgt) =
1

N

∑

i∈Ip

∑

j∈Mi

Wn(1−Mgt)log(1−M) +WsMgtlog(Mi)

Because the splicing dataset is totally unbalanced, we set the weight between
spliced region Ws and weight of non-spliced region Wn according to the statistics
percentage on the ground truth mask of the training set. The weighted strategy
makes our model more sensitive to the spliced region.

Furthermore, for making classification results and segmentation results unity,
we add an extra smooth loss Φsmooth for classification results and segmentation
results. This smooth loss is added by the observation that patches label proba-
bility and the mean of patch segmentation will be minimum when the network
convergence. If we think the classification results as the output of mask, or if we
think the patches results as the output of label, these two parts will show the
same probabilities. So we force the mean of mask probability equals to the patch
label, our smooth criterion can be written as:

Φsmooth(M,L) = |

∑
i∈Ip

Mi

numel(Mi)
− L|

where numel is a function to get the size of patch masks Mi. So the final loss
function Φ can be written as the sum of classification criterion , segmentations
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criterion and smooth criterion:

Φ = Φclassification + βΦsegmentation + λΦsmooth

We also add two hyper-parameter β and λ for better results. In the experiment
we found that classification is a relative easier task that segmentation, so we set
β = 10. As for the smooth hyper-parameter λ, we set this parameter to λ = 0.01
by thinking the classification as the main task.

3.3 Conditional Random Fields as Post Processing

Because the output of our network still fails in some patches of the image, and
the patch segmentation task is more complex than patch classification task. We
exploit the Fully Connected Conditional Random Fields in [27] for further exploit
the global information to our network and get better results. Although CRF has
been utilized in Semantic Segmentation widely([28, 29]), it has never been used
in image splicing task.

The fully connected CRF can be written as an energy function:

E(x) =
∑

i

θi(xi) +
∑

ij

θij(xi, xj)

where x is label assignment for pixels. The unary potential θi(xi) = −log(Mi)
where i is each pixels in the probability mask M . The probability mask M is
created by the output of patch segmentation. Then, a fully-connected graph is
used for efficient influence the pairwise potential. So the pairwise potential in
[27] can be expressed as:

θi,j = µ(xi, xj)[ω1exp(−
||pi − pj ||

2

2σ2
α

−
||Ii − Ij ||

2

2σ2

β

) + ω2exp(−
||pi − pj ||

2

2σ2
γ

)]

where µ(xi, xj) = 1 if xi 6= xj and zero otherwise. Then, two Gaussian Kernels
are applied in different feature spaces. The first is related to positions and RGB
colors, and the second only measure the connection between pixels. These two
kernels are used for feature constraint. While the first kernel restraint the pix-
els which have similar color and position as the same label, the second kernel
penalizes the smoothness in position. As illustrated in Fig. 4, the results of our
network benefit from fully connected CRF .

Input Image Predicted Mask 2nd iteration 5th iteration 10th iteration Ground Truth

Fig. 4: The effect of post-processing
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4 Experiments

4.1 Preparation

Implementation details All experimental benchmarks are obtained by Py-
Torch[30] framework. ADAM[31] solver with β1 = 0.9,β2 = 0.999 is used as op-
timization function for all the experiments. We train the network in 120 epochs
and choose the best accuracy model on the validation set as the final model.
The initial learning rate is 0.001, we decay the learning rate in 60, 90 epochs to
0.0001 and 0.00001, respectively. The network is trained on two NVIDIA 1080
GPUs.

Datasets Setup We compare our method with other states-of-the-art methods
on NC2016 dataset[32], Carvalho dataset[1] and Columbia dataset[33]. There are
280 spliced samples in NC2016, 100 spliced samples in Carvalho dataset and 180
spliced samples in Columbia dataset. For each dataset, we randomly split the
whole image dataset into three categories with training(65%), validation(10%)
and testing(25%) as Bappy et al. [2]. Then, we extract the patch-global image
pairs in training set. By considering the balance of space and time for network
training, we resize the original image to 224x224 for the input of global feature
network. In patches extraction, we split original image to the non-overlapped
64x64 image blocks. Thus, we have more than 10k training patches on each
dataset which is enough for training classification network and segmentation net-
work. Similarly, we obtain validation and test set. As for the ground truth label
of patch, following [2], we label the patches which contain more than 87.5%(7/8)
of the spliced pixels as the positive spliced patches.

Evaluation Metrics We compare our method with other state-of-the-art meth-
ods on F1 score and Matthews Correlation Coefficient (MCC) for binary clas-
sification tasks as [7]. We also exploit the ROC curve and AUC score on three
datasets as [2] in Table 1 and Fig. 6.

Baselines As for deep learning based method, we compare our method with
two most relevant methods: Bappy et al. [2] use the local patch to classify the
manufacture region; MFCN[7] learn to predict the spliced mask and spliced edge
from Fully Convolutional Network[16] directly.

Because there are few image splicing localization methods using deep learn-
ing, we also compare our results with some state-of-the-art traditional methods.
we select four representative methods from different viewpoints: CFA2[19] uti-
lize Color Filet Array for forgery detection. NOI1[11] assume that the splicing
region will have different local image noise variance. BLK[22] classify the spliced
region by detecting the periodic artifacts in JPEG compression. DCT[17] detect
inconsistent of JPEG Discrete Cosine Transform coefficients histogram. These
four methods are tested and evaluated on the same test datasets as deep learning
based methods. We run traditional methods by a public available image spicing
toolkits[34].
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4.2 Comparisons

Experiments on Columbia Dataset Columbia dataset is a relatively easier
dataset for classification. There are 180 images which certain objects are spliced
to host image in different localization and the edge of the spliced region is easy to
recognize. In this dataset, the content of spliced region and the background are
often totally different. By analyzing the ground truth mask in training dataset,
we weight the spliced region and non-spliced region to 1 : 5 in loss function.
As shown in Fig. 6 and Table 1, our method get better results than others.
As the similar spliced objects/shapes are shown in both training set and test
set, patch-based method can also be detected splied regions without the help
of global features.(First column of Fig.5 on Bappy et. al. method). However,
comparing with the images which spliced region rarely shown in training set
(Second and third columns of Fig. 5), our method gain better results. As for
other traditional methods, our network also gain better results, because these
methods only detect/analysis the spliced region by certain assumptions.
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Fig. 5: Results on Columbia[33] dataset(left three) and NC2016 dataset(right
three)[32]. (NOI1,CFA2,BLK,DCT are displayed by thresholding the mean prob-
ability of whole feature image.)
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Experiments On NC2016 dataset In NC2016 dataset, some tampered im-
ages show very similar ”appearance” from human viewpoint but tamper with
different operations or post-processing techniques. such as, the border of the tem-
per region is utilized Gaussian smooth or not will be considered as two samples
in the dataset. These attack methods may huge influence the traditional meth-
ods which detect/localize the splicing region from hand-craft features. However,
in deep learning-based method, it is a relatively easier task when similar images
are shown in both training set and test set. Because neural network need to in-
ference from global high level features and low level features. We list the results
on NC2016 dataset in Table 1 and Fig. 5 and Fig. 6, our method is significantly
better than other states-of-the-art methods on several evaluation metrics.
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(b) Carvalho dataset
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(c) NC2016 dataset

Fig. 6: ROC curves on three different datasets.

Experiments on Carvalho Dataset We set the weight of the spliced region
and non-spliced region to 1 : 7 on Carvalho Dataset. From Table 1 and Fig. 6,
our method is significantly better than other methods in several numeric metrics.
Carvalho[1] manufacture input images by splicing the face/body from another
image with the inconsistent of illumination color. It is hard to recognize when
the network only classifies the local patches[2]. As shown in Fig. 1 and Fig.
7, our method can detect spliced region because of the integrate of the global
feature while [2] only classify the skin from the image because of their method
just classify the local patches from the whole image.

4.3 Evaluation

Evaluation of patch classification and segmentation We list the accuracy
of patch-based classification and patch-based segmentation results on all three

* MFCN is trained on larger dataset and test on these datasets while our method
takes parts of datasets as the training set. The size of train data will hugely influence
the results. So the experiment results of MFCN is taken by original paper and just
for reference.
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Fig. 7: Results on Carvalho[1] dataset.(NOI1,CFA2,BLK,DCT are displayed by
thresholding the mean mean probabilty of whole image.)

datasets for model evaluation. As shown in Table 2, our method gain significantly
better results than baseline method[2] because our method integrate of global
feature and task harmony loss.

NC2016 dataset [32] Carvalho dataset[1] Columbia dataset [33]

Bappy et al.[2] 95.89%/89.53% 68.57%/53.80% 85.02%/77.95%
Ours 97.81%/89.60% 83.69%/75.10% 89.72%/83.90%

Table 2: Comparison of Classification/Segmentation accuracy.

The effect of global feature Our method needs to connect the feature from
the local patch and global image together for final prediction. Do more global
features get better results? To verify this question, we train the network with
different precentage between global features and patch features to 0:1(baseline
network[2]), 0.25:1, 0.5:1, 1:1, 2:1. Then we observe the results in the final splicing
task. As shown in Table 3, the MCC and F1 score show the best results when
the global features equal to the features from local. And the results get worse
slightly when the global feature grows. This conforms to our intuitive sense of
the world: although the hybrid of global feature and the local feature can gain
better results in image splicing task, it is better to consider the local patch and
global patch by suitable percentage.

The influence of Task Harmony in Loss Function and post-processing

In loss function, we add a new smooth term to force the relationship between
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Metrics Methods NC2016[32] Carvalho[1] Columbia[33]

F1

MFCN* [7] 0.5707 0.4795 0.6117
Bappy et al.[2] 0.6242 0.3102 0.5270
Ours(w/o CRF) 0.7174 0.4236 0.5956
Ours 0.7900 0.5006 0.6482

MCC

MFCN*[7] 0.5703 0.4074 0.4792
Bappy et al.[2] 0.6257 0.1882 0.5074
Ours(w/o CRF) 0.7101 0.3309 0.5557
Ours 0.7847 0.4379 0.6403

AUC

CFA2[19] 0.57 0.51 0.54
NOI1[11] 0.47 0.55 0.51
BLK[22] 0.51 0.29 0.64
DCT[17] 0.51 0.37 0.62
Bappy et al.[2] 0.68 0.65 0.62
Ours(w/o CRF) 0.98 0.75 0.64
Ours 0.99 0.83 0.67

Table 1: Comparison on three datasets. F1, MCC score are calculated for each
image firstly and then calculate the average value while AUC is calculated
amount all the pixels.

the loss of classification loss and segmentation loss. As shown in Table 3, the
smooth term benefits for our task. We also list the output of our network w/o
CRF. Mask segmentation is obviously better than Label classification results
because label classification only classifies the uniform patches.

F1 Score MCC

Ours w/o CRF (Label) 0.5467 0.5305
Ours w/o CRF (Mask) 0.5956 0.5557
Ours w/o smooth term 0.6416 0.5863

Ours (0:1) 0.5270 0.5074
Ours (0.25:1) 0.6287 0.6224
Ours (0.5:1) 0.6281 0.5255
Ours (2:1) 0.6258 0.6204
Ours (1:1) 0.6482 0.6403

Table 3: Evaluation on Columbia Dataset

5 Conclusion

In this paper, we propose Semi-Global network with fully connected CRFs as
post-processing for image splicing localization. Our Semi-Global network inter-
polates global features to patch classification/segmentation network. In addition,
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we use CRF-based post processing techniques to refine the output of the net-
work. Extensive experiments on three benchmarks demonstrate that our method
significantly improves the baseline and outperform other state-of-the-art algo-
rithms. We also evaluate our method by removing the necessary parts in the
experiments.

We hope that our proposed splicing localization pipeline might potentially
help other applications which need to constraint the relationship between local
and global when the low-level information(the relationship between pixels) is as
important as global features. Such as video splicing detection and scene labeling.
We believe our framework is a promise direction for further researches.
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