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Abstract. Vision based algorithms became popular for state estimation
and subsequent (local) control of mobile robots. Currently a large vari-
ety of such algorithms exists and their performance is often characterized
through their drift relative to the total trajectory traveled. However, this
metric has relatively low relevance for local vehicle control/stabilization.
In this paper, we propose a set of metrics which allows to evaluate a
vision based algorithm with respect to its usability for state estimation
and subsequent (local) control of highly dynamic autonomous mobile
platforms such as multirotor UAVs. As such platforms usually make use
of inertial measurements to mitigate the relatively low update rate of
the visual algorithm, we particularly focus on a new metric taking the
expected IMU-induced drift between visual readings into consideration
based on the probabilistic properties of the sensor. We demonstrate this
set of metrics by comparing ORB-SLAM, LSD-SLAM and DSO on dif-
ferent datasets.

1 Introduction

Robot pose estimation in unknown environments is an important and active
field. A proven method is simultaneous localization and mapping (SLAM), which
estimates the robots pose within a self-constructed map using one or more sensors
(e.g. camera, laser).

A subset of SLAM, which uses cameras to estimate the pose is known as
Visual-SLAM (VSLAM) or, without loop-closure, Visual-Odometry (VO). Both
methods can be used in either a stereo or a monocular (only up to scale) setup.
The latter being of particular interest for payload constrained robots like un-
manned aerial vehicles (UAV).

* The research leading to these results has received funding from the ARL within
the BAA W911NF-12-R-0011 under grant agreement W911NF-16-2-0112 and from
the Austrian Ministry for Transport, Innovation and Technology (BMVIT) under
the grant agreement 855468 (Forest-IMATE) and under the grant agreement 848518
(AVIS).
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Because of their agility, multirotor UAVs need pose estimation at higher fre-
quency than a camera based algorithm might provide (also limited by the camera
frame rate and the processing time). To overcome this problem, an inertial mea-
surement unit (IMU) is usually used to estimate the pose between two camera
measurements at high frequencies (>100Hz).

However, MEMS-based IMUs typically used in multirotors (because of price,
weight, and energy consumption) have a significant amount of noise and bias in
the acceleration and angular velocity measurements. As this noise and bias are
integrated for position twice (or even more in the case of the angular velocity
noise and bias for non-holonomic platforms like multicopters), it will generate
noticeable position drift over time. This can lead to mission failure and, in the
worst case, to accidents.

1.1 Problem Statement

When it comes to evaluation of the performance of VSLAM/VO algorithms,
researchers often only use the drift relative to the total trajectory traveled as
metric. In contrast to ground vehicles, UAVs are operating in 3D space and
cannot stop and wait for the result of pose estimation during flight (even hovering
needs continuous pose estimation).

Furthermore, IMU noise as well as gravity acceleration erroneously aligned
in x or y direction create correctional movements once the next vision based
update occurs. Such movements cause additional energy consumption and, even
worse, may destabilize the flight. Thus, for the decision about the best visual pose
estimation algorithm to be combined with inertial readings for closed loop vehicle
control, the time components of the vision system (execution time, latency, etc.)
are crucial rather than the global drift.

1.2 Contribution

We introduce a new metric based on statistical integration and the IMU noise
characteristics that penalizes abrupt position corrections of the state estimate
(which e.g. may happen after a long period of pure IMU integration and subse-
quent visual correction).

While this metric may be applied to all pose estimation algorithms using an
IMU as core propagation sensor, we focus on visual odometry and VSLAM in
section 5.

Our approach makes use of the probabilistic properties of the IMU noise and
drifts such that the suggested statistical integration can provide the expected
IMU noise and gravity-misalignment induced errors over time. This allows us
to predict the discontinuities occurring on a visual correction step based on the
characteristics of a potential IMU.

We develop a method to calculate the pose error based on IMU noise as well
as the gravity alignment (roll and pitch) error depending on time. The advantage
over existing metrics is twofold. First, time constraints are included in the metric
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in a meaningful way: while a slow algorithm may provide more accurate results,
the calculation time required to compute those results can decrease the overall
performance. Second, the roll and pitch errors can be mapped to the position
error. This enables evaluation of the pose error instead of only the position upon
a correction step.

Furthermore, we show that this metric can easily be extended to include
not only effects induced by IMU noise/integration errors but also to include the
(more classical) distance to ground truth.

Finally, we apply our metric on a set of state-of-the-art algorithms, namely
ORB-SLAM, LSD-SLAM and DSO and provide a comparison in order to demon-
strate usability and benefit of this proposed metric.

2 Related Work

A qualitative evaluation compares different approaches in terms of the used
methods, while a quantitative evaluation compares the results of the methods
using certain metrics on different datasets.

Younes et al. [15] provide a thorough overview of monocular visual SLAM
systems. They provide a historical overview as well as descriptions of techniques
used in different SLAM algorithms until 2015. Current state-of-the-art algo-
rithms are described and compared qualitatively.

Zia et al. [16] compare two different (semi-)dense algorithms quantitatively,
KinectFusion [12] and LSD-SLAM [4]. The metrics used are time per frame, ab-
solute trajectory error and energy consumption of the algorithms per frame. Fur-
thermore, the resulting (semi-)dense depth information is compared to ground
truth. Fuentes-Pacheo et al. [5] describe different VSLAM algorithms and com-
pare them qualitatively. While [15] sets its focus on the overall SLAM structure,
[5] elaborates on the feature extraction component of sparse algorithms and map-
ping challenges like loop closure or large scale mapping. Huletski et al. [6] provide
a qualitative and quantitative evaluation of ORB-SLAM [10], LSD-SLAM [4],
and OpenRatSLAM on the TUM-RGB-D dataset. As a metric, both the root
mean square error of the trajectory and a number of successful trajectory esti-
mations were used. In their work, ORB-SLAM performed best. Cadena et al. [2]
provide a thorough overview of general SLAM systems, common architectures,
history of SLAM, different available sensors, semantic interpretation of the re-
sults, and possible next steps to tackle the problem of SLAM as a whole. How-
ever, no evaluations of specific algorithms are included. Platinsky et al. [13]
compare sparse and semi-dense algorithms by constructing a new VO algorithm
with two approaches, covering a set of state-of-the-art direct algorithms.

Quantitative evaluations focus either on the positional error, other error met-
rics or on the energy/resources consumption of the device running the algorithm.
Recent work by Delmerico et al. [7] analyzed a number of the presently most
prominent visual-inertial estimators in view of a number of different metrics.
However, no focus is set on their use for closed loop control nor temporal as-
pects. Rather, the classical overall drift and memory usage is discussed.
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As an extension of the previous evaluations sections, the following papers
have a stronger focus on metrics itself.

Sturm et al. [14] investigate the absolute trajectory error (ATE) and the
relative pose error (RPE). Together with the overall drift error, these metrics
represent the current standard regarding SLAM evaluation. Nardi et al. [11]
introduce energy consumption by frame as a metric.

Kimmerle et al. [9] provide a metric used in the KITTI dataset, which,
similar to [14], tackles the problem that the overall drift error does not sufficiently
cover anything about the error during the flight, especially if loop closing is
involved. It considers the error introduced in each pose and disregards cumulative
error. It does not consider not temporal properties.

3 IMU Drift Function

In this section, we derive the statistical integration for the expected position error
based on both IMU noise and gravity misalignment to provide the mean drift
error over time originating from IMU sensor characteristics. This error can be
interpreted as the expected position correction a visual-inertial state estimator
will perform upon a visual reading. This naturally results in a discontinuity on
the time evolution of the estimated state and leads to abrupt behaviours in the
closed loop controlled systems.

First, we provide a calculation of the expected position error based on ac-
celerometer noise and bias drift. Second, we include the error induced due to
gravity misalignment originating from a wrong attitude estimation due to inte-
gration of gyroscope noise and drift. The gravity misalignment error results in a
position error due to the wrong subtraction of gravity from and the subsequent
wrong integration of the acceleration readings. Thus, the noise and bias drift
of the gyroscope contribute to the position error by integrating the error over
time 4 or 5 times respectively. We compare our model to both simulated and
real-world data. Last, we include the effect on position (i.e. the position error)
due to the wrongly calculated attitude, given by the VO algorithm. As roll and
pitch are observable in such frameworks, we expect (in the statistical sense) a
gravity aligned attitude measurement by the VO. However, the jitters (i.e. noise)
with which the VO algorithm estimates the attitude around the gravity aligned
mean upon a specific realization of the measurement will introduce additional
gravity alignment induced errors in the position until the next measurement.

3.1 IMU Noise Model

To estimate the IMU induced drift, the assumed system dynamics model is
described in equation 1.

p=v, v=R'a—g, R:enx, N=w (1)

With p being the position, v being the velocity, a being the acceleration, g
being the gravity vector, R being the rotation in SO(3) from the world frame
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to the body frame, §2 being the rotation in the tangent space so(3) and w being
the rotational velocity. £2« is the skew-symmetric 3 x 3 matrix based on the 3 x 1
vector 2.

The true acceleration a can be expressed as a = ap + Rg with a, being
the acceleration in the body frame and Rg being the gravity in the world frame
rotated into the body frame. ap = Ra,,, with a,, being the acceleration of the
IMU in the world frame.

Neither a nor w can directly be measured, as measurement noise always ex-
ists, especially on low-cost IMUs used in UAVs. The model of the error used here
is shown in equations 2-4 with a,, and w,, being the one-dimensional measured
linear acceleration and angular velocity respectively (with ¢ and w as unknown
true values). bg ., are biases and ng b, b, are noise parameters. The noise mod-
els are assumed to be equal in all axes. The noise model vector a,, is equal to

(@ Qs G )T and wyy, is equal to (W, Wi, win| T -
Um =0 —by — Ny, Wm =w —by, — Ny, (2)
by = b, s by, = o,y Na~ N(0,02), n,~ N(0,02) (3)
Np, ~ N(Oa O—Z%a)a ny, ~ N(Oa O—l?w) (4)

Note that the bias b is modelled as a Wiener process and the noise n is
modeled as zero mean white Gaussian noise. Both have their mean at 0. Because
of this, adding or subtracting the error is equivalent in the model.

Based on the IMU and the error model, the position error p and rotation
error R can be modeled in equations 5-7.

p="7 (5)
RT — ™ 2 = nyy + be (7)

For 5, a,, and g are both subtracted so only the erroneous values remain. ]
can be reformulated in equation 8.

v=RTay — ay + RTg -g+ RTRn, + RTRb, (8)

In this equation, RTRna can be reduced to n, and RTRba to bg. It is
assumed that the o, is equal for z,y and z direction of n,. This results in the
1o distance of n, being a sphere, which is invariant against rotation.

3.2 Average IMU Drift

Having an IMU model, the next step is to estimate the average IMU drift.
For this, first, the average of the normally distributed error has to be derived.
The probability density function of the normal distribution f(x]0,1) assigns a
probability to each possible error value z with the most probable error being
0. With x being an error measure, the absolute error |z| can be used as impact
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measure (i.e. how much an error affects the true value, as this is the case for
positional errors). Although x = 0 is the most probable case, it is also the only
case where the impact |z| is 0. While the error |z| for z > 60 is large, it is also
very unlikely to occur. Therefore, we suggest to weight the impact of the error
with the probability of its occurrence: |z| - f(x). The expectation is then:

. /OO @] - f(a)da ~ 0.7979 )

— 0o

Using this, the average IMU drift can be derived. Reformulating equation 8

for p yields
P = Pn, + Pb,, +Pg (10)
ﬁna = Ng, ﬁbna = bnaa p~g = RTg -g (11)

The position error has been split up into the translational noise error p,,,
the translational bias error Py, and the rotational error p, originating from an
erroneous allocation of the gravity vector to the wrong axes. The rotational error
with respect to the current acceleration RTa,, — ay, is being ignored as a,, is
assumed to be significantly smaller than g.

With n, being zero mean white Gaussian noise, the integration over time
U, is a corresponding Wiener process. Using stochastic integration, p,, can
be found. Similarly, with np, being the zero mean white Gaussian noise, by,
is a Wiener process and both vy, and pnp,  are stochastic integrals. ¢ is the
time in seconds in the following equations. All of those random variables can be
modelled to be Gaussian with the same mean of zero. To estimate the average
error, X can be replaced by u in these equations.

ng ~ N(0,0%) = 04-X, X~ N(0,1) (12)
_ _ t3 - t5
'Unazo'a'\/i'X7 Pn, =0a- §'X7 DPn,, = Ob, - %X (13)

As the average error uses the standard deviation for scaling and as both py,,
and Py, are modelled as random Gaussian variables, their variances can be
added. p; is the resulting average position integrating both n, and ns, .

3 5
P =P + P, =0k o (14)

The rotational error does not contribute directly to the integrated position
error. Instead, an erroneous rotation leads to a wrong rotation and subsequent
subtraction of the measured gravity. This leads to wrongly perceived body ac-
celerations which, through integration, lead to position errors.

We assume small errors and, thus, that the small angle approximation holds.
We can then express the acceleration error due to gravity misalignment orig-
inating from rotational errors as linearly dependent on the angular error. An
example for pure rotation around the y-axis is as follows (with g = [0,0,9.81]T):
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cos(a) 0 sin(a) 1 0o a-9.81
0 1 0 g—g=~ |0 10| -g—g= 0 (15)
—sin(a) 0 cos(a) —a01 0

Similarly, a linearized dependency can be derived for the gyroscope noise and
bias drift. Based on this, it is possible to calculate the integrated coefficient for
the gyroscope noise and bias noise depending on time for the expected error.
Here, f)nw is the integrated linearized position error based on gyroscope noise
and flnbw is the integrated linearized position error based on gyroscope bias

noise. §2 is the result of both error sources integrated concurrently.

~ tP ~ 7
2, :UZ'%'MQ’ 2, :Ugw'@'/ﬁz (16)
QQZGQ.ﬁ.M2+o’2 .i.'u2 (17)
w20 b 252

We can extend the above notion to the more general so(3) tangent space of
the SO(3) group. so(3) consists of three distinct elements in the vector 2, each
of them corresponding to the amount of rotation around one axis in radiants.
Using the matrix exponential ef?x | it can be converted into the rotation matrix
representation R.

This will give an correct estimation up until U%W . %2 < /2. The main reason
for the small-angle approximated derivation being valid even for larger angles
lies in the fact that the integration can be seen as the repeated application of
subsequent infinitesimal rotations. This also corresponds to the property of the
so(3) tangent space of SO(3) that multiplications in SO(3) can be reduced to
additions in so(3). This derivation has been tested in simulations as well as with
real-world data (see Figure 2).

To extract the erroneous acceleration resulting from the rotational misalign-
ment of gravity, the gravity vector g is used with the resulting error rotation
matrix e?x (note that the standard deviation is used here):

Pg=e""g—g (18)

The average position error p and the average rotation error 9] depending on
time are therefore

~ o t7
”(”:\/"5'2()'“2”5;252‘“2 (19)
- t3 , t° -
p(t) = Uﬁ'g'u2+aba~%-u2+(enxg—g)2 (20)

In Figure 1 the development of the positional error over time can be seen,
based on the values for a MEMS IMU sensor used in a commercial UAV. While
the positional noise error e, is larger than the positional bias error e, —at the
beginning, the faster growth of the bias error can be seen at 3 seconds. The
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Fig. 1. Growth of different position error sources over time in seconds. Errors are
in meters. The following values have been used: o, = 0.0054,0,, = 0.0045,0, =
0.00079, 03, = 0.00008. ey, and €rot, are overlapping.

positional error based on the wrong handling of the gravity vector is the main
source of error in both z and y directions while it is negligible in z direction.

This confirms real-world experiences as a very small drift in z direction com-
pared to the x and y direction has been observed in experiments. The main reason
for this difference lies in the structure of the gravity vector: g = [0,0, —9.81]7.
For roll and pitch errors, the sine is applied to the z entry of the gravity vector in
y and z direction respectively within the rotation matrix R” while 1 minus the
cosine is applied to the z direction. For the yaw error, the error rotation does
not result in a wrong application of parts of the gravity vector and therefore
does not contribute to pg.
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Fig. 2. Comparison of predicted and real-world data. est is the predicted data (values
from Figure 1) while imu is the measured and integrated data over 350 IMU readings.
Left is the translational error, to the center is the rotational error and to the right are
both errors.

In Figure 2, the predicted positional error compared to the measured posi-
tional error can be seen. For the measured positional error, an IMU has collected
data while being stationary. For every 10 seconds segment of this data, the biases
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have been calculated at the beginning of the segment. The values shown in the
graphs are the mean of 350 segments with 10 seconds each.

The left part shows the error introduced by accelerometer noise while the
center part shows the error introduced by first integrating the gyroscope noise
and then multiplying the gravity vector with the rotational error. The right part
shows the result of integrating both errors simultaneously.

3.3 Visual Odometry induced Gravity Misalignment

An additional error source is the inaccurate attitude computation by the visual
part, or more generally, the attitude error that remains after an update step.
This rotational difference Rup multiplied by the gravity vector will introduce
further drift in addition to the above discussed mean IMU-induced drift. As only
the next (visual) update can correct this error — there is only dead reckoning
in between update steps — we model this error as being constant between two
update steps.

In our metric, we are interested in the difference of the estimated position
before and after the update since the discontinuity occurring at (i.e. right after)
the update step affects the underlying controller. Due to the dead-reckoning in
between update steps the maximum drift will have happened right before the
update has been processed.

Qyp is the erroneous acceleration resulting from a misaligned gravity vector
after an update step. Integrating twice over time results in the position error
Pup-

- ~ - 2 2 .
Gup = |Rup - g — g, pup(t)zg'aup:§'|Rup'g_g| (21)
20 T

% y — est

: 15 s -~ 05°

z oS 10

5 5 L

0 100
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Fig. 3. Position error in x direction assuming an erroneous rotation around the y axis.
est shows the estimated IMU drift error with values from figure 1.

Figure 3 shows typical position errors evolving over time assuming different
magnitudes of remaining angular errors after an update step. It can be seen that
it may take tens of seconds or even minutes until the above discussed IMU drift
error surpasses the gravity misalignment error due to the errors remaining after
an update step.
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4 IMU-Drift based Metrics

4.1 Modified Relative Pose Error

As mentioned earlier, we assume that a visual odometry algorithm is combined
with an IMU on a quadcopter. In such a system, discontinuities in the state
estimation occur upon each visual measurement. Such discontinuities in the es-
timated state result in fast corrective actions of the underlying controller which
could break both the controller and the VO/VSLAM algorithm (e.g. due to mo-
tion blur because of the sudden movements). Thus, we assume — from a closed
loop control point of view — that the smaller the discontinuities are, the better
the performance of the estimator is.

A metric with a similar goal already exists in literature. The relative pose
error (RPE) [14] can be described as the difference between the position change
according to ground truth and the position change according to the VO algo-
rithm. In the equation 22, p, is the estimated position while pg: is the ground
truth position.

1 n
Mrpevo = - > llabs(pge, — Pgt;_,) — abs(pa; — Pa;_,)l2 (22)
i=1

For our purposes, we model that the correct part of the estimated pose change
has been handled by the correct part of the IMU measurements read between
two subsequent updates. Between two poses, IMU drift as well as drift based
on gravity misalignment occurs. We extend the existing metric with these two
values. This extended metric has three advantages:

— The time component is brought into the metric, preferring updates with a
higher frequency over those with a lower frequency. Furthermore, it takes
the processing time to generate an update into account as the correction can
only be used when it is available, even if it is applied retroactively based on
the time stamp of the camera image.

— The roll and pitch errors results in a position error, making both comparable
in a meaningful way. Instead of only measuring the position error, the whole
pose error excluding yaw is used.

— Because of the estimated drifts, the incorporation of time is weighted so that
not the fastest algorithm is preferred, but instead the one resulting in the
lowest overall error producing the least amount of distance change before
and after an update.

The extension itself builds upon the work in the previous chapter with At
being the time between two updates and T being the overall time:

Mrpeqr i (t) = abs(abs(pgti - pgti—1) - abs(pai - pai—l)) (23)

At - -~
Mrpegripe = Z ?Hmrpedrift (At) + p(At) + pup(At)HQ (24>
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4.2 Modified Absolute Trajectory Error

While our modified RPE calculates the magnitude of the discontinuity between
two pose estimates, it does not take the difference between estimated value and
ground truth into account. It may be interesting to see the mean divergence from
ground truth over time.

For this, we extend another metric, the absolute trajectory error (ATE) [14]
which can be described as the translational difference between the estimated and
ground truth trajectory, assuming both trajectories have been aligned using a
linear least squares approach to minimize the error.

1 n
matevo = g Z Hpgti - pai ‘ |2 (25)
i=1

At - -
Mateqgrife — Z 7||ab3(pgti—1 — Pa,_,) + P(AL) + pup(At)||2 (26)

Note that the above developed metrics are not constrained to vision based
estimators. In fact, as long as the IMU is used as a state propagation sensor
together with one or more measurement/update sensors, these metrics can be
applied. In the following section, however, we limit the demonstration to appli-
cation of the metrics to loosely coupled vision based sensor fusion systems.

5 Applying the Metrics

To evaluate our proposed metrics we selected multiple camera pose estimation
algorithms and performed tests in real-world environment. The algorithms were
executed on an Odroid-XU4. This computing device offers 8 CPU cores (4x2GHz,
4x1.4GHz), ARM architecture and the low weight from 38g makes is suitable for
usage on micro aerial vehicles.

As testdata we use the FuRoC' [1] dataset. It was created with a multi-rotor
UAV equipped with a VI-Sensors. It offers camera (stereo 752x480, ~20Hz), IMU
(~200Hz) and ground truth measurements for a total of 11 sequences in 3 sce-
narios. Because of the similarity of our assumed scenario - multi-rotor UAV flight
in GPS denied scenarios - we chose it as our main evaluation dataset. From the
sequences we selected four sequences where 6 DoF ground truth is available from
a motion capture system. We selected these particular four sequences because
all tested algorithms provided acceptable failure rate for multiple runs.

We selected 3 state-of-the-art visual odometry or SLAM algorithms with
different approaches to camera pose estimation to evaluate the influence of our
new metric on the results.

ORB-SLAM by Mur-Artal et al. [10] combines current state-of-the-art com-
ponents to create a sparse SLAM algorithm (similar to PTAM [8]). It uses feature
detection with binary descriptors and bag-of-words for mapping and loop closure.
For our evaluations we used ORB-SLAM?2 which is a computationally improved
version of ORB-SLAM still adhering to the same principles and components.
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LSD-SLAM by Engel et al. [4] is a direct, semi-dense, graph-based algorithm.
Image alignment is achieved using a Gauss-Newton optimization to minimize
the photometric error using depth information. This depth map is kept in a
keyframe-based approach with each measurement improving the depth estima-
tion within a keyframe.

DSO by Engel et al. [3] is a direct, sparse, graph-based method. It has similar-
ities to LSD-SLAM with the main difference being sparsity. Instead of selecting
all available image gradients, a set of points is chosen by splitting the image
into d x d blocks with d being an adaptive factor. In each block, the pixel with
the largest gradient is selected as long as it surpasses a certain threshold. This
point is tracked and intensity differences are used to estimate the position in a
Gauss-Newton procedure.

For each algorithm, we carried out 12 runs and averaged the results which are
shown in table 1. Runs in which the algorithms failed to generate pose estimation
for the majority of the sequences were discarded. The generated trajectories were
scaled, rotated and aligned to the ground truth trajectory so that the squared
error is minimized. All metrics are calculated on the aligned trajectories.

We considered the latency m; in seconds, the absolute trajectory error mg¢e
for both the original version mggey, and our drift extension mage,,,,, as well
as the relative pose error mgp. for both mypey, and Mmype,,. ., all of them in
millimeters. The latency is the time needed by the algorithm from receiving an
image to the estimated pose.

Each entry in the table was generated by using the mean over all updates for
multiple runs. DSO has the lowest latency of the compared algorithms, followed
by ORB2. In terms of the absolute trajectory error mgte, ,, ORB2 performed
better than the other algorithms. This also fits to the fact that ORB2 has the
most sophisticated mapping component compared to the other two algorithms.
While LSD and DSO both use a windowed bundle adjustment approach, ORB2
fits the data against an iteratively filled map which reduced the trajectory drift.

Compared to the first sequences of each scenario, v1_02 and v2_02 have faster
movements and rotations. Because of the limited computational power of the
target platform the VO algorithms perform worse when facing more challenging
movements.

DSO [ 118 VO Err9r
B IMU Drift
LSD ] | |EHRoll/Pitch
ORB2 | :
! ! !
0 5 10 15 20

Fig. 4. Error sources for different algorithms on the v1_01 scenario according to the
Mypeg,ipe Metric in mm. IMU Drift based on IMU noise, Roll/Pitch on VO rotational
error based gravity misalignment (rpeyp).
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my Matey o Mateqrife Mrpeyo Mrpeqrift
[ms] [mm] [mm] [mm] [mm]
DSO
v1_01 92 144.803 146.648 7.528 8.729
v1.02 81 391.209 392.446 32.549 33.869
v2_01 90 131.584 133.571 13.323 16.085
v2.02 80 157.105 158.317 19.370 20.623
ORB2
v1_01 186 25.237 27.635 11.989 14.149
v1_02 164 28.500 29.438 21.268 22.237
v2_01 172 100.727 106.129 21.154 27.418
v2_02 161 147.211 152.946 42.061 47.435
LSD
v1.01 156 319.002 324.386 7.846 13.164
v2_01 46 217.178 218.859 8.400 9.964
Aggregation
DSO 84 304.423 306.474 20.247 22.335
ORB2 175 104.980 110.257 25.351 30.595
LSD 108 269.520 271.648 9.562 11.837

Table 1. Results over multiple runs per sequence and algorithm. m; is latency, matey
and Mate,,;;, are ATE without and with our drift extension, mypey, and Mrpey,.,
are RPE without and with our drift extension.

Figure 4 shows the mpe,, ., error for the v1_01 scenario for DSO, ORB2 and
LSD, separated into the visual odometry based position error mype,,,, the IMU
drift error and the gravity misalignment error based on roll and pitch error. The
IMU drift error is very small compared to the roll and pitch error. This corre-
sponds to the 100 — 200 milliseconds needed to generate a new VO measurement.
In such a time frame, the IMU noise was not yet able to accumulate enough drift
to have an impact compared to the other two error sources.

Using our extended metric, it can be seen that the costs roughly increase by a
tenth compared to only using the VO position error. This mostly corresponds to
the roll and pitch error over the duration of the latency. Because the differences
between the algorithms are larger than the additionally introduced error, this
does not change the order. It also fits to the observation that with at least ten
frames per second, smooth flight is possible.

Selecting less frames per second would increase the impact of our metric.
However, we saw in practice that the algorithms used are already quite fragile
regarding tracking failure, which is also the main reason for using the easier
sequences. Lower frame rate further decreases the amount of successful runs.

Comparing the error increase of the other three metrics, DSO performs best.
This is mainly because the low latency results in less time available to apply
position drift.
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6 Conclusion

In this paper we introduced novel metrics to evaluate the performance of VS-
LAM/VO algorithms for IMU aided state estimation and subsequent closed loop
control of agile mobile platforms.

Existing work predominantly focuses on the pose estimation performance
of such algorithms without considering their use for closed loop control in au-
tonomous navigation scenarios. Thus, with the proposed metrics, VSLAM/VO
algorithms can be evaluated according to their real performance in a visual-
inertial setup for vehicle control.

We particularly focused on the newly defined and suggested metric of IMU
induced drift which accounts for the position offset due to IMU integration errors
based on the probabilistic properties of the inertial sensors. This metric favors
fast yet accurate vision updates at all time and, thus, combines at the same
time algorithm robustness (few measurement drops), high algorithmic speed (low
computational complexity and thus low latency), and estimation precision in a
single metric. The latter results from the requirement of propagating the state
(aid of IMU readings) to the current time in order to feed the vehicle controller
with most recent state estimates. This even holds for delay compensated frame-
works applying the visual measurement at the correct time in the past.

Using our set of metrics, we tested and compared three different state-of-
the-art algorithms on multiple scenarios. We showed that the proposed set of
metrics is general and applicable on any framework generating time-discrete
pose updates. Regarding the IMU-drift metric, our example evaluations have
shown that a multitude of information previously shown in different metrics
(latency or framerate, position error, rotation error) has been combined in a
single, meaningful way including temporal information.
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