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Abstract. Automating the navigation of unmanned aerial vehicles (UAVs) in di-

verse scenarios has gained much attention in recent years. However, teaching

UAVs to fly in challenging environments remains an unsolved problem, mainly

due to the lack of training data. In this paper, we train a deep neural network to

predict UAV controls from raw image data for the task of autonomous UAV racing

in a photo-realistic simulation. Training is done through imitation learning with

data augmentation to allow for the correction of navigation mistakes. Extensive

experiments demonstrate that our trained network (when sufficient data augmen-

tation is used) outperforms state-of-the-art methods and flies more consistently

than many human pilots. Additionally, we show that our optimized network ar-

chitecture can run in real-time on embedded hardware, allowing for efficient on-

board processing critical for real-world deployment. From a broader perspective,

our results underline the importance of extensive data augmentation techniques

to improve robustness in end-to-end learning setups.

1 Introduction

Fig. 1: Illustration of the trained racing

UAV in-flight.

Unmanned aerial vehicles (UAVs) like

drones and multicopters are attracting in-

creased interest across various communi-

ties such as robotics, graphics, and com-

puter vision. Learning to control UAVs

in complex environments is a challenging

task even for humans. One of the most

challenging navigation tasks with respect

to UAVs is competitive drone racing.

It takes extensive practice to become a

good pilot, frequently involving crashes.

A more affordable approach to develop

professional flight skills is to train many

hours in a flight simulator before going to the field. Since most of the fine motor skills

of flight control are developed in the simulator, the pilot is able to quickly transition to

real-world flights.
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Humans are able to abstract the visual differences between simulation and the real

world and are able to transfer the learned control knowledge with some finetuning to

account for the small differences of the physics simulation. While transfer for trained

network policies is more difficult due to the perception component, it will be easier if

the simulation is as close to reality as possible. Therefore, we use the physics-based

UAV racing game within Sim4CV [27] which features a photo-realistic and customiz-

able racing area in the form of a stadium based on a three-dimensional (3D) scanned

real-world location. This ensures minimal discrepancy when transitioning from the sim-

ulated to a real-world scenario in the future. The concept of generating synthetic clones

of real-world data for deep learning purposes has been adopted in previous work [8].

Also, it has become popular recently to use video game engines [6, 40] to generate

photo-realistic simulations for training autonomous agents.

Combining the realistic physics and graphics of a game engine coupled with a real-

world 3D scan should make the transfer much simpler and fine-tuning on some real

world data may be sufficient if a sufficiently robust policy was trained in simulation.

A key requirement for generalization is the DNN’s ability to learn the appearance of

gates and cones in the track within a complexly textured and dynamic environment. In

the simulated environment, we have the opportunity to fully customize the race track,

including using different textures (e.g. grass, snow, and dirt), gates (different shapes

and appearance), and lighting. This will make the trained network more robust and will

enable transfer to the real world via domain randomization [39].

Our autonomous racing UAV approach goes beyond simple pattern detection and

instead learns a full end-to-end system to fly the UAV through a racing course. It is

similar in spirit to learning an end-to-end driving policy for a car [3], but comes with

additional challenges. The proposed network extends the complexity of previous work

to the control of a six degrees of freedom (6-DoF) flying system which is able to traverse

tight spaces and make sharp turns at very high speeds (a task that cannot be performed

by a ground vehicle). Our imitation learning based approach simultaneously addresses

both problems of perception and control as the UAV navigates through the course.

Contributions. Our specific contributions are as follows.

(1) We show that the challenging task of UAV racing can be learned in an end-to-end

fashion in simulation, and both demonstrate and quantify the positive impact of using

viewpoint augmentation for increased robustness. Experiments show that our trained

network can outperform several baselines and fly more consistently than the pilots on

whose data it was trained.

(2) To facilitate the training, parameter tuning and evaluation of deep networks on

this type of simulated data, we provide a full integration between the simulator and an

end-to-end deep learning pipeline (based on TensorFlow). Similar to other deep net-

works trained for game play, our integration will allow the community to fully explore

many scenarios and tasks that go far beyond UAV racing in a rich and diverse photo-

realistic gaming environment (e.g. obstacle avoidance and trajectory planning).

(3) We integrate a photo-realistic UAV racing simulation environment based on a

real-world counterpart which can be easily customized to build increasingly challenging

racing courses and enables realistic UAV physical behavior. Logging video data from

the UAV’s point-of-view and pilot controls is seamless and can be used to effortlessly
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generate large-scale training data for AI systems targeting UAV flying in particular and

autonomous vehicles in general (e.g. self-driving cars).

2 Related Work

In this section, we put our proposed methodology into context, focusing on the most

related previous work.

Learning to Navigate. Navigation has traditionally been approached by either employ-

ing supervised learning (SL) methods [3, 4, 17, 29, 35, 38, 42] or reinforcement learning

(RL) methods [21, 24, 25, 32, 33, 43]. Furthermore, combinations of the two have been

proposed in an effort to leverage advantages of both techniques, e.g. for increasing sam-

ple efficiency for RL methods [1,5,9,10,20]. For the case of controlling physics-driven

vehicles, SL can be advantageous when acquiring labeled data is not too costly or inef-

ficient, and has been proven to have relative success in the field of autonomous driving,

among other applications, in recent years [3,4,42]. However, the use of neural networks

for SL in autonomous driving goes back to much earlier work [29, 35].

In the work of Bojarski et al. [3], a deep neural network (DNN) is trained to map

recorded camera views to 3-DoF steering commands (steering wheel angle, throttle, and

brake). Seventy-two hours of human driven training data was tediously collected from

a forward facing camera and augmented with two additional views to provide data for

simulated drifting and corrective maneuvering. The simulated and on-road results of

this pioneering work demonstrate the ability of a DNN to learn (end-to-end) the control

process of a self-driving car from raw video data.

Similar to our work but for cars, Chen et al. [4] use TORCS (The Open Racing Car

Simulator) [45] to train a DNN to drive at casual speeds through a course and properly

pass or follow other vehicles in its lane. This work builds off earlier work using TORCS,

which focused on keeping the car on a track [17]. In contrast to our work, the vehicle

controls to be predicted in the work of Chen et al. [4] are limited, since only a small

discrete set of expected control outputs are available: turn-left, turn-right, throttle, and

brake. Recently, TORCS has also been successfully used in several RL approaches for

autonomous car driving [18, 21, 24]; however, in these cases, RL was used to teach the

agent to drive specific tracks or all available tracks rather than learning to drive never

before seen tracks.

Loquercio et al. [22] trained a network on autonomous car datasets and then de-

ployed it to control a drone. For this, they used full supervision by providing image

and measured steering angle pairs from pre-collected datasets, and collecting their own

dataset containing image and binary obstacle indication pairs. While they demonstrate

an ability to transfer successfully to other environments, their approach does not model

and exploit the full six degrees of freedom available. It also focuses on slow and safe

navigation, rather than optimizing for speed as is the case for racing. Finally, with their

network being fairly complex, they report an inference speed of 20fps (CPU) for remote

processing, which is more than three times lower than the estimated frame rate for our

proposed method when running on-board processing, and more than 27 times lower

compared to our method running remotely on GPU.
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In the work of Smolyanskiy et al. [42], a DNN is trained (in an SL fashion and

from real data captured from a head-mounted camera) to navigate a UAV through forest

trails and avoid obstacles. Similar to previous work, the expected control outputs of the

network are discrete and very limited (simple yaw movements): turn-left, go-straight,

or turn-right. Despite showing relatively promising results, the trained network leads

to a slow, non-smooth (zig-zag) trajectory at a fixed altitude above the ground. It is

worthwhile to note that indoor UAV control using DNNs has also been recently explored

[1, 16, 41].

Importance of Exploration in Supervised Learning. In imitation learning [14], the

‘expert’ training set used for SL is augmented and expanded, so as to combine the mer-

its of both exploitation and exploration. In many sequential decision making tasks of

which autonomous vehicle control is one, this augmentation becomes necessary to train

an AI system (e.g. DNN) that can recover from mistakes. In this sense, imitation learn-

ing with augmentation can be crudely seen as a supervision guided form of RL. For

example, a recent imitation learning method called DAgger (Dataset Aggregation) [38]

demonstrated a simple way of incrementally augmenting ground-truth sequential deci-

sions to allow for further exploration, since the learner will be trained on the aggregate

dataset and not only the original expert one. This method was shown to outperform

state-of-the-art AI methods on a 3D car racing game (Super Tux Kart), where the con-

trol outputs are again 3-DoF. Other imitation learning approaches [20] have reached

a similar conclusion, namely that a trajectory optimizer can function to help guide a

sub-optimal learning policy towards the optimal one. Inspired by the above work, our

proposed method also exploits similar concepts for exploration. In the simulator, we are

able to automatically and effortlessly generate a richly diverse set of image and control

pairs that can be used to train a UAV to robustly and reliably navigate through a racing

course.

Simulation. As mentioned earlier, generating diverse ‘natural’ training data for sequen-

tial decision making through SL is tedious. Generating additional data for exploration

purposes (i.e. in scenarios where both input and output pairs have to be generated)

is much more so. Therefore, a lot of attention from the community is being given to

simulators (or games) for this source of data. In fact, a broad range of work has ex-

ploited them recently for these types of learning, namely in animation and motion plan-

ning [10–12, 15, 19, 21, 43], scene understanding [2, 31], pedestrian detection [23], and

identification of 2D/3D objects [13,26,34]. For instance, the authors of [15] used Unity,

a video game engine similar to Unreal Engine, to teach a bird how to fly in simulation.

Moreover, there is another line of work that uses hardware-in-the-loop (HILT) sim-

ulation. Examples include JMAVSim [36, 44] which was used to develop and evaluate

controllers and RotorS [7] which was used to study visual servoing. The visual quality

of most HIL simulators is very basic and far from photo-realistic with the exception of

AirSim [40]. While there are multiple established simulators such as Realflight, Flight-

gear, or XPlane for simulating aerial platforms, they have several limitations. In contrast

to Unreal Engine, advanced shading and post-processing settings are not available and

the selection of assets and textures is limited. Recent work [6, 8, 27, 37, 40] highlights

how modern game engines can be used to generate photo-realistic training datasets and

pixel-accurate segmentation masks. The goal of this work is to build an automated UAV
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flying system (based on imitation learning) that can relatively easily be transitioned

from a simulated world to the real one. Therefore, we choose Sim4CV [27, 28] as our

simulator, which uses the open source game engine UE4 and provides a full software

in-the-loop UAV simulation. The simulator also provides a lot of flexibility in terms of

assets, textures, and communication interfaces.

3 Methodology

The fundamental modules of our proposed system are summarized in Figure 2, which

represents the end-to-end dataset generation, learning, and evaluation process. In what

follows, we provide details for each of these modules, namely how datasets are automat-

ically generated within the simulator, how our proposed DNN is designed and trained,

and how the learned DNN is evaluated.

Fig. 2: Description of the pipeline of our DNN Imitation Learning System. After record-

ing flights of human pilots, we improve important model parameters like network ar-

chitecture, number of augmented views and appropriate control compensation for them

in an iterative process.

3.1 Dataset Generation

Our simulation environment allows for the automatic generation of customizable datasets

that can be used for various learning tasks related to UAVs. In the following, we elabo-

rate on our setup for building a large-scale dataset specific to UAV racing.

UAV Flight Simulation. The core of the system is the application of our UE4 based

simulator. It is built on top of the open source UE4 project for computer vision called

Sim4CV [27]. Several changes were made to adapt the simulator for training our pro-

posed racing DNN. First, we replaced the UAV with the 3D model and specifications

of a racing quadcopter (see Figure 3). We retuned the PID controller of the UAV to be

more responsive and to function in a racing mode, where altitude control and stabliza-

tion are still enabled but with much higher rates and steeper pitch and roll angles. In
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fact, this is now a popular racing mode available on consumer UAVs, such as the DJI

Mavic. The simulator frame rate is locked at 60 fps and at every frame a log is recorded

with UAV position, orientation, velocity, and stick inputs from the pilot. To accommo-

date for realistic input, we integrated the same UAV transmitter that would be used in

real-world racing scenarios.

Fig. 3: The 3D model of the racing UAV

modeled in the simulator, based on a well

known 250 class design known within the

racing community as the Hornet.

Following paradigms set by UAV

racing norms, each racing course/track

in our simulator comprises a sequence

of gates connected by uniformly spaced

cones. The track has a timing system that

records time between each gate, lap, and

completion time of the race. The gates

have their own logic to detect whether

the UAV has passed through the gate in

the correct direction. This allows us to

trigger both the start and ending of the

race, as well as, determine the number of

gates traversed by the UAV. These met-

rics (time and percentage of gates passed)

constitute the overall per-track perfor-

mance of a pilot, be it a human or a DNN.

Automatic Track Generation. We de-

veloped a graphical track editor in which a user can draw a 2D sketch of the overhead

view of the track. Subsequently, the 3D track is automatically generated and integrated

into the timing system. With this editor, we created eleven tracks: seven for training,

and four for testing and evaluation. Each track is defined by gate positions and track

lanes delineated by uniformly spaced racing cones distributed along the splines con-

necting adjacent gates. We design the tracks such that they are similar to what racing

professionals are accustomed to and such that they offer enough diversity to enable net-

work generalization to unseen tracks. To avoid user bias in designing the race tracks,

we use images collected from the internet and trace their contours in the editor to cre-

ate uniquely stylized tracks. Please refer to Figure 4 for an overhead view of all these

tracks.

Fig. 4: The seven training tracks (left) and the four evaluation tracks (right). Gates are

marked in red.

Acquiring Ground-truth Pilot Data. The simulation environment allows us to log the

images rendered from the UAV camera point-of-view and the UAV flight controls from

the transmitter. We record human pilot input from a Taranis flight transmitter integrated
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into the simulator through a joystick. This input is solicited from three pilots with dif-

ferent skill levels: novice (lacking any flight experience), intermediate (a moderately

experienced pilot), and expert (a professional, competitive racing pilot). The pilots are

given the opportunity to fly through the seven training tracks as many times as needed

until they successfully complete the tracks at their best time while passing through all

gates. For the evaluation tracks, the pilots are allowed to fly the course only as many

times as needed to complete the entire course without crashing. We automatically score

pilot performance based on lap time and percentage of gates traversed.

Data Augmentation. As mentioned earlier, robust imitation learning requires the aug-

mentation of these ground-truth logs with synthetic ones generated at a user-defined set

of UAV offset positions and orientations accompanied by the corresponding controls

needed to correct for these offsets. Assigning corrective controls to the augmented data

is quite complex in general, since they depend on many factors, including current UAV

velocity, relative position on the track, its weight and current attitude. While it is pos-

sible to get this data in the simulation, it is very difficult to obtain it in the real world

in real-time. Therefore, we employ a fairly simple but effective model to determine

these augmented controls that also scales to real-world settings. We add or subtract a

corrective value to the pilot roll and yaw stick inputs for each position or orientation

offset that is applied. For rotational offsets, we do not only apply a yaw correction but

also couple it to roll. This allows to compensate for the UAV’s inertia which produces

a motion component in the previous direction of travel.

track duration (sec) original total

track01 69.8 4.2K 29.3K

track02 100.4 6.0K 42.2K

track03 83.1 5.0K 35.0K

track04 97.7 5.9K 41.0K

track05 99.8 6.0K 42.0K

track06 115.4 6.9K 48.5K

track07 98.3 5.9K 41.2K

total 664.5 39.9K 279.1K

Table 1: Overview of the image-control dataset

generated from two laps of flying (by the in-

termediate pilot) through each of the training

tracks. The ‘duration’ column shows the total

time taken by the pilot to successfully fly two

laps through the track (i.e. passing through all

the gates). We also record the number of images

rendered from the pilot’s trajectory in the sim-

ulator, along with the total number of images

used for training when data augmentation is ap-

plied. For this augmentation, we use the follow-

ing default settings: roll offset (±50cm), yaw

offset (±15
◦ and ±30

◦).

Training Data Set. We summarize

the details of the data generated from

all training tracks in Table 1. It is

clear that the augmentation increases

the size of the original dataset by

approximately seven times. Each pi-

lot flight leads to a large number

of image-control pairs (both origi-

nal and augmented) that will be used

to train the UAV to robustly recover

from possible drift along each train-

ing track, as well as, generalize to

unseen evaluation tracks. Details of

how our proposed DNN architecture

is designed and trained are provided

in Section 3.2 of the paper. In gen-

eral, more augmented data should

improve UAV flight performance as-

suming that the control mapping and

original flight data are noise-free.

However, in many scenarios, this is

not the case, so we find that there is a

limit after which augmentation does

not help (or even slightly degrades) explorative learning. Empirical results validating
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this observation are detailed in Section 4 of the paper. We also show the effects of train-

ing with different flying styles there. For this dataset, we choose to use the intermediate

pilot who tends to follow the track most precisely, striking a good trade-off between

style of flight and speed.

Since the logs can be replayed at a later time in the simulator, we can augment the

dataset further by changing environmental conditions, including lighting, cone spacing

or appearance, and other environmental dynamics (e.g. clouds), but we do not explore

these capabilities in this work.

3.2 Learning

As it is the case for DNN-based solutions to other tasks, a careful construction of the

training set is a key requirement to robust and effective DNN training. We dedicate

seven racing tracks with their corresponding image-control pairs logged from human

pilot runs and appropriate augmentation for training. Please refer to Section 3.1 for

details about data collection and augmentation. In the following, we provide a detailed

description of the learning strategy used to train our DNN, its network architecture and

design. We also explore some of the inner workings of one of the trained DNNs to shed

light on how this network is solving the problem of automated UAV racing.

Network Architecture. To train a DNN to predict stick inputs controlling the UAV

from images, we choose a regression network architecture similar to the one used by

Bojarski et al. [3]; however, we make changes to accommodate the complexity of the

task at hand and to improve robustness in training. Our DNN architecture is shown

in Figure 5. The network consists of eight layers, five convolutional and three fully-

connected. Since we implicitly want to localize the track and gates, we use striding in

the convolutional layers instead of (max) pooling.

Fig. 5: Our network architecture is taking an image of shape 320x180 and regresses to

the control outputs throttle (T), elevator (E), aileron (A) and roll (R).
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We arrived at this compact network architecture by running extensive validation ex-

periments. Our final architecture strikes a reasonable tradeoff between computational

complexity and predictive performance. This careful design makes the proposed DNN

architecture feasible for real-time applications on embedded hardware (e.g. Nvidia TX1,

or the recent Nvidia TX2) unlike previous architectures [3], if they use the same input

size. In Table 2, we show both evaluation time on and technical details of the NVIDIA

Titan X, and how it compares to a NVIDIA TX-1. Based on [30], we expect our net-

work to still run at real-time speed with over 60 frames per second on this embedded

hardware.

NVIDIA Titan X NVIDIA TX-1

CUDA cores 3,840 256

Boost Clock MHz 1,582 998

VRAM 12 GB 4 GB

Memory Bandwidth 547.7 Gbps 25.6 Gbps

Evaluation (ours) 556 fps (ref) 64.6 fps

Table 2: Comparison of the NVIDIA Titan X and the NVIDIA TX-1. The performance

of the TX-1 is approximated according to [30].

Implementation Details. The DNN is given a single RGB-image with a 320×180 pixel

resolution as input and is trained to regress to the four stick inputs to control the UAV

using a standard L2-loss and dropout ratio of 0.5.

We find that the relatively high input resolution (i.e. higher network capacity), as

compared to related methods [3, 42], is useful to learn this more complicated maneu-

vering task and to enhance the network’s ability to look further ahead. This affords the

network with more robustness needed for long-term trajectory stability. On the other

hand, we found no noticeably gain when training on even higher resolutions during

initial experiments. At our proposed resolution, our network still shows real-time capa-

bilities even when being deployed on-board (Table 2), marking a convincing solution

to the resolution-speed trade-off. For training, we exploit a standard stochastic gradient

descent (SGD) optimization strategy (namely Adam) in Tensorflow. As such, one in-

stance of our DNN can be trained to convergence on our dataset in less than two hours

on a single GPU.

In contrast to other work where the frame rate is sampled down to 10 fps or lower

[3, 4, 42], our racing environment is highly dynamic (with tight turns, high speed, and

low inertia of the UAV), so we use a frame rate of 60 fps. This allows the UAV to be

very responsive and move at high speeds, while maintaining a level of smoothness in

controls. An alternative approach for temporally smooth controls is to include historic

data in the training process (e.g. add the previous controls as input to the DNN). This

can make the network more complex, harder to train, and less responsive in the highly

dynamic racing environment, where many time critical decisions have to be made within

a couple of frames (about 30 ms). Therefore, we find the high learning frame rate of

60 fps a good trade-off between smooth controls and responsiveness.

Network Visualization.

After training our DNN to convergence, we visualize how parts of the network behave.
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Fig. 6: Visualization of feature maps at dif-

ferent convolutional layers in our trained

network. Note the high activations in se-

mantically meaningful image regions for

the task of UAV racing, namely the gates

and cones.

Figure 6 shows some feature maps in

different layers for the same input im-

age. Note how the filters have learned

to extract all necessary information in

the scene (i.e. gates and cones). Also,

higher-level filters are not responding to

other parts of the environment. Although

the feature map resolution becomes very

low in the higher DNN layers, the fea-

ture map in the fifth convolutional layer

is interesting as it marks the top, left, and

right of parts of a gate with just a sin-

gle activation each. This clearly demon-

strates that our DNN is learning seman-

tically intuitive features for the task of

UAV racing.

Reinforcement vs. Imitation Learning.

Our simulation environment can lend it-

self useful in training networks using re-

inforcement learning. This type of learn-

ing does not specifically require super-

vised pilot information, as it searches for

an optimal policy that leads to the highest

eventual reward (e.g. highest percentage

of gates traversed or lowest lap time). Recent methods have made use of reinforcement

to learn simpler tasks without supervision [5]; however, they require very long training

times (up to several weeks) and a much faster simulator (1,000fps is possible in sim-

ple non photo-realistic games). For UAV racing, the required task is more involved and

since the intent is to transfer the learned network into the real-world, a (slower) photo-

realistic simulator is mandatory. Because of these two constraints, we decided to train

our DNN using imitation learning instead of reinforcement learning.

4 Experiments

We create four testing tracks based on well-known race tracks found in TORCS and

Gran Turismo. We refer to Figure 4 for an overhead view of these tracks. Since the

tracks must fit within the football stadium environment, they are scaled down leading to

much sharper turns and shorter straight-aways with the UAV reaching top speeds of over

100 km/h. Therefore, the evaluation tracks are significantly more difficult than they may

have been originally intended in their original racing environments. We rank the four

tracks in terms of difficulty ranging from easy (track 1), medium (track 2), hard (track

3), to very hard (track 4). For all the following evaluations, both the trained networks

and human pilots are tasked to fly two laps in the testing tracks and are scored based on

the total gates they fly through and overall lap time. Obviously, the testing/evaluation

tracks are never seen in training, neither by the human pilot nor the DNN.
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Experimental Setup. In order to evaluate the performance of a trained DNN in real-

time at 60 fps, we establish a TCP socket connection between the UE4 simulator and

the Python wrapper (TensorFlow) executing the DNN. In doing so, the simulator con-

tinuously sends rendered UAV camera images across TCP to the DNN, which in turn

processes each image individually to predict the next UAV stick inputs (flight controls)

that are fed back to the UAV in the simulator using the same connection. Another ad-

vantage of this TCP connection is that the DNN prediction can be run on a separate

system than the one running the simulator. We expect that this versatile and multi-

purpose interface between the simulator and DNN framework will enable opportunities

for the research community to further develop DNN solutions to not only the task of

automated UAV navigation (using imitation learning) but to the more general task of

vehicle maneuvering and obstacle avoidance (possibly using other forms of learning

including RL).

yaw [◦] [None] [-20:20:20] [-30:15:30] [-30:10:30] [-30:5:30]

roll [cm] cameras 0 2 4 6 12

[-75:25:75] 6 0.17 0.45 1.00 1.00 1.00 1.00 0.83 0.85 0.92 1.00

0.82 0.50 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00

[-75:50:75] 4 0.42 0.60 1.00 1.00 1.00 1.00 0.75 1.00 1.00 0.85

0.82 0.61 0.41 0.78 1.00 0.94 0.91 0.94 1.00 1.00

[-50:50:50] 2 0.17 0.35 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.23 0.28 1.00 1.00 1.00 1.00 1.00 1.00 0.82 1.00

[None] 0 0.00 0.00 0.92 1.00 0.67 1.00 1.00 1.00 0.50 1.00

0.00 0.00 0.55 0.78 0.73 1.00 0.77 0.89 0.91 0.89

Table 3: Effect of data augmentation in training to overall UAV racing performance.

By augmenting the original flight logs with data captured at more offsets (roll and

yaw) from the original trajectory along with their corresponding corrective controls,

our UAV DNN can learn to traverse almost all the gates of the testing tracks, since it

has learned to correct for exploratory maneuvers. We show the settings abbreviated as

[min:increment:max] intervals. After a sufficient amount of augmentation, no additional

benefit is realized in improved racing performance.

Effects of Exploration. We find exploration to be the predominant factor influencing

network performance. As mentioned earlier, we augment the pilot flight data with off-

sets and corresponding corrective controls. We conduct grid search to find a suitable

degree of augmentation and to analyze the effect it has on overall UAV racing perfor-

mance. To do this, we define two sets of offset parameters: one that acts as a horizontal

offset (roll-offset) and one that acts as a rotational offset (yaw-offset). Table 3 shows

how the racing accuracy (percentage of gates traversed) varies with different sets of

these augmentation offsets across the four testing tracks. It is clear that increasing the

number of rendered images with yaw-offset has the greatest impact on performance.

While it is possible for the DNN to complete tracks without being trained on roll-offsets,

this is not the case for yaw-offsets. However, the significant gain in adding rotated cam-

era views saturates quickly, and at a certain point the network does not benefit from

more extensive augmentation. Therefore, we found four yaw-offsets to be sufficient.
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Including camera views with horizontal shifts is also beneficial, since the network is

better equipped to recover once it is about to leave the track on straights. We found

two roll-offsets to be sufficient to ensure this. In the rest of our experiments, we use the

following augmentation setup in training: horizontal roll-offset set {−50
◦
, 50

◦} and

rotational yaw-offset set {−30
◦
,−15

◦
, 15

◦
, 30

◦}.

Comparison to State-of-the-Art. We compare our racing DNN to the two most related

and recent network architectures, the first denoted as Nvidia (for self-driving cars [3])

and the second as MAV (for forest path navigating UAVs [42]). While the domains of

these works are similar, it should be noted that flying a high-speed racing UAV is a par-

ticularly challenging task, especially since the effect of inertia is much more significant

and there are more degrees of freedom. For fair comparison, we scale our dataset to the

same input dimensionality and re-train each of the three networks. We then evaluate

each of the trained models on the task of UAV racing in the testing tracks. It is notewor-

thy that both the Nvidia and MAV networks (in their original implementation) use data

augmentation as well, so when training, we assume the augmentation choice to be ap-

propriate for the given method and maintain the same strategy. While the exact angular

offsets of the two views used in the Nvidia network are not reported, we assume them

to be close to 30
◦. We thus employ a rotational offset set of {−30

◦
, 30

◦} to augment

its data. As for the MAV network, we use the same augmentation parameters proposed

in the paper, i.e. a rotational offset of {−30
◦
, 30

◦}. We modified the MAV network to

allow for a regression output instead of its original classification (left, center and right

controls). This is necessary since our task requires fine-grained controls, and predicting

discrete controls leads to very inadequate UAV racing performance.

Pilot / Network Track 1 Track 2 Track 3 Track 4

Human-Novice 1.00 1.00 0.95 0.94

Human-Intermediate 1.00 1.00 1.00 1.00

Human-Expert 1.00 1.00 1.00 1.00

Ours-Intermediate 1.00 1.00 1.00 1.00

Ours-Expert 1.00 0.95 0.91 0.78

Nvidia-Intermediate 0.17 1.00 0.82 0.83

Nvidia-Intermediate++ 1.00 1.00 0.82 1.00

MAV-Intermediate 0.50 0.75 0.73 0.83

MAV-Intermediate++ 0.42 1.00 0.91 0.78

Table 4: Accuracy score of different pilots and networks

on the four test tracks, averaged over multiple runs. The

accuracy score represents the percentage of completed

racing gates. The networks ending with ++ are variants

of the original network with our augmentation strategy.

It should be noted that

in the original implementa-

tion of the Nvidia network

[3] (based on real-world

driving data), it was realized

that additional augmenta-

tion was needed for rea-

sonable automatic driving

performance after the real-

world data was acquired. To

avoid recapturing the data

again, synthetic viewpoints

(generated by interpolation)

were used to augment the

training dataset, which in-

troduced undesirable distor-

tions. By using our simulator, we are able to extract any number of camera views with-

out distortions. Therefore, we wanted to also gauge the effect of additional augmen-

tation to both the Nvidia and MAV networks, when they are trained using our default

augmentation setting: horizontal roll-offset of {−50
◦
, 50

◦} and rotational yaw-offset of

{−30
◦
,−15

◦
, 15

◦
, 30

◦}. We denote these trained networks as Nvidia++ and MAV++.
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Table 4 summarizes the results of these different network variants on the testing

tracks. Results indicate that the performance of the original Nvidia and MAV networks

suffers from insufficient data augmentation. They clearly do not make use of enough

exploration. These networks improve in performance when our proposed data augmen-

tation scheme is used. Regardless, our proposed DNN outperforms the Nvidia and MAV

networks, where this improvement is less significant when more data augmentation or

more exploratory behavior is learned. Unlike the other networks, our DNN performs

consistently well on all the unseen tracks, owing to its sufficient network capacity

needed to learn this complex task.

Fig. 7: Best lap times of human pilots and networks trained on different flight styles. If

there is no lap time displayed, the pilot was not able to complete the course because the

UAV crashed. See text for a more detailed description.

Pilot Diversity & Human vs. DNN.

In this section, we investigate how the flying style of a pilot affects the network that

is being learned. To this end, we compare the performance of the different networks

on the testing set, when each of them is trained with flight data captured from pilots of

varying flight expertise (intermediate and expert).

Table 4 summarizes the lap time and accuracy of these networks. Clearly, the pilot

flight style can significantly affect the performance of the learned network. Figure 7

shows that there is a high correlation regarding both performance and flying style of the

pilot used in training and the corresponding learned network.

The trained networks clearly resemble the flying style and also the proficiency of

their human trainers. Thus, our network that was trained on flights of the intermediate

pilot achieves high accuracy but is quite slow, just as the expert network sometimes

misses gates but achieves very good lap and overall times.

Interestingly, although the networks perform similar to their pilot, they fly more

consistently, and therefore tend to outperform the human pilot with regards to overall

time on multiple laps. This is especially true for our intermediate network. Both the

intermediate and the expert network clearly outperform the novice human pilot who

takes several hours of practice and several attempts to reach similar performance to the

network. Even our expert pilots were not always able to complete the test tracks on the

first attempt.
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Fig. 8: Visualization of human and auto-

mated UAV flights super-imposed onto a

2D overhead view of different tracks. The

color illustrates the instantaneous speed of

the UAV from blue (slow) to red (fast).

While the percentage of passed gates

and best lap time give a good indica-

tion about the performance, they do not

convey any information about the style

of the pilot. To this end, we visualize

the performance of human pilots and the

trained networks by plotting their trajec-

tories onto the track (from a 2D overhead

viewpoint). We encode their speeds as a

heatmap, where blue corresponds to the

minimum speed and red to the maximum

speed. Figure 8 shows a collection of

heatmaps revealing several interesting in-

sights.

Firstly, despite showing variation, the

networks clearly imitate the style of the

pilot they were trained on. This is es-

pecially true for the intermediate profi-

ciency level, while the expert network

sometimes overshoots, which causes it to

loose speed and therefore to not match

the speed pattern as well as the interme-

diate one. We also note that the perfor-

mance gap between network and human

increases as the expertise of the pilot in-

creases. Note that the flight path of the

expert network is less smooth and cen-

tered than its human correspondent and the intermediate network, respectively. This is

partly due to the fact that the networks were only trained on two laps of flying across

seven training tracks. An expert pilot has a lot more training than that and is therefore

able to generalize much better to unseen environments.

However, the experience advantage of the intermediate pilot over the network is

much less and therefore the performance gap is smaller. We also show the performance

of our novice pilot on these tracks. While the intermediate pilots accelerate on straights,

the novice is not able to control speed that well, creating a very narrow velocity range.

Albeit flying quite slowly, the pilot also gets off track several times. This underlines the

complexity of UAV racing, especially for inexperienced pilots.

5 Conclusions and Future Work

In this paper, we proposed a robust imitation learning based framework to teach an

unmanned aerial vehicle (UAV) to fly through challenging racing tracks at very high

speeds. To do this, we trained a deep neural network (DNN) to predict the necessary

UAV controls from raw image data, grounded in a photo-realistic simulator that also

allows for realistic UAV physics. Training is made possible by logging data (rendered
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images from the UAV and stick controls) from human pilot flights, while they ma-

neuver the UAV through racing tracks. This data is augmented with sufficient camera

view offsets to teach the network how to recover from flight mistakes, which proves to

be crucial during long-term flight. Extensive experiments demonstrate that our trained

network (when such sufficient data augmentation is used) outperforms state-of-the-art

methods and flies more consistently than many human pilots.

In the future, we aim to transfer the network we trained in our simulator to the

real-world to compete against human pilots in real-world racing scenarios. Although

we accurately modeled the simulated racing environment, the differences in appear-

ance between the simulated and real-world will need to be reconciled. Therefore, we

will investigate deep transfer learning techniques to enable a smooth transition between

simulator and the real-world. If such transfer would be successful, our simulator would

be able to act as an unlimited, highly customizable and free source of ground truth data.

Despite our findings that temporally aware architectures were not a good choice

for the low-latency UAV racing task, we expect this to be useful when approaching

general UAV navigation and complex obstacle avoidance. We plan to more broadly

evaluate our method and the choice of augmentation strategy on tasks with differing

challenges. More generally, since our developed simulator and its seamless interface to

deep learning platforms is generic in nature, we expect that this combination will open

up unique opportunities for the community to develop better automated UAV flying

methods, to expand its reach to other fields of autonomous navigation such as self-

driving cars, and to benefit other interesting perception-based tasks such as obstacle

avoidance.
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