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Abstract. To take advantage of recent advances in human pose esti-
mation from images, we develop a deep neural network model for action
recognition from videos by computing temporal human pose features
with a 3D CNN model. The proposed temporal pose features can pro-
vide more discriminative human action information than previous video
features, such as appearance and short-term motion. In addition, we pro-
pose a novel fusion network that combines temporal pose, spatial and mo-
tion feature maps for the classification by bridging the gap between the
dimension difference between 3D and 2D CNN feature maps. We show
that the proposed action recognition system provides superior accuracy
compared to the previous methods through experiments on Sub-JHMDB
and PennAction datasets.

Keywords: Action Recognition - Multi-stream - Fusion - Pose Estima-
tion

1 Introduction

In light of the recently launched evolution of deep learning, the research of action
recognition, being one of the most widely applicable study in computer vision
(e.g., video surveillance, human-computer interaction [11]), has been focused on
developing innovative solutions for the subject matter via deep learning [21, 23,
25,16).

Perhaps the most integral factor in achieving accurate action recognition
results resides in the extraction of discriminative temporal clues within videos.
Thus, though there exists a cornucopia of information in a video, researchers
can never be overly scrupulous about their selection of features when it comes
to optimizing the performance of action recognition algorithms.

Some achieved the capturing of temporal clues via feeding convolutional neu-
ral networks (CNNs), both two-stream and classical ones, with optical flow fea-
tures [23, 25,16, 15]. Some utilized recurrent neural networks (RNNs) to model
the inter-relationship between high-level features extracted from the fully-connected
layer of a CNN for action recognition. However, we argue that in general, ex-
tracting temporal human pose based feature is the most effective way for human
action recognition from videos.
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In this paper, we propose a 3D CNN network that is capable of exploiting
temporal pose features within videos. Our method demonstrates the effectiveness
of pose-based features in terms of modeling temporal information for human
action recognition. We also develop a multi-dimensional fusion method to fuse
the features extracted from 3D pose stream and 2D two-stream architecture,
which further enhances the performance of our multi-stream posed-based CNN.

Our main contributions in this paper are summarized as follows:

— We propose a novel 3D temporal pose CNN for utilizing pose-based features
to effectively capture the temporal human pose features in videos for action
recognition.

— To take the advantages of both 2D and 3D network, we present a simple
but highly effective multi-dimension fusion network which bridges the gap
between 3D and 2D CNN feature maps and enables our model to lever-
age 3D temporal pose, spatial, and motion feature maps for human action
recognition.

— By conducting extensive experiments, we validate the performance of the
proposed framework and show that the proposed multi-stream action recog-
nition system provides superior accuracy compared to the previous methods
on Sub-JHMDB [13] and PennAction [26] datasets.

2 Related Work

2.1 Pose-Based Action Recognition.

As a kind of high-level visual information, human pose features are exploited
in many works with different architectures of pose-based action recognition ap-
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proaches [5,2,12,7]. [5] introduced a new video descriptor called P-CNN, which
was derived from aggregating appearance (RGB) and short-term motion (optical
flow) features around different human body parts across the whole video, and
then such video descriptor was used to train a linear SVM classifier. Cao et al. [2]
proposed to pool 3D deep CNN activations of different segments of a video using
joint positions of frames in the video. By aggregating features across segments
to form a video level representation, the aggregated result is input to a linear
SVM for classification. [7] developed an end-to-end recurrent pose-attention net-
work to leverage pose features with attention mechanism. However, the purpose
of these works to utilize pose-based features is to indicate an attention region
for other kinds of features, which we believe is not the optimal utilization of
pose features. The main difference between the proposed method with previous
pose-based methods is that we generate fused joint position maps and directly
use as the input of 3D CNN to further model their temporal information.

2.2 Two-Stream-Based Action Recognition.

The deep learning approach of action recognition is a very active research area
in the past few years [21, 23,25, 16,8, 6,17, 14, 22]. Among several standard CNN
architectures in action recognition related field, the two-stream CNN approach
[21] is simple but highly effective [15]. It leverages the power of two single stream
CNN to predict actions in videos: one for modeling the appearance clues in RGB
images, and the other stream for capturing short-term motion in optical flow
images. Recently, there are several works proposed to enhance the two-stream
architecture. [23] proposed a sparse temporal sampling strategy and a series
of good practice to further enhance the performance of [21] and make it more
efficient. [1] aggregated local convolutional features of the two streams to intro-
duce a new video representation for action classification. [25] included the audio
stream and adopted LSTM networks to explore long-term temporal dynamics.
In this work, we combine the two-stream architecture with a 3D CNN based
pose stream by using a novel fusion method.

2.3 Multi-Stream Fusion.

In the original two-stream method [21], since the authors just simply fuse the
features with average fusion, which only average the prediction scores of the
softmax layer in both streams. [8] improved the original work by fusing the
two streams with a single convolutional fusion layer. [25] took action class rela-
tionships into account to learn the best fusion weights of different deep neural
network streams for different action classes. [16] used multiple 2D convolution
layers to model the concatenation of features in different domains. However, all of
these previous works only developing the fusion techniques based on the feature
maps with the same dimension. In our work, we propose a novel fusion method
to fuse the 3D convolutional pose stream with the 2D convolutional appearance
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stream and the 2D convolutional short-term motion stream by utilizing the pro-
posed feature compression sub-network to bridge the gap of the discrepancy of
feature dimensions of the three target CNN streams. The design details will be
discussed in Section 4. We will compare the proposed multi-stream action recog-
nition method with the state-of-the-art methods on some public datasets, which
will be described in section 5.5.

3 Pose-based Action Recognition

In this section, We propose a CNN based model for action recognition based on
using the human pose features. With the help of human pose features and pro-
posed channel-wise convolution techniques. We present a novel way of utilizing
pose features for human action recognition. We first briefly introduce the pose
estimation method in section 3.1, and then provide the details of the proposed
method in section 3.2-3.4

3.1 Pose estimation

In this paper, we generate the pose estimation result from a strong bottom-up
multi-person pose estimator [3,20,24], which is capable of computing human
pose features in different scales and positions with real-time speed. A sample
result of human pose estimation is shown in figure 2(a). Instead of directly using
their pose estimation result, we propose some pre-processing procedure to best
utilize the multi-channel human joint position maps.

oo ,
(a) Pose estimation (b) Joint position map

Fig. 2. An example of (a) the visualization of original pose estimation result and (b)
the joint position map in our action recognition model.

Joint Position Map: Figure 2(a) shows the pose estimation result of [3,
20, 24], which utilizes different colors to denote different human joint positions.
For the reason that the input dimension to the 3D CNN will be very large
with the concatenation of the feature maps in temporal domain, we do not
directly apply this result to 3D convolutional neural network, Instead, we take
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the 15-channel heatmaps of their estimation result and generate a joint position
map by using channel-wise convolution, which is shown in figure 2(b) as the
input of 3D convolutional neural network to extract the spatial and temporal
features in human action. The details of the channel-wise convolution will be
given subsequently in this section.

3.2 Pose-based CNNs

In this work, with the belief that high-level pose-based features outperform the
mid-level flow-based features [13] for action recognition, we extend the optical
flow stacking CNNs [21] [23] to human-joint-part stacking CNNs to better cap-
ture spatial and temporal clues. The flow diagram of our pose-based 3D CNN
model is depicted in Fig. 3.
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Fig. 3. Flow diagram of the pose-based 3D CNN model

Channel-wise convolution: To leverage the information computed for all
human parts, we first compute the the 15-channel heatmaps to generate the
joint position map [13], which can be considered as the linear combination of
the probability maps for the corresponding human parts. According to the ex-
perimental results in Table 3, we found that utilizing two 3D convolution layers
to merge the features from a 15-channel heatmap achieve the highest accuracy
in our experiments.

Stacked joint position: According to recent success in 3D CNNI9], we
utilize the 3D residual network to model the pose-based feature and also compare
its performance with a 2D network, which is used in the motion stream of [21]
for modeling temporal clues. The details of our experiments will be described in
section 5.1. Here, we denote P:(u,v) to be the probability map of human parts
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at the point (u,v) at frame ¢. To model the temporal information of human
joint parts across a sequence of frames, we stack the joint position map over
L consecutive frames to form a stacked joint position map of totally L input
channels. More precisely, let w and h be the width and height of videos. For
u=[l:w],v=1[1:h], k=[1: L], the input volumes of the pose-based CNNi,
3% and 1?4, at frame t are constructed as follows:

For 3D CNN, I2(k,1,u,v) = Pyp_1(u,v) (1)
For 2D CNNs, 12%(k, u,v) = Piyp_1(u,v) (2)

The main difference between 2D and 3D approaches is that 2D CNNs only
model temporal clues at the first convolution layer. On the contrary, 3D CNNs
are capable of modeling temporal clues at all convolution layers. In section 5.1,
we will have some discussion of the pros and cons between 3D and 2D network.

Human detector: Since the intensity in the human pose heat maps is con-
sistent with the region that contains human, our experimental results in Table
5 show that utilizing ground-truth bounding box to crop the person in action
can significantly improve the action recognition accuracy and we also compare it
with the state-of-the-art human detection method (Faster R-CNN[19]) in Table
5.

3.3 Transfer Learning for ImageNet Pretrained Weights

We also combine two powerful transfer learning techniques: the cross-modality
pre-training[23] and bootstrapping 3D filter from 2D filter[4]. By applying the
combination of these techniques on ImageNet pre-trained weights, we are able
to transfer the knowledge from image domain to pose domain and bootstrap
our pose-based 3D CNN. The combination method is constructed as follows.
We first follow [23] to modify the weights of each convolution layer of ImageNet
pre-trained model to handle the input of our stacked joint position field. More
precisely, we average the weights across the RGB channels and replicate this
average by the channel number of 2D pose-based network. Then we apply the
idea in [4] to process the weights of 2D pose-based network for utilizing in 3D
pose-based network. Since the architecture of 3D residual network is inflating
from 2D residual network, for these 3D filters of size N « IV x N are formed by
expanding an additional dimension from the 2D filters of size N x N. Thus, by
repeating the weights of the 2D filters IV times along the time dimension, and
rescaling them by dividing by N, we can generate the weights for pose-based 3D
CNN. The transfer learning method not only successfully reduces convergence
time but also improves the accuracy of our model. The experimental result is
shown in Fig. 4

3.4 Implementation Details

Hyperparameter: In the training stage, we set the initial learning rate of pose
stream as 1 x 1072 and it is divided by 10 when the validation accuracy is
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Fig. 4. The validation of transfer Learning techniques on pose-based 3D resnet18. The
blue line denotes the model with transfer learning from Imagenet and the red line
denote the model without transfer learning techniques.

saturated. The weight decay is set to be 1 x 10™%, momentum is set to 0.9, and
we use SGD as the optimizer for training. In the testing stage, we slice each
video into a non-overlap 15 frames clips and the prediction score of each video is
the average of the prediction of each clip in a video and this proposed framework
is trained and tested with mini-batch size 32.

Data Augmentation: To boost the performance of our model, We utilize
both spatial and temporal augmentation mechanism to train our model. For
spatial augmentation, after generating the stacked joint position maps for a 15-
frame video clip, we first resize it into [15,1,128,128] and utilize the random
crop technique to crop a [15,1,112,112] joint position map as the input of our
pose stream. For temporal augmentation, we follow [4] to pick a starting frame
among those that guarantee a desired number of frames in each stack.

4 Multi-dimensional Fusion Network

In the two-stream architecture [21], a video sequence is first preprocessed to ob-
tain the RGB frames and the optical flow maps, and then two independent CNNs
are used to compute the spatial and temporal features, respectively. This frame-
work provides the baseline model for action recognition research. Furthermore,
there are several different extensions on this architecture for either better fusing
the spatial and temporal feature[16] or enhancing the way of modeling tempo-
ral clues[23]. While the recognition accuracies reported by these previous works
are quite excellent, we argue that precise human joint positions [13] provide
very critical features for action recognition. Thus, we propose a pose-based 3D
CNN based on Residual Network[10] as an additional stream on a multi-steam
framework for action recognition.

4.1 Multi-dimensional Fusion

Due to the excellent performance for the two-stream architecture, we propose
to include the pose-based approach into the two-stream framework to construct
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Fig. 5. Flow of the multi-dimensional fusion network: (N x N conv, k) denotes
a convolutional layer with kernel size N x N and the output filter dimension k.

a multi-stream CNN model, which combines spatial, short-term motion and hu-
man joint parts motion for action recognition. Motivated by the spatial-temporal
fusion networks[8][16], we propose a novel fusion method to take advantage of
the pose-based 3D CNNs and the two-stream CNNs such that channel responses
of different types at the same pixel position were integrated appropriately. Here
we intend to follow [16] to utilize convolution fusion for combining the feature
maps for different streams. However, the main difficulty is that the previous fu-
sion methods are only capable of fusing the feature maps of the same dimension.
In other words, the previous fusion methods can not fuse feature maps of 2D
and 3D networks.

Fusion of 2D and 3D CNN: To overcome the problem of fusing feature maps
of different dimensions, we design a multi-dimensional fusion method. Here we
demonstrate our techniques with spatial resnet50, motion resnet50 and pose 3D
resnet18. Firstly, we follow [16][8] to extract the spatial, motion and pose feature
maps before the average pooling layer, whose shapes are [2048,7, 7], [2048,7, 7],
[612,1,4,4], respectively. Then we design a feature compression network for re-
ducing the feature dimension of spatial and motion feature maps to [512,4, 4],
which can be concatenated with the 3D pose-based feature maps.

Feature compression network: There are many existing methods to reduce
the dimension of features (e.g. average pooling, max pooling and conv fusion).
According to [16], which states that using multiple convolution layers to gradu-
ally reduce the dimension is better than directly applying average or max pool-
ing. Hence, we follow the concept to design our network for dimension reduction.
The implementation detail is depicted in Fig. 5.
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4.2 Implementation Details

Multi-stream model input: We use RGB frames and stacked optical flow
maps as the input of the spatial and motion streams, which follow the pre-
processing procedures used in [21]. For the pose stream, we first apply the human
pose computation method in [3,20,24] to generate 15-channel heatmaps, and
then follow the procedure in section 3.2 to generate the input of the pose-based
CNNgs.

Hyperparameter: In the training stage, the learning rate of multi-dimensional
fusion network is initially set to 1 x 1072 and divided by 10 when the validation
accuracy is saturated. The weight decay is set to be 1 x 10™%, momentum is set
to 0.9, and we use SGD as the optimizer for the training. The testing scheme is
similar to that used in the single pose-stream method given in section 3.3. All
of these models are trained and tested with mini-batch size 32.

Data Augmentation: For the spatial stream, we first resize an input image
to [256,256] and apply random cropping to crop a [224,224] sub-image as the
training data. For motion and pose streams, we utilize temporal augmentation
mechanism proposed in [4] by picking a starting frame among those that guar-
antee a desired number of frames in each stack. The augmentation method of
pose stream remains the same as the techniques described in section 3.3.

5 Experimental Evaluation

To demonstrate the importance of the pose-based features, we evaluate our
model on two widely used pose-related action recognition benchmarks; i.e., Sub-
JHMDB[13] and PennAction[26] datasets. Furthermore, we use the published
evaluation protocol of Sub-JHMDB (splitl) and PennAction to report the clas-
sification accuracy for both datasets.

Table 1. Comparison of methods based on High-level pose features: SJP,
OF, box denote stack joint position, optical flow and cropping by human detection
bounding boxes, respectively, and L. denotes the number of frames in each stack. Note
that in these experiments, we first utilizing average fusion to model the features of each
channel of human joint heatmap to test our pose-based method.

Input features Network Sub-JHMDB PennAction

Stacked OF 2D resnetb0 45.4 85.4
SJP 2D resnet50 57.3 86.1
SJP+ box 2D resnet50 61.8 89.8

SJP+ box 3D resnetl8 67.4 90.0
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5.1 Performance of Pose-based CNN

To investigate the properties of pose-based CNN, we design several methods to
utilize high-level pose features in CNN and compare them to the original stacked
optical flow methods, which is proposed in [21].

Furthermore, we evaluate the proposed method with different stack lengths
(L), which denote the temporal footprints [4] in the videos. In action recognition
related field, the temporal footprint is a key factor to design an action recognition
algorithm. Therefore, we validate the effectiveness of the temporal high-level
features on the two popular benchmarks.

According to Table 1, we find the method that utilizes 3D resnet18 to model
the stack joint position maps cropped with the associated ground-truth bounding
boxes outperforms the performance of optical flow-based methods and the pose-
based methods on 2D network.

Furthermore, we also conduct experiment to determine the best architect of
capturing temporal footprints in video. In Table 2, we show that when the the
number of input frames L, which is the temporal footprint of our model set
to 15, gives the better accuracy than the original flow-based methods for both
datasets.

The experiment results not only demonstrate that pose-based features per-
form better for extracting action features than optical flow based features, but
also show that 3D resnet18 has superior performance to 2D resent18. We believe
the main reason why a 3D network is superior than 2D network is that using
only a single convolution layer for modeling human pose features is insufficient
to capture temporal action from video.

Table 2. Comparison of the performance of different temporal footprint :
SJP, OF, Box denote stack joint position, optical flow and cropping by ground truth
bounding boxes, respectively, and L denotes the temporal footprint, which is the num-
ber of frames in each stack.

Input features network Sub-JHMDB PennAction
Stacked OF 2D resnetb0  46.1 87.1
Stacked OF+ Box 2D resnet50 60.8 88.2
SJP+ Box 3D resnet 18 62.5 90.0

(a) Temporal footprint L=10

Input features network Sub-JHMDB PennAction
Stacked OF 2D resnet50 41.1 86.3
Stacked OF+ box 2D resnet50 59.5 89.4
SJP+ box 3D resnetl8 68.5 91.5

(b) Temporal footprint L = 15
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Table 3. Comparison of different strategies of combining the features of
each human part: 3D convN (a, b) denotes a 3D convolutional layer with kernel size
N x N x N |, where a is the input filter dimension and b is the output filter dimension.

Human-part pooling method Sub-JHMDB PennAction
Average pooling 68.5 90.5
3D convl (15,1) 69.2 91.1
3D convl (15,7) 4+ 3D convl (7,1) 71.4 92.9

5.2 Channel-wise convolution

After we determine the architecture of classification model, we propose an exper-
iment of channel-wise convolution to validate the most effective way to combine
different human body part features. With the experimental results given in Ta-
ble 3, We found that using two 3D convolution layers to model the features from
all channels of pose estimation result outperforms other methods. Therefore, we
demonstrate the effectiveness of this architecture in the proposed pose-based
action recognition model.

5.3 Performance of Multi-dimensional Fusion Network

According to the fact that 3D spatial (3 channels) and 3D temporal (2 channels)
networks contain more parameters than the proposed 3D pose model (1 channel),
which makes them suffer from the over-fitting problem, our proposed method is
based on fusing 3D pose stream, 2D spatial stream and 2D temporal stream
to achieve superior or comparable performance compared to the state-of-the-art
methods. The comparison of different fusion methods is shown in Table 4. Our
multi-dimensional fusion framework outperforms the previous average fusion and
convolution fusion methods. In addition, We also provide the confusion matrices
of the proposed pose-based 3D CNN and multi-stream network in Fig. 6 to
demonstrate the effectiveness of the proposed framework.

5.4 Comparison of performance for using ground-truth and human
detector bounding boxes

To validate the proposed model, we compare the performance of our framework
by using the ground-truth human bounding boxes and the bounding boxes ob-
tained from the Faster R-CNNJ[19] human detector. The results are shown in
Table 5. According to the experimental results, when we replace the ground-
truth human bounding boxes by those obtained from the state-of-the-art human
detector, we have slightly degraded accuracies in our experiment on the PennAc-
tion dataset. Therefore, we claim that in the proposed framework, ground truth
human bounding box can be replaced by a state-of-the-art human detector with
slight accuracy decrease.
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Fig. 6. The confusion matrix of the proposed multi-stream fusion is much sparser than
the confusion matrix by using the proposed pose-based method. It demonstrates the
effectiveness of fusing multiple types of features, and our fusion strategy significantly
enhances the performance for human action recognition.

Table 4. Comparison with different fusion schemes: In the fusion part, s, m,
p denote spatial, motion and pose streams, respectively. MD-fusion denotes multi-
dimensional fusion, conv fusion denotes fusion with convolution layers and average
fusion denotes the fusion method proposed in [21], which simply fusion the scores of
all streams at the output of the softmax layer.

Stream Sub-JHMDB PennAction
Spatial 55.1 80.2
Motion 60.7 87.1
Pose 68.5 91.5
Fusion Sub-JHMDB PennAction
s+m, conv fusion 70.2 92.4
s+p, average fusion 69.7 91.9
s+p, MD-fusion 74.1 95.6
s+m+p, average fusion 71.0 93.7

s+m-+p, MD-fusion 78.9 97.6




Temporal Pose CNN and Multi-Dimensional Fusion 13

Table 5. Performance comparison of the proposed framework by using the
ground-truth bounding boxes and those obtained from a human detector on
PennAction dataset. In this table, gt-Bbox denotes ground-truth bounding box, sf-
Bbox denotes the bounding box generated by human detector, and MD-fusion denotes
multi-dimensional fusion.

Framework Bounding box Performance

Pose-stream ground truth  90.5
Pose-stream faster R-CNN 90.1
MD-fusion  ground truth  97.8
MD-fusion  faster R-CNN 97.6

5.5 Comparison with state-of-the-art methods

We also evaluate our pose-based CNN and multi-stream network by compar-
ing performance with state-of-the-art posed-related action recognition methods.
In Table 6, the result of our multi-dimensional fusion network provides superior
performance on the methods based on either hand-crafted features or deep learn-
ing approaches. Finally, we successfully justify our argument that with proper
modeling and fusion techniques, human pose features can be directly applied to
3D convolution neural networks to model the temporal evolution in videos and
significantly enhance the performance of human action recognition.

Table 6. Comparison of state-of-the-art action recognition methods on Sub-
JHMDB [13] and PennAction [26] datasets.

State-of-the-art Stream Sub-JHMDB PennAction
Actemes [26] RGB - 79.4
pose+NTraj [13] Pose 75.1 -
SP-AOG [18] RGB + Pose 61.2 85.5
P-CNN [5] RGB + Flow + Pose  66.8 -
JDD [2] RGB + Flow 7.7 87.4
C3D [2) RGB + Flow - 86.0
pose [12] Pose 61.5 79.0
Pose + idt-fv[12] Pose + Flow 74.6 92.9
RPAN [7] RGB + Flow + Pose 78.6 97.4
Pose-stream(our) Pose 71.4 92.9

Pose+MD-fusion(our) RGB + Flow +Pose 78.9 97.6
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Conclusion

In this paper, we presented a novel multi-stream action recognition method
based on fusing 3D pose, 2D spatial and 2D temporal features. We develop
a pose-based 3D CNN which integrates multi-channel human joint heatmaps
with channel-wise convolution and applied 3D CNN to extract spatial and tem-
poral features at the same time. In addition, we propose a multi-dimensional
fusion method that bridges the gap between dimension differences between the
2D spatial, 2D motion and 3D pose feature maps. Our experiments showed the
proposed multi-stream CNN model outperforms the state-of-the-art methods on
both Sub-JHMDB and PennAction datasets.
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