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Abstract. Recent GAN-based video generation approaches model videos as the

combination of a time-independent scene component and a time-varying motion

component, thus factorizing the generation problem into generating background

and foreground separately. One of the main limitations of current approaches is

that both factors are learned by mapping one source latent space to videos, which

complicates the generation task as a single data point must be informative of both

background and foreground content. In this paper we propose a GAN framework

for video generation that, instead, employs two latent spaces in order to struc-

ture the generative process in a more natural way: 1) a latent space to generate

the static visual content of a scene (background), which remains the same for

the whole video, and 2) a latent space where motion is encoded as a trajectory

between sampled points and whose dynamics are modeled through an RNN en-

coder (jointly trained with the generator and the discriminator) and then mapped

by the generator to visual objects’ motion. Performance evaluation showed that

our approach is able to control effectively the generation process as well as to

synthesize more realistic videos than state-of-the-art methods.

1 Introduction

Generative Adversarial Networks (GANs) [1] are a recent trend in computer vision and

machine learning that advanced the state of the art on image and video generation to

unprecedented levels of accuracy and realism. New adversarial models [2–8] are pro-

posed at an accelerating pace, both to increase the diversity and resolution of generated

images and to tackle theoretical issues on training and convergence. GANs have been

applied mainly to image generation, and naively extending image generation methods

to videos is not sufficient, as it jointly attempts at handling both the spatial compo-

nent of the video, describing object and background appearance, and the temporal one,

representing object motion and consistency across frames. Building on these considera-

tions, recent generative efforts [9, 10] have attempted to factor the latent representation

of each video frame into two components that model a time-independent background

of the scene and the time-varying foreground elements. We argue that the main limi-

tation of these methods is that both factors are learned by mapping a single point of

a source latent space (sampled as random noise) to a whole video. This, indeed, over-

complicates the generation task as two videos depicting the same scene with different
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object trajectories or the same trajectory on different scenes are represented as different

points in the latent space, although they share a common factor (in the former case the

background, in the latter case object motion). To address this limitation, in this paper we

propose a GAN-based generation approach that employs two latent spaces (as shown in

Fig. 1) to improve the video generation process: 1) one latent space to model the static

visual content of the scene (background), and 2) a foreground latent space to learn ob-

ject motion dynamics. In particular, these dynamics are modeled as point trajectories in

the second latent space, with each point representing the foreground content in a scene

and each latent trajectory ensuring regularity and realism of the generated motion across

frames. Variations in the scene latent space result in different scenes, while variations

in the trajectories of the foreground latent space result in different object motion. We

demonstrate the effectiveness of the proposed approach by extensively evaluating the

realism of the generated videos and compared the videos generated by state of the art

methods [9, 10], which, conversely to our method, learn a mapping between a single

latent space and video data distribution instead of learning to generate specific motion

and eventually object behaviour.

Fig. 1: Video Generation in VOS-GAN: we employ a scene latent space to generate

background and a foreground latent space to generate object appearance and motion.

2 Video Generation Model

The video generation architecture presented in this work is based on a GAN framework

consisting of the following two modules:

– a generator, implemented as a hybrid deep CNN-RNN, that receives two kinds of

input: 1) a noise vector from a latent space that models scene background; 2) a

sequence of vectors that model foreground motion as a trajectory in another latent

space. The output of the generator is a video with its corresponding foreground

mask.
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– a discriminator, implemented as a deep CNN, that receives an input video and

predicts whether it is real or not.

The architecture of the generator, inspired by the two-stream approach in [9], is

shown in Fig. 2. Specifically, our generation approach factorizes the process into sep-

arate background and foreground generation, on the assumption that the world is gen-

erally stationary and the presence of informative motion can be constrained only to a

set of objects of interest in a semi-static scenery. However, unlike [9], we separate the

latent spaces for scene and foreground generation, and explicitly represent the latter as

a temporal quantity, thus enforcing a more natural correspondence between the latent

input and the frame-by-frame motion output.

Hence, the generator receives two inputs: zC ∈ ZC = R
d and zM = {zM,i}

t
i=1

,

with each zM,i ∈ ZM = R
d. A point zC in the latent space ZC encodes the gen-

eral scene to be applied to the output video, and is mainly responsible for driving the

background stream of the model. This stream consists of a cascade of transposed con-

volutions, which gradually increase the spatial dimension of the input in order to obtain

a full-scale background image b(zC) that is used for all frames in the generated video.

The set of zM,i points from the latent space ZM defines the objects motion to be

applied in the video. The latent sequence is obtained by sampling the initial and fi-

nal points and performing a spherical linear interpolation (SLERP [11]) to compute

all intermediate vectors, such that the length of the sequence is equal to the length (in

frames) of the generated video. Using an interpolation rather than sampling multiple

random points should enforce temporal coherency between appearances in the gener-

ated foreground. The list of latent points is then encoded through a recurrent neural

network (LSTM) in order to provide a single vector (i.e., the LSTM’s final state) sum-

marizing a representation of the whole motion. The input to the foreground stream is

then a concatenation of the vector coming out of the LSTM and zC , so that the generated

motion can take into account the scene to which it will be applied. After a cascade of

spatio-temporal convolutions (i.e., with 3D kernels that also span the time dimension),

the foreground stream provides a set of frames f(zC , zM ) with foreground content and

binary masks m(zC , zM ) defining motion pixel location.

The two streams are finally combined as

G(zC , zM ) = m(zC , zM )⊙ f(zC , zM ) + (1−m(zC , zM ))⊙ b(zC) (1)

Foreground generation can be directly controlled acting on zM . Indeed, varying zM
for a fixed value of zC results in videos with the same background and different fore-

ground appearance and motion. Thus, zC can be seen as a condition for the foreground

stream, in a similar way to conditional generative adversarial networks for restricting

generation process to a specific class.

The primary goal of the discriminator network is to distinguish between generated

and real videos, in order to push the generator towards more realistic outputs. The ar-

chitecture of our discriminator follows a standard architecture for video discrimination

[9]. The input to the model is a video clip (either real or produced by the generator),

that goes first through a series of convolutional layers, encoding the video dynamics in

a more compact representation, which is provided to a discrimination stream (bottom),
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Fig. 2: Generator architecture: the background stream (bottom) is conditioned by a

latent vector defining the general scene of the video, and produces a background im-

age; the foreground stream (top) processes a sequence of latent vectors, obtained by

spherically interpolating the start and end points, and the scene latent vector to generate

frame-by-frame foreground appearance and motion masks. Information about dimen-

sions of intermediate outputs is given in the figure by (channels, height, width, duration)

tuples.

which applies a 3D convolution to the intermediate representation and then makes a

prediction on whether the input video is real or fake.

We jointly train the generator and the discriminator in a GAN framework, with the

former trying to maximize the probability that the discriminator predict fake outputs as

real, and the latter trying to minimize the same probability.

The discriminator loss is then defined as follows (for the sake of compactness, we

will define z = (zC , zM )):

LD = −Ex∼preal
[logDadv (x)]− Ex∼pz

[log (1−Dadv (G (z)))] (2)

In the equation above, the first line encodes the adversarial loss, which pushes the dis-

criminator to return high likelihood scores for real videos and low ones for the generated

videos.

The generator loss is, more traditionally, defined as:

LG = −Ez∼pz
[logDadv (G (z))] (3)

In this case, the generator tries to push the discriminator to increase the likelihood of its

output being real.

During training, we follow the common approach for GAN training, by sampling

real videos (from an existing dataset) and generated videos (from the generator) and

alternately optimizing the discriminator and the generator.

3 Performance Analysis

Our video generation model was trained on the “golf course” videos (over 600,000

videoclips) of the dataset proposed in [9]. For testing the video generation capabilities
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we performed quantitative evaluation. In particular, we evaluated separately the quality

of generated background, foreground, and motion using the following metrics:

– Foreground Content Distance (FCD). This score aims at assessing the consis-

tency between visual appearance of foreground objects in consecutive figures and

is measured by computing the average L2 distance between visual features, ex-

tracted from a fully-connected layer of a pre-trained Inception network [14], of

foreground objects in two consecutive figures. The input to the Inception model is

the bounding box containing the foreground region, defined as the discriminator’s

segmentation output.
– Motion coherency (MC). While the previous score describes the quality of the

generated visual appearance of moving objects, this one aims at evaluating how

realistic the generated motion is, and is computed as the KL-divergence between

magnitude/orientation histograms of optical flows of real and generated videos.
– Inception score (IS) [15] is the most adopted metric in GAN literature. In our case,

we compute the Inception score by sampling a random frame from each video of a

pool of generated ones.

During GAN training, we performed gradient-descent using ADAM, with an initial

learning rate of 0.0002, β1 = 0.5, β2 = 0.999 and batch size of 16 for 25 epochs.

FCS, MC and IS scores were computed on a set of 50,000 videos generated by the

compared models trained on “golf course” [9], and on the same number of random real

videos as a baseline.The results in Tab. 1 shows that our approach significantly out-

performed VGAN and TGAN on the three metrics, achieving closer values to those

yielded by real videos, indicating a higher realism in scene appearance and object mo-

tion. Samples of generated videos on for VGAN, TGAN and our method are shown in

Fig. 3.

FCD MC IS

VGAN [9] 10.61 0.017 1.74

TGAN [10] 3.74 0.011 2.02

Our approach 4.80 0.002 2.90

Real videos 4.59 0.0001 4.59

Table 1: Quantitative evaluation of video generation capabilities measured by fore-

ground content distance (FCD), motion coherency (MC) and Inception Score (IS).

4 Conclusion

We propose a novel GAN-based video generation approach that employs two input la-

tent spaces: one for modeling the background, and one to model foreground motion

and appearance. Extensive experimental evaluation showed that our VOS-GAN out-

performs significantly existing GAN-based methods, VGAN [9] and TGAN [10], on

the video generation process, by creating videos with more realistic motion measured

quantitatively.
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Fig. 3: Frame samples. (First and forth row) VGAN-generated video figures show very

little object motion, while (second and fifth row) TGAN-generated video figures show

motion, but the quality of foreground appearance is low. Our approach (third and sixth

row) generates video figures with a good compromise between object motion and ap-

pearance.
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