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Abstract. The increasing urban population in cities necessitates the need for the

development of smart cities that can offer better services to its citizens. Drone

technology plays a crucial role in the smart city environment and is already in-

volved in a number of functions in smart cities such as traffic control and con-

struction monitoring. A major challenge in fast growing cities is the encroach-

ment of public spaces. A robotic solution using visual change detection can be

used for such purposes. For the detection of encroachment, a drone can moni-

tor outdoor urban areas over a period of time to infer the visual changes. Visual

change detection is a higher level inference task that aims at accurately iden-

tifying variations between a reference image (historical) and a new test image

depicting the current scenario. In case of images, the challenges are complex

considering the variations caused by environmental conditions that are actually

unchanged events. Human mind interprets the change by comparing the current

status with historical data at intelligence level rather than using only visual in-

formation. In this paper, we present a deep architecture called ChangeNet for

detecting changes between pairs of images and express the same semantically

(label the change). A parallel deep convolutional neural network (CNN) architec-

ture for localizing and identifying the changes between image pair has been pro-

posed in this paper. The architecture is evaluated with VL-CMU-CD street view

change detection, TSUNAMI and Google Street View (GSV) datasets that resem-

ble drone captured images. The performance of the model for different lighting

and seasonal conditions are experimented quantitatively and qualitatively. The re-

sult shows that ChangeNet outperforms the state of the art by achieving 98.3%

pixel accuracy, 77.35% object based Intersection over Union (IoU) and 88.9%

area under Receiver Operating Characteristics (RoC) curve.
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1 Introduction

Monitoring of public infrastructure in the context of smart cities to check for encroach-

ments is an essential task. Encroachment can be described as anything placed in or on

a public asset for e.g., a road, or a pavement that is essentially a Government property.

Currently, manual methods are used where an officer visits and conducts a survey of

area of interest. Manual investigation to assess the encroachment is a tedious task and

the possibility of missing interesting events is high. This is a very time consuming pro-

cess and affects the aesthetics of the city and results in loss to the exchequer in the form

of fines.
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Emerging micro unmanned aerial vehicles or commonly called drones can be em-

ployed for detecting such encroachments. According to a report from Tractica in 2017 [1],

drones are expected to play a vital role in the smart city environment, providing support

for a range of medical, transport and agriculture use cases. Drones have a tremendous

amount of potential to provide a sustainable environment for the people who live in

them. Thousands of drones are already being used to improve city life such as in docu-

menting accident scenes and monitoring construction sites. As cameras are ubiquitous

in drones, computer vision based autonomous monitoring using unmanned vehicles is

picking up but is still immature. The challenges include navigation of drones auton-

mously, detecting the objects of interest and finally encroachment detection. The geo

tagged images or videos have to be assessed for detection anomalies and their locations.

Scene understanding in real world scenario is a very challenging problem that has

not reached the required maturity. However, detecting an encroachment can be viewed

as a visual change detection problem. A historical image at the location and the current

location of the drone can be used to find any deviation using visual processing. Identi-

fying the deviation using images or videos is called visual change detection and is the

focus of this paper.

Change detection in video analysis is often used as a stepping stone for high level

scene understanding. In its conventional form, the methods are used for identifying

changes in the background by comparing any two consecutive frames or limited to short

term temporal analysis [2]. In remote sensing literature, change detection is referred to

surface component alteration that is very useful in automatic land use analysis [3]. The

fact that the satellite images are registered helps in pixel level change detection tasks

that have been successfully extended to object level change analysis [3]. Some of the

key challenges for visual change detection between any two images include variations

in: lighting or illumination, contrast, quality, resolution, noise, scale, pose and occlu-

sion. The first five attributes are experienced in any change detection scenario but the

last three attributes are either not experienced in short term temporal analysis or it can

be easily handled using frame dropping. Most of the methods in literature that mod-

els background pixels to detect change are in fact addressing the first five attributes.

In the case of remote sensing, where change detection is widely used, change in scale,

pose and occlusion are rarely seen and the above methods can be easily deployed with

suitable pre-processing. Although these approaches are a part of decision making, it in-

volves low level image analytics such as background foreground segmentation. In more

complex inferencing using visual input, particularly in pattern recognition and category

formation, higher level cognition is essential. For instance, when two images are being

compared that have variations in pose, illumination, color information and occlusion,

the methods in literature often fail due to unregistered images, pose and scale variations

as well as occlusions.

Figure 1 shows an example from the VL-CMU-CD change detection dataset [4],

where higher level inferencing is required to detect the rubbish dumping on the pave-

ment and the appearance changes are spread throughout the images. In this paper, a

novel deep learning architecture is proposed for change detection that targets higher

level inferencing. The new network architecture involves extracting features using ResNet [5]

and combining filter outputs at different levels to localize the change. Finally, detected
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Fig. 1. Illustrative images from CMU-CD dataset: reference image, test image and ground truth

(in blue)

changes are identified using the same network, and output is an object level change de-

tection with the label. The proposed architecture is compared with the state-of-the-art

using three different modern change detection dataset: VL-CMU-CD [4], Tsunami [6]

and GSV [6] datasets.

2 Related work and motivation

As described in the previous section, change refers to the higher level inferencing where

the appearance has substantially changed between images. The change could either be

insertion or deletion of an object from the scene, or some transformation of structure of

the object or scene [7]. There are numerous industrial applications that can benefit from

efficient visual change detection and as a result there is plenty of work in this area,

especially in satellite image processing [3]. One of the simplest approach to change

detection is frame or image differencing that involves traditional pixel level analysis.

However, it works if and only if both the images are registered and the variation in

image attributes are relatively minimal [3].

In 2012 and 2014, Goyette et al. [8] and Wang et al. [9] developed and expanded a

change detection dataset and a workshop was conducted alongside CVPR 2014. Several

papers have been published using this dataset. Although the dataset is used for lower

level inference tasks, these methods are highly relevant and they are reported here with

advantages and pitfalls. The eleven categories of videos used in this dataset and their

corresponding results throws much needed light on higher level inferences that we are

repeatedly discussing in this paper. Bilodean et al. [10] used local binary similarity

pattern for change detection. The method is quite simple and plays with spatial neigh-

bourhood of every pixel. Noting this, the authors have used only two of the 11 categories

- baseline and thermal - for detecting change highlighting the need for a more holistic

approach. Sedky et al. [11] propose a physics based approach called Spectral 360. They

use illumination, surface spectral reflectance and spectral similarity measure to build

a decision function. They report a f -Score of 67.32% with low f -score of less than

50% for four of the eleven categories. Gregorio et al. [12] report an improved overall

accuracy of 68.12% using a weightless neural network that helps in incorporating pixel

history information in decision making (very similar to background subtraction using

Gaussian mixture models). Again, their performance is limited as they fail to address

some of the teething issues related to scale and pose. Wang et al. [13] proposed a flux
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tensor and split Gaussian model with a healthy f -score of 72.83%. Improving on all

the above methods, a more comprehensive work has been reported by St-Charles et

al. [2] who achieve 74.1% overall f-score using their SuBSENSE system. They pro-

pose spatio-temporal binary features to achieve the same. In line with achievements

from other computer vision challenges, Bianco et al. [14] propose ensemble method

for change detection achieving the best f -score of 78.21% by combining results of five

other methods in literature. In every method discussed from basic binary features to en-

semble methods, five categories out of eleven posed high challenge: PTZ, night videos,

low frame rate, intermittent object motion and turbulence videos. Putting the results

in perspective, small variations in illumination, contrast, quality, resolution and noise

were captured by these methods quite well. Increased variations in addition to change

in pose, scale and occlusion were not handled well by these methods and they are pre-

cisely the higher level inferences that are required for an object or scene level change

detection method.

One interesting development in semantic change detection was reported by Gressin

et al. [15] on satellite image processing. Although the work is on simulated data, for the

first time, they have reported the perspective of change detection at different inference

levels such as object, theme and database akin to our work. As far as we are aware,

this is the first work alluding to different levels in change detection. In a similar work,

Kataoka et al. [16] talks about semantic change detection by adding semantic meaning

to changed area. First, they find changed area using hyper maps, and then add semantic

meaning to that changed area. Since last few years, after deep learning has become

the main approach in computer vision, there have been some efforts in creation of the

dataset as well as in building change detection procedures. Sakurata and Okatani [6]

was the first such attempt and they built two data sets with 100 image pairs known as

TSUNAMI dataset and Google Street View (GSV) dataset. These are panoramic images

created using street view separated temporally by several days or months. In addition to

the creation of a dataset, they proposed a complex super pixel based approach that uses

convolutional neural network (CNN) for feature extraction. The low resolution feature

map generated from CNN network is combined with super pixel segmentation to get

precise segmentation boundaries of the changes. Although deep learning is used in the

pipeline, there are many other hyper parameters in the procedure that needs fine tuning

for different scenarios.

Going one step further, Alkantarilla et al. [4] propose a network called CDnet for

finding structural changes in street view video. They create a new dataset of 152 cat-

egories with 11 unique object classes called VL-CMU-CD dataset. In order to cre-

ate nearly registered images, they use visual simultaneous localization and mapping

(SLAM) to get the 3D point cloud and then project the points onto a 2D reference

plane after determining the reference pose. It is a pixel level change detection approach

and uses contraction and expansion layers for pixel level classification. The contrac-

tion block creates data representation. In this process it stores max pooling output for

later use in the expansion network. The expansion block has been used for improving

change localization. The proposed ChangeNet architecture is different from CDnet ap-

proach. Our network determine category of change in addition to change localization.

We use parallel weight tied networks for feature extraction. It ensures both the network
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learn same features from the two images. Therefore, the features from both the images

can be compared easily. In addition to this, we combine output from different levels of

convolution layers so that the model captures the sparse and finer details of the object.

Bilinear interpolation is used in ChangeNet for upsampling the data and the filter pa-

rameters are learned in network itself. Another feature of ChangeNet is that it combines

predictions from different levels of convolution layer. Such approach helps the model to

capture both coarse and fine details of the object. Apart from deep learning approaches,

a multi-scale super pixel approach for drone image analysis has been proposed by Gubbi

et al. [17] with limited success on VL-CMU-CD dataset. The focus of this paper is to

implement the change detection system on a computationally challenging environment.

In the recent past, there has been quite a good amount of success in pixel level

image analysis using deep architecture. Bansal et al. [18] proposed a new architecture

for predicting surface normal that is useful in 2D-3D alignment. They use pre-trained

VGG-16 network for feature extraction followed by three layers of fully connected

layers for predicting surface normal for every pixel. Bansal et al. [19] generalized their

earlier work and created PixelNet architecture and demonstrated semantic segmentation

and edge detection in addition to surface normal estimation using an extended VGG-16

network. Such work has demonstrated that CNN is able to learn pixel level information

in addition to their success in image categorisation. Similar work have been extended

for regions of interest where they propose a new network for simultaneously predicting

human eye fixations and segmenting salient objects. In addition to single image pixel

analysis, there has been some recent work in finding similarity between two images or

signal pairs. Du et al. [20] proposes a Siamese CNN network for checking whether two

hand written texts are written by the same person or not. Both the inputs are encoded

with the same network and then concatenated output is fed to a two class classifier to

determine whether handwriting is same or not.

With the developments in change detection and pixel level analysis using deep learn-

ing, we are motivated to solve the hard problem of change detection using a deep net-

work. VL-CMU-CD dataset is our target as the scene pairs are complex and taken at

different view angle, illumination and seasons as well. It has 11 different class of struc-

tural changes like construction-maintenance, bin on pavement, new sign boards, traffic

cone on road, vehicles, etc., including background. To the best of our knowledge, it is a

novel architecture for visual change detection particularly resulting in scene labels that

can be viewed as semantic change detection. We further train the network to determine

the category of change in addition to the changed area. Both the tasks happen within the

network and involves single training. Most of the background information are irrelevant

in our case since those changes could be due to season, illumination or view point vari-

ation. It mainly looks for changes at object level as compared to Alkantarilla et al. [4].

The model inputs are test and reference images. Output is detection, localization and

categorization of changed region. It mainly answers the following three questions in the

presence of seven variations, which have been discussed earlier: is there any change? if

yes, what is the change? and where is the change in the image? Section 3 gives details

about our architecture and experimental details are provided in Section 4. Result and

discussion are presented in Section 5.
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3 ChangeNet architecture

We propose a deep learning architecture for detecting changes between image pairs. We

adapt ideas from siamese network [21, 22] and fully convolutional network (FCN) [23]

to map features from image pair to visual change. Convolutional neural networks are

known for its performance in object detection. Especially, networks like GoogLeNet [24],

Alexnet [25], VGGNet [26], and ResNet [5] are powerful deep trained models for fea-

ture representation. The learned representation can be transferred to another domain

instead of training it from scratch. Transfer learning approach is followed here for fea-

ture extraction. In this architecture, two inputs are required: a test Itest and a reference

image Iref . Both are having same dimension of w × h × d where w and h are spa-

tial dimension and d is the number of channels. The change detection problem can be

formulated as: find a way to compare features from Itest and Iref to assign a change

class label from label set of l = 1, 2, ...N to each element of change map Iw×h. N is

the number of defined semantic change class and it ensures environmental changes are

neglected during change detection.

Fig. 2. Architecture for the proposed visual change detection. CP represents ResNet residual

block and FC represents fully convolutional layer with kernel size of 1× 1

The detailed architecture diagram for visual change detection is shown in Figure 2.

There are two weight tied convolutional neural networks CNN1 and CNN2 for extract-

ing features from Itest and Iref respectively. In change detection, model learns repre-

sentation from image pair; and then it tries to find relationship between them. However,

task and input type of both the sub-networks are the same. Therefore similar type of

features are expected from both the images. This can be achieved with a siamese net-

work [22]. Siamese network is a weight tied network having same number of param-

eters and weight values. In addition, this approach optimizes the memory and training

time without compromising on the performance. One key difference between a stan-

dard siamese and our network is that the weights are not tied in deconvolution layer.

This resulted in significantly better performance of up to 5%. The reason could be due

to the nature of siamese network where the convolution stage and the deconvolution

stage have the weights tied that will force the network to work in constrained space. In
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our network, the convolution stage will be weight tied but during deconvolution stage

they work independently.

Since our training data are natural images and the number of training images are

limited, transfer learning performs better than creating a new model from scratch. A

Residual network (ResNet)-50 is used as pre-trained model [5] . ResNet uses residual

blocks so that it can handle very deep architectures. ResNet block mainly consists of

convolution layer, batch normalization and a rectified linear unit as shown in Figure 3

that contributes to feature extraction. The features from CNN1 can be represented as

f1 = g(Itest) and CNN2 as f2 = g(Iref ). The output of three layers fl1 , fl2 , fl3 are

tapped from the feature block in order to capture changes at different scales. l1 is the

CNN layer before fully connected layer and l2 and l3 are the residual blocks before l1.

Fig. 3. Architecture for feature extraction.

Generally ResNet learns representation, and generates score for object classifica-

tion. In this process, it uses max pooling layers and fully connected layers. However, it

causes loss of spatial information. In semantic change detection, prediction should hap-

pen at input image spatial dimension in order to localize the changed area. Therefore, a

mechanism is required to map learned representation onto input image dimension. Sim-

ilar issue is already tackled in semantic segmentation. We adapted a similar approach

to restore back the learned representation onto test image. There are different semantic

segmentation approaches in literature like FCN [23], U-Net [27], PSPNet [28], Seg-

Net [29], etc. Semantic segmentation uses both global and local information for encod-

ing both semantics and location. As per [23], global information resolves semantic and

local information resolves location.

A deconvolution layer is used to upsample output to image spatial dimension. It

maps features f in high dimensional space to change map of Iw×h×N . Upsampling is

done with bilinear interpolation filter. Bilinear filter interpolation predicts values from

nearest four inputs. The filter parameters for upsampling is learned in the network itself.

In order to incorporate both coarse and finer details, the convolution layer output from

previous layer is also upsampled to input spatial dimension. Subsequently, upsampled

output from both the parallel network are concatenated for comparison. Again, same
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layers from both the networks are concatenated. The filter outputs f1l1 and f2l1 from

layer l1 of parallel network are concatenated. The same way, filter outputs f1l2 and f2l2
from layer l2; filter outputs f1l3 and f2l3 from layer l3 are concatenated. This ensures

that we compare the representation at same degree and scale. Finally, all the concate-

nated outputs are added up together and shared to a softmax classifier to classify to one

of the N classes. A convolutional layer with kernel size of 1× 1 is used before softmax

layer for reducing dimensionality to N classes. The changed area will be highlighted

with class label of structural change. The network details are as follows: Fully convo-

lution and up-sampling are performed on ResNet 7 × 7, 14 × 14, 28 × 28 convolution

layers; and changed the dimension to 224 × 224 × 11, where 224 × 224 is the input

image dimension and 11 is the number of classes. Then, concatenation of subsequent

layers and fully convolutional network resulted in three 224×224×11 dimension. The

three outputs are summed together (tensor addition) and given to a softmax classifier. It

predicts a class for each pixels and generates a prediction of dimension 224×224×11.

Test Image Reference Image Superpixel CDnet ChangeNet Ground Truth

Fig. 4. Qualitative performance of change detection versus other approaches. Our approach gives

change area as well as class label of structural change in the scene. Different classes are overlaid

with different colors. Here green color represent vehicle class, purple for sign board, navy blue for

rubbish bin and orange color for construction maintenance. Our approach can detect and localize

changes in the scene at semantic level. Multiple colors in ChangeNet and ground truth images

indicate separate class labels.
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4 Experiments

For our experiments, three different datasets are used. The VL-CMU-CD dataset [4]

is one of the most complex datasets available for change detection. It has 152 different

scene changes. Each category has 2 to 41 pairs of test and reference images. Image pairs

are taken at different view angle, seasonal and lighting condition as shown in figure 1.

Out of 152 categories, we have chosen 103 categories, which are having more than

5 image pairs. This will ensure that we have enough samples from each category for

training and testing. This results in a total of 1187 image pairs over 103 categories. The

other two datasets - TSUNAMI and GSV - were developed by Sakurata and Okatani [6]

and contains 100 pairs of images each. The definition of change in these two datasets

are different compared with VL-CMU-CD. All the changes including variations in the

background are considered as change. Each of the three datasets is divided it into train,

validation and test in the ratio of 7:1.5:1.5. We evaluate our network on the test data by

computing standard performance evaluation metrics such as precision, recall, f -score,

ROC curve, Area under ROC (AUC) and Intersection over Union (IoU) measure [6, 4].

In addition to this, a five fold cross-validation is conducted on the VL-CMU-CD dataset

to assess the network performance. The three datasets and related methods in literature

focus on binary classification, that is the final output is to detect change or no-change.

We refer to this scenario as binary for the rest of the paper. We are also interested

in labeling the object after the change is detected. We call this scenario multi-class.

Currently, the system is built for multi-class classification of 10 commonly appearing

objects in VL-CMU-CD dataset: barrier, bin, construction, person/bicycle, rubbish bin,

sign board, traffic cone, and vehicle. An Ubuntu based workstation with the following

Table 1. Analysis of ChangeNet results at class level on VL-CMU-CD data set. Miscellaneous

class has been excluded from the table as all the values were 0.

Classification Metric Barrier Bin
Cons-

truction
Other

objects
Person/
Bicycle

Rubbish
bin

Sign

board
Traffic
-cone Vehicle

Pixel
based

Precision 0.55 0.80 0.88 0.92 0.83 0.87 0.77 0.53 0.91

Recall 0.63 0.71 0.80 0.84 0.74 0.82 0.61 0.42 0.83

f -score 0.59 0.76 0.84 0.88 0.79 0.84 0.68 0.47 0.87

Object

based

Precision 0.50 0.97 0.86 1.00 1.00 0.96 1.00 1.00 1.00

Recall 0.87 1.00 1.00 0.87 1.00 1.00 0.75 0.50 0.91

f -score 0.63 0.98 0.92 0.93 1.00 0.97 0.85 0.66 0.95

configuration is used for training and testing purpose: Intel core i7 @3.4Gx8, 32GB

RAM and NVIDIA GM204GL [Quadro M4000] GPU card. Tensorflow, a deep learning

library with python support is used for implementing deep learning network.

5 Results and Discussions

The ChangeNet architecture was specifically designed keeping VL-CMU-CD dataset in

mind due to its complexity. In order to validate the architecture, a 5 fold cross validation
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was conducted. The results are as shown in Table 2 and a healthy average f -score of

86.9% was obtained for binary classification and 73.87% for multi-class classification.

Figure 5 shows the boxplot of cross validation performance for binary classification

scenario. As it can be seen, the variation across different folds in marginal reflecting

good generalization of the proposed architecture.

Table 2. Average results of 5-fold cross validation for binary and multi-class scenarios

Accuracy Precision Recall f -score

Binary 98.3 87.98 85.85 86.90

Multi-class 82.58 77.14 71.43 73.87

Fig. 5. Boxplot of ChangeNet performance in 5-fold cross validation for binary classification

To further confirm its performance, multi-scale super pixel [17] and CDnet [4] were

compared to the proposed architecture. In order to make a fair comparison, the re-

sults of binary classification (change or no change) of all the methods are compared by

converting our class based output into binary form. The predicted change map of base-

line approaches and our method are shown in Figure 4. Each sample exhibits different

lighting and seasonal condition. The first column is the test image, which is compared

against reference image in the second column. The third and the fourth columns are

the change detection results of multi-scale super pixel method and CDnet. The changed

area is highlighted with red color. CDnet result images are taken from [4] for compari-

son purpose. The results of ChangeNet is shown in the fifth column. The changed area

is highlighted with corresponding class label. The ground truth is given in the last col-

umn. It should be noted that different colored labels for ChangeNet and Ground truth
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indicate multi-class classification that is unique to our work. ChangeNet achieves this in

a single shot and a single network is able to detect change and label them. As shown in

Figure 4, ChangeNet performs better than other approaches both in terms of the output

as well as in terms of change class labelling. It gives a better performance in terms of

accuracy and precision. Compared to other approaches, it gives additional information

like what is the structural changes in the scene. In other words, our approach is able to

tell where is the change in the scene as well as what the change is. ChangeNet performs

well even though the background between image pair is different due to seasonal alter-

ations and lighting conditions. For example, image pair in row 2 are taken at different

lighting condition and ChangeNet was able to detect the changed area. An example of

multiple changes in the same scene is depicted in row 4 where vehicle and a sign board

are depicted as change. ChangeNet is able to identify both of them accurately. However,

small objects such as sign board are mis-classified as background. One of the reasons is

that the sign board object is less dominant in test image. This is due to the features that

we tap out at different levels whose receptive fields cover certain minimum area. Results

in row 5 shows performance of ChangeNet when images are captured at different sea-

sonal conditions. The reference image shows the presence of snow in the background.

The same case applies to row 6 as well. Model performed well in this case, and it could

detect and locate the rubbish bin. Since we approached the change detection problem at

semantic level, we could mitigate irrelevant background information and reduce false

alarms, if any.

TSUNAMI Dataset GSV dataset

Fig. 6. Qualitative performance of ChangeNet on Tsunami and GSV dataset. From top to bottom:

Reference image, Test image, Ground truth mask and ChangeNet

Quantitative performance of our method is evaluated in two aspects. First aspect is

how accurately it localized the change. Once it localized the change, what is the pixel

labeling accuracy. Mainly, Intersection over Union (IoU) and pixel accuracy metrics are
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used for evaluating the performance. We considered 11 classes including background

for this performance measurement. Model is evaluated with 177 image pairs and the

results are generated. The performance metric for ChangeNet is given in Table 3. We

achieved 98.3% pixel level accuracy and 82.58% mean pixel accuracy. In other words,

98.3% pixels are classified as change correctly. In that, 82.58% pixels are classified

correctly per class basis. Also, we achieved 77.35% IoU. It compares the ground truth

and predicted changed area on a per class basis. IoU is changed to 96.96% once we

assigned the weights to class IoU based on their appearance frequency. Table 1 shows

the results of ChangeNet in identification of class based change. Other than barrier and

traffic cone, all other classes resulted in a f -score of over 0.8 for object level change

detection. At pixel level, small objects including traffic cone, barrier and sign board

resulted in lower f -scores. Table 4 shows quantitative comparison of ChangeNet with

CDnet [4] and Super-pixel [17] methods for two different false positive rates of 0.1

and 0.01. As it can be seen, ChangeNet outperforms both the methods with impressive

f -scores. Figure 7 shows the Receiver Operator Characteristic (ROC) curve for binary

classification of ChangeNet, CDnet [4] and super-pixel [17] based methods. All the

classes except background is considered as logical one. ChangeNet resulted in steep

ROC curve with maximum true positive rate and minimum false positive rate. The area

under ROC curve, i.e., AUC is 89.2%.

Table 3. Performance metrics for ChangeNet

Pixel Mean Pixel Mean IoU Frequency

Accuracy Accuracy weighted IoU

98.3 82.58 77.35 96.96

Table 4. The quantitative comparison of our method with other approaches for FPR=0.1 and

FPR=0.01. Pr-Precision, Re-Recall and F1-f -score

FPR=0.1 FPR=0.01

Pr Re F1 Pr Re F1

Super-pixel [17] 0.17 0.35 0.23 0.23 0.12 0.15

CDnet [4] 0.40 0.85 0.55 0.79 0.46 0.58

ChangeNet 0.79 0.80 0.79 0.80 0.79 0.79

Detailed results of ChangeNet on the three datasets tested is presented in Table 5.

For TSUNAMI and GSV datasets, the performance measures are calculated in the re-

gion of interest as well as for the whole image (within parenthesis). As it can be seen,

the results on VL-CMU-CD dataset are very high with nearly good performance on

TSUNAMI dataset. There is a drop in GSV performance. The drop in performance

on GSV dataset is attributed to the way the ground truth is created in these datasets.

ChangeNet focuses on structural changes but GSV ground truth represents cars on the

road as change. Hence, the overall performance seems to dip. The results of ChangeNet
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Fig. 7. ROC and FPR-TPR curve for binary class

on TSUNAMI and GSV dataset are shown in Figure 6. It can be clearly seen that we

have been able to detect dominant objects such as houses and trees as changes but

movement of cars and small signboards are not detected.

Table 5. Performance metrics of ChangeNet for binary classification (change or no-change) on

different datasets. The values for TSUNAMI and GSV datasets are in the following format: cal-

culated in the region of interest (calculated on whole image)

Dataset→
Metric ↓ CMU-CD Tsunami GSV

Precision 0.88 0.73 (0.82) 0.51 (0.67)

Recall 0.80 0.74 (0.82) 0.45 (0.66

f -score 0.84 0.74 (0.82) 0.48 (0.67)

Accuracy 0.97 0.85 (0.85) 0.77 (0.77)

IoU 0.64 0.55 (0.69) 0.27 (0.5)

Area overlap 0.89 0.71 (0.71) 0.44 (0.44)

AuC 0.89 0.82 (0.82) 0.66 (0.66)

Finally, the performance of the three different methods on three different datasets

are presented in Table 6. It should be noted that the definition of change detection

is evolving. The new datasets and methods that can detect change at higher levels of

inference is becoming possible. This paper is one of the early works in the direction and

hence there are very few methods in literature that can be compared, which is presented

in Table 6. For VL-CMU-CD dataset, ChangeNet results in the best performance. For

TSUNAMI dataset, CDnet gives the best result but ChangeNet is not too far behind.
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However, for GSV dataset, CDnet outperforms other methods. The lack of robustness

in detecting small changes is found to be the main drawback of ChangeNet. In the

future, we plan to extend the network for detecting small object change detection in the

presence of occlusion.

Table 6. Comparison of f -score values of ChangeNet with other methods on different datasets.

For ChangeNet, two separate f -scores are calculated based on false positive rates

Method→ Super-pixel CDnet ChangeNet

Dataset↓ (0.1) (0.01)

TSUNAMI 0.38 0.77 0.73 0.47

GSV 0.26 0.61 0.45 0.20

VL-CMU-CD 0.15 0.58 0.80 0.83

ChangeNet does not depend on the objects trained in the network for change detec-

tion. Change is first detected and then object label (semantic information) is inferred

using a single network. Figure 8 shows the reference image, test image and change

detected image (from left to right). The bin in both the picture is in the object classes

but it is not detected as change as it is present in both the images. However, bicycle is

highlighted as the systems detects change in that region and labels the class correctly.

Fig. 8. ChangeNet performance demonstration: reference (left), test (middle) and change detected

(right). The result in the figure demonstrates that ChangeNet is focussed on change rather than

the object category. In spite of both bin and bicycle being present in our category labels, only

bicycle is highlighted as a change, which is along expected lines.

6 Conclusion

A deep learning architecture called ChangeNet is proposed for detecting structural

changes between an drone captured image pair. The new architecture is comprised

of two parallel weight tied networks that act as image feature extractors for detect-

ing change. Features at different layers are merged and a fully convolutional network

is used to detect change. ChangeNet is experimented and evaluated with VL-CMU-CD

dataset, which is very challenging. ChangeNet detects and localize the changes of the

same scene captured at different lighting, view angle and seasonal condition. Further,

for the first time, a network that can detect and report change in semantics (scene labels)

is demonstrated. 98.3% pixel accuracy, 77.35% class based IoU and 88.9% AUC was

achieved.
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