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Abstract. Realistic rendering of human behavior is of great interest for
applications such as video animations, virtual reality and gaming engines.
Commonly animations of persons performing actions are rendered by
articulating explicit 3D models based on sequences of coarse body shape
representations simulating a certain behavior. While the simulation of
natural behavior can be efficiently learned, the corresponding 3D models
are typically designed in manual, laborious processes or reconstructed
from costly (multi-)sensor data. In this work, we present an approach
towards a holistic learning framework for rendering human behavior in
which all components are learned from easily available data. To enable
control over the generated behavior, we utilize motion capture data and
generate realistic motions based on user inputs. Alternatively, we can
directly copy behavior from videos and learn a rendering of characters
using RGB camera data only. Our experiments show that we can further
improve data efficiency by training on multiple characters at the same
time. Overall our approach shows a new path towards easily available,
personalized avatar creation.

1 Introduction

Recently there has been great progress in the field of generating and synthesiz-
ing images [11, 18, 42, 14, 34, 23, 30] and videos [35, 33] which is important
for applications such as image manipulation, video animation and rendering of
virtual environments. Over the past years, in particular the gaming industry ea-
gerly improved their customer experience by developing more and more realistic
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Fig. 1. Our method can render target persons in a wide variety of behaviors. The
desired behavior can be either generated based on inputs from a game controller or
copied from a video.
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3D gaming engines. These progressively push the level of detail of the rendered
scenes, with an emphasis on natural movements and realistic appearances of the
in-game characters. Characters are typically rendered with the help of detailed,
explicit 3D models, which consist of surface models and textures, and animated
using tailored motion models to simulate human behavior and activity.

Recent work [13] has shown that it is possible to learn natural human behaviour
(e.g. walking, jumping, etc.) from motion capture data (MoCap) of human ac-
tors. On the other hand, designing a realistic 3D model of a person is still a
laborious process. Traditionally, explicit 3D models of the shape are manually
created by specialized graphic designers, followed by the design of textures re-
flecting a person’s individual appearance which is eventually mapped onto the
raw body model. In order to circumvent this laborious design process, passive
3D reconstruction methods can be utilized [3, 12, 1, 5]. While these methods are
able to achieve impressive results, they rely on data recorded by costly multi-
view camera settings |7, 5, 9, 1], depth sensors [15, 26, 29, 37| or even active 3D
laser scans [20].

Given the tremendous success of generative models [11, 18, 41, 17, 14] in the
era of deep learning, the question arises, why not also learn to generate realis-
tic renderings of a person, instead of only learning its natural movements? By
conditioning the image generation process of a generative model on additional
input data, mappings between different data domains are learned [42, 14, 16],
which, for instance, allows for controlling and manipulating object shape, turning
sketches into images and images into paintings. Thus, by being able to condi-
tion a rendering of a person on its body articulation, the laborious 3D modeling
process can be circumvented by directly learning a mapping from the distinct
postures composing human behaviors onto realistic images of humans.

In this work, we propose an approach towards a completely data driven frame-
work for realistic control and rendering of human behavior which can be trained
from Motion Capture data and easily available RGB video data. Instead of learn-
ing an explicit 3D model of a human, we train a conditional U-Net [28] archi-
tecture to learn a mapping from shape representations to target images condi-
tioned on a latent representation of a variational auto-encoder for appearance.
For training our generative rendering framework, we utilize single-camera RGB
video sequences of humans, whose appearance is mapped onto a desired pose
representation in the form of 2D keypoints. Our approach then enables complete
control of a virtual character. Based on user inputs about desired motions, our
system generates realistic movements together with a rendering of the character
in a virtual environment. Since our rendering approach requires only example
videos of the character, it can be easily used for personalized avatar creation.
Furthermore, because it operates on 2D keypoints, it can also be used for video
reenactment where the behavior shown in a video is copied.

We evaluate our model both quantitatively and qualitatively in an interactive
virtual environment and for simulating human activity from recorded video data.
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Fig. 2. Our pipeline for controllable synthesis of behavior: Motion controls obtained
from a game controller are used by ®prn to update a 3D skeleton. Combined with
a user controllable camera, we obtain a 3D projection of the skeleton with estimates
on keypoint visibility as well as a rendered image of the virtual environment. Using
the projected skeleton, we compute a stickman representation compatible with @render-
The remaining pipeline is similiar to Fig. 3 except that we do not need to perform
inpaininting.

2 Related Work

There is a large corpus of works available for tackling the problem of creating
realistic 2D renderings of 3D objects and persons, as well as their natural ani-
mation. In most cases this is still a laborious and manual process.

3D Modeling: The common approach for learning 3D models from visual data
of real objects or humans is a three-dimensional reconstruction of the object of
interest based on a collection of input images obtained from different camera
settings. Many works utilize multi-view camera recordings of their subjects in
combination with specialized shape models describing the human body configu-
ration [22, 3, 43, 12| or without additional shape priors |7, 5, 9, 1]. While these
approaches result in impressive reconstructions, obtaining the required input
data is costly and asks for specialized equipment and recording settings.

3D scanners and cameras with RGB-D sensors like the KinectFusion system
[15, 26] use depth information to increase the level of detail of the resulting 3D
models [29, 20, 37]. However, again specialized equipment is needed and extra
information used. In contrast, our approach is able to learn renderings of a sub-
ject from easily obtained RGB camera recordings.

There are only a few works which operate on monocular image data to learn
3D models. Moreover, these works typically neglect the individual appearance of
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the test subjects by modeling only posture skeletons [40, 31] or a fixed, neutral
template appearance [24, 27]. Only the approach of Alldieck et al. [2] addition-
ally learns the individual subject appearances and body shapes. However, their
method depends on the SMPL model [22] which was trained on a large set of
3D body scans, while our rendering model is solely trained on easily available
2D input data.

Conditional Image Generation: Generative models [11, 18] offer an or-
thogonal avenue to the task of rendering in-game characters. Instead of an ex-
plicit 3D model of a test subject, such models are able to generate images from
a latent space and allow for interpolating between the training images such as
viewpoint and subjects [32, 17]. Moreover, conditioning the image generation on
additional input data (such as class label, contours, etc.) allows for mappings
between the conditioning and target domain [25, 14, 41| and thus grants con-
trol over the generative process. Similarly to [10, 23, 30, 4, 19] we condition our
generative model on pose information.

3 Method

The degree of realism which can be obtained when generating renderings of a
certain behavior by a given test subject hinges on two crucial components: (i) a
realistic appearance model considering both the shape and texture of the person
and (ii) a motion model which is able to capture the dynamics of the behavior
and is able to control the deformation of the appearance model. Furthermore,
such a motion model must be able to describe the distinct body articulations in-
volved while performing an action and needs to simulate the natural transitions
between them, i.e. the actual behavior.

In our framework, visualized in Fig. 2, both components are represented by deep
neural networks, which are trainable from Motion Capture data and easily avail-
able RGB video data, respectively. Since the description of human shape and
motion is a well-studied problem with efficient methods available, we integrate a
pose estimation algorithm, OpenPose [6], for encoding human articulation and
a motion model, PFNet [13], into our framework. PFNet is not only suitable for
simulating natural human activity in the form of a keypoint representation, but
also allows for direct interaction with the model, which is a crucial requirement
for real-time game engines. Note however, that our framework is also able to
synthesize offline, i.e. recorded videos of a given behavior, which can be easily
represented by a sequence of corresponding shape descriptors.

For the rendering of a person we train a generative network conditioned on pose
representations obtained from the motion model and on latent variables repre-
senting the appearance of a person.

In the following, we first briefly describe PFNet. To be able to render the re-
sulting motion, we need to introduce a projection between world- and view co-
ordinates of the rendered person in the scene. Furthermore, the domain shift
from keypoint representations used for training our generative rendering model
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to those returned by the previous step must be addressed. Finally we present
our model for conditional image generation.
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Fig. 3. Our pipeline for behavior cloning: Given an input frame and a target appear-
ance, we first estimate keypoints of the input frame and a transformation to a bounding
box. The resulting cropped keypoints are then rendered with the target appearance.
We apply the inverse transformation to align the reposed target image with the origi-
nal input frame. Before alpha blending this output with the input frame, we perform
inpaininting to remove the original person.

3.1 Simulating Natural Human Behavior

When generating sequences of human poses, such as for animations or in com-
puter games, one usually has a good idea of what kind of action should be
the result. To generate highly realistic human action sequences so called Phase-
Functioned Neural Networks (PFNN) [13] make use of the intrinsic periodicity of
these motions. PFNNs such as that of [13] can be very shallow neural networks.
Instead of learning a single set of model parameters these networks are trained
to learn four sets of weights 6;, which are interpolated given a phase p by means
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of a Catmul-Rom spline (c-spline) interpolation ©:
0 =06{(0y,01,02,03) . (1)

In this work a three layer fully connected neural network @ppn with 512 hidden
units and Exponential Linear unit activation functions (ELU) oy is employed,
using these interpolated weights 6. At each time step ¢ the network computes
the joint locations of a human skeleton, in the following called stick man 37,
as well as the phase update Ap. Letting the network choose the rate of change
of p can be seen as having the network choose the rhythm of the current motion
pattern. To get a smooth update also the past and estimated future trajectory 7
at a total of 12 time steps is also given as an input. To control, which kind of
behaviour is generated, the network additionally accepts a control input ¢, which
allows a user to specify the desired motion pattern, such as walking or running
and its orientation.

93P, Apy = Sppx (9751 ¢ pes Te—6i0+6,0) (2)

3.2 Domain adaption

Fig. 4. Finding occluded keypoints using a simple polygon (shown
in orange) and the view of the eyes, relative to the orientation of the
camera. Occluded keypoints are shown in red, visible ones in green.
Note that in our approach keypoints inside the orange polygon are
marked as always visible.

Shown in Fig. 4 is an example of keypoints rendered as small squares given
through ¢3”. Their 2d screen positions are now used to define the 2d pose
input 9% to generate the final render of the person. As our rendering model
is trained given only the keypoints of visible body parts (see section 3.3) we
filter the keypoints returned by PFNN in two ways: (i) Keypoints of arms and
knees are marked as visible if the are not occluded by a polygon defined by
the keypoints of the hip and each shoulder. It is visualised in orange in Fig. 4.
Body keypoints are assumed to be always visible. Our experiments show that
although being very simple this approximation is sufficient. () Let x.ye be the
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vector describing the position of an eye keypoint, x,,se be the point in space
describing the position of the nose and X4, be the position of the camera. Each
eye ¢ € 0,1 is visible if

— ‘ (@)
0> (Xcamxnose X (—1)’ey> . Xnose T Xeye (3)
[Xcam = Xnose ‘ Xpose — ng)@”
with:
i 0 ?fl(?ft eye ’ @)
1 if right eye

where e, is the unit vector in y or up direction, x is the cross product and -
is the scalar product. See Fig. 5 for a visualization. The nose is marked visible
if one or both eyes can be seen. Occluded keypoints are marked red in Fig. 4,
visible ones green. Note that the skeleton looks away from the camera and the
left arm is occluded by the body.

o A’Q Xnose Fig.5. The visibility of the eyes is determined

: by their orientation relative to the camera. See

x(e(_v);)e D) equation 3 for details. If one or both eyes are visible,

XEye the nose can be seen as well. In this visualization e,

@ % points upwards, out of the paper plane towards the
Xeam reader.

3.3 Rendering

Our goal is to learn the rendering of characters from natural images. To achieve
this, we train a neural network to map normalized 2D pose configurations to
natural images. With this network available, we then project the 3D keypoints
obtained in the previous step to 2D coordinates according to the desired camera
view. After normalization of this configuration, we can apply the network to
obtain the rendering. Finally, the normalization transformation is undone to be
able to blend the character into the scene at the correct position. The different
steps are explained in more detail in the following.

Coordinate normalization In order to train the network, it would be very in-
efficient to predict images at different positions because the renderings should
be translation invariant. Therefore, we use the 2D joint coordinates to define a
region of interest which covers the joints and add 10% padding, to account for
the character volume. This results in a transformation M ,o-q Which can be used
to transform points as well as images using bilinear resampling.
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Image and Mask prediction For training, we assume that we have a large number
of images of characters in different poses. As it will be important to provide
images of a wide variety of poses, we utilize a network architecture which allows
us to train a single network on multiple characters to increase the number of
available poses.

For each training image of a character, we extract 2D joint positions and
segmentation masks. Using large scale labeled data for these tasks such as [21],
reliable estimation is possible. However, because we cannot predict positions of
occluded joints, we must be careful to simulate occluded joints during test time
as described in section 3.2.

Due to automatic estimation of joints and mask, we only require a large num-
ber of images of characters, which can be achieved efficiently by video recordings.
In order to make use of training data obtained from multiple characters, our net-
work must be able to disentangle the pose from the character’s appearance, a
task which has also been considered in [10]. Following these approaches, our net-
work has two inputs, one for the joint positions and one for the character image.
For preprocessing, the joint positions are converted into a stickman image to
be able to utilize skip connections as in a U-Net architecture [28]. Furthermore,
body parts are cropped from the character image to make sure that the network
has to use the stickman image to infer joint locations. The training objective
of the network is then given by reconstruction tasks on the original image as
well as the segmentation mask. For the mask, we use a pixelwise L1 loss and for
the images we use a perceptual loss which is highly effective as a differentiable
metric for perceptual similiarity of images [38].

Merge with scene Finally, we use the inverse coordinate normalization M C_O(l)rd to
transform the rendering and the mask back to their original screen coordinates.
In order to integrate the character with the virtual environment, we use alpha
blending between the rendered virtual environment and the character rendering.
See also Fig. 2. In the case of behavior cloning from video, we first utilize the
mask of the generated image to perform Image-Inpainting on the original frame.

The full pipeline for this case is shown in Fig. 3.

4 Experiments

We evaluate our rendering framework qualitatively and quantitatively using
dataset consisting of video sequences of three persons. The subjects were filmed
performing various actions like walking, running, dancing, jumping and crouch-
ing. The recordings were done according to three settings: First a free setting,
where actors were encouraged to perform a wide variety of movements without
restrictions. For evaluation purposes, we also collected videos in a restricted set-
ting, where the actors were restricted to standing still and performing only a
walking motion. Filming was done using a Panasonic GH2 in full HD 1080p at
24 frames per second. Each individual is shown in approximately 10000 frames.
For training our conditional generative model, all frames are annotated with
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keypoints using the openpose [6] library. Additionally a mask covering the per-
son in each frame is calculated using the deeplab [8] toolbox. Note that filming
could also be done with a cellphone camera or something similar, making this
approach feasible for a wide range of audiences.

4.1 Qualitative Results in Virtual Environment

For qualitative evaluation of the rendering capabilities of our framework in a
virtual, interactive environment, we adapted the testing APT of PFNet[13]. Our
rendering model is trained on all training images of our 3 subjects. While infer-
ence we extract the simulated keypoints of the API, project it from 3D world-
to 2D view coordinates while accounting for the domain shift and condition the
appearance rendering on the resulting output. Fig. 6 and 7 show our renderings
for two different simulated walking scenarios, given the shape conditioning and
different person appearances. Further, in Fig. 8 and 9 we demonstrate the need
for self-occlusion handling. Additionally Fig. 10 shows an ablation experiment,
where the same behavior as in Fig. 9 is rendered using nearest neighbor frames
from the training set. This experiment clearly demonstrates the ability of our
model to interpolate between the training images for generating smooth transi-
tions in appearance while simulating a given behavior. A video with examples
can be found at https://compvis.github.io/hbugen2018,/.

Pose Inputs
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Fig. 6. Walking sequence perpendicular to the viewer. Note how the model consistently
manages to generate the same pose for each appearance in each frame.

4.2 Qualitative Results on Video Data

We now show additional qualitative results by simulating different behaviors
as shown in video sequences. We trained our model using the full training sets
of our test subjects and applied it on keypoint trajectories extracted from the
PennAction dataset[39]. It contains 2326 video sequences of 15 different sports
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Fig. 7. Walking sequence towards the viewer at an angle. Note that our model can
generalize not only to different poses, but also to different perspectives.
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Fig. 8. Walking in circles without occlusion modeling. Note how at time steps ¢t = 0 to
6 there appear eyes on the back of the heads of the three characters. Compare this to
Fig. 9, where occlusion modeling is applied.

Pose Inputs

P ]k )

L sestebechshok shack sty
Tezskshsbebohek st

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Appearance Inputs

Fig. 9. Walking in circles with occlusion modeling. Note how at the first 6 time steps
there are no eyes at the back of the heads, as opposed to Fig. 8.
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Fig. 10. Walking in circles with occlusion modeling. Here we show the nearest neighbors
to each pose. Note how the images from time step to time step are quite different or
just stay the same. There is also no consistency of pose with varying appearance as
one can see, when comparing each image at a single time step.

categories. The dataset exhibits unconstrained activities including complex artic-
ulations and self-occlusion. Fig. 11 shows example renderings randomly selected
from different activities simulated by different persons. A video with examples
can be found at https://compvis.github.io/hbugen2018/. Further in Fig. 12 - 15
re-enactments of exemplary target behaviors are illustrated by temporal sam-
pling the source videos. Conditioned on the estimated pose from the individual
frames, we infer a new appearance and project the rendering back into the source
frame. Thus we are able to simulate the given activities by any person of our
choice.

4.3 Quantitative Evaluation of Pose Generalization

Standing Walking Full

training setting query augmented NN [query augmented NN |query augmented NN

SSIM 0.841  0.858 0.771|0.848 0.863 0.782/0.908 0.914 0.794

Table 1. Structural similarity scores (SSIM) for different training settings. ’query’
refers to test person data only and ’augmented’ refers to additional data augmentation.
'NN’ denotes the nearest neighbor retrieval results.

Let us now quantitatively evaluate the ability of our model to generalize
to unseen postures. For this experiment we train our model on three different
training subsets of varying variance in body articulation featuring only a single
person: (i) Only images showing the person while standing with relaxed arms,
(#) Only images the showing a test person walking up and down and (%ii) the
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Fig.11. Using randomly sampled poses from the PennAction dataset, our model is
able to generate realistic renderings conditioned on different appearances.

person’s full training set. Moreover, we also train models for each of these set-
tings with additional data augmentation by adding the full training sets of the
remaining test subjects. We then compute the mean structural similarity score
(SSIM)[36] between groundtruth test images and renderings of our model based
on their extracted postures. As a baseline we use nearest neighbor retrievals
from the different training sets also based on the extracted keypoints. Table 1
summarizes the results. As one can see, with increasing variability of the training
poses also the quality of the renderings improves. Moreover, data augmentation
in form of additional images persons helps our model to interpolate between the
training poses of the actual test subject and thus improves its generalization
ability. Note that on average our model outperforms the baseline by 9.5%, which
proves that our model actually understands the mapping between shape and
appearance.

5 Conclusion

In this work we presented an approach towards a holistic learning framework for
rendering human behavior. Both rendering the appearance of a person and its
simulating natural movements while performing a given behavior are represented
by deep neural networks, which can be trained from easily available RBG video
data. Our model utilizes a conditional generative model to learn a mapping
between abstract pose representation and the appearance of a person. Using
this model, we are able to simulate any kind of behavior conditioned on the
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appearance of a given test subject while either directly controlling the behavior
in a virtual environment or reenacting recorded video sequences.
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Fig. 12. Re-enactment of 'Baseball swing’. Green illustrates the target behavior and

red its simulation based on different appearances. Frames are uniformly sampled in
time.
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Fig. 13. Re-enactment of ’jumping rope’. Green illustrates the target behavior and red
its simulation based on different appearances. Frames are uniformly sampled in time.

This work has been supported in part by DFG project 371923335 and a hardware
donation from NVIDIA.
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Fig. 14. Re-enactment of ’jumping jack’. Green illustrates the target behavior and red
its simulation based on different appearances. Frames are uniformly sampled in time.
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Fig. 15. Re-enactment of ’tennis serve’. Green illustrates the target behavior and red
its simulation based on different appearances. Frames are uniformly sampled in time.
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