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Abstract. As an indicator of attention, gaze is an important cue for human be-

havior and social interaction analysis. Recent deep learning methods for gaze

estimation rely on plain regression of the gaze from images without account-

ing for potential mismatches in eye image cropping and normalization. This may

impact the estimation of the implicit relation between visual cues and the gaze di-

rection when dealing with low resolution images or when training with a limited

amount of data. In this paper, we propose a deep multitask framework for gaze es-

timation, with the following contributions. i) we proposed a multitask framework

which relies on both synthetic data and real data for end-to-end training. During

training, each dataset provides the label of only one task but the two tasks are

combined in a constrained way. ii) we introduce a Constrained Landmark-Gaze

Model (CLGM) modeling the joint variation of eye landmark locations (includ-

ing the iris center) and gaze directions. By relating explicitly visual information

(landmarks) to the more abstract gaze values, we demonstrate that the estimator

is more accurate and easier to learn. iii) by decomposing our deep network into

a network inferring jointly the parameters of the CLGM model and the scale and

translation parameters of eye regions on one hand, and a CLGM based decoder

deterministically inferring landmark positions and gaze from these parameters

and head pose on the other hand, our framework decouples gaze estimation from

irrelevant geometric variations in the eye image (scale, translation), resulting in

a more robust model. Thorough experiments on public datasets demonstrate that

our method achieves competitive results, improving over state-of-the-art results

in challenging free head pose gaze estimation tasks and on eye landmark local-

ization (iris location) ones.

1 Introduction

Gaze is the essential indicator of human attention and can even provide access to

thought processes [1–3]. In interactions, it is a non-verbal behavior that plays a major

role in all communication aspects [4], and it has also been shown to be related to higher-

level constructs, like personality, dominance, or rapport. Gaze is thus an important cue

for human behavior analysis, and beyond traditionnal screen-gazing monitoring, 3D

gaze estimation finds application in health care [5], social interaction analysis [6], hu-

man computer interaction (HCI) or human robotic interaction (HRI) [7, 8]. In another

context, the new generation of smart phones like iPhone X and their extended applica-

tions raise further interest in gaze estimation under mobile scenarios [9–11].
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Traditional gaze estimation methods include model-based geometrical methods and

appearance based methods. The former are more accurate, but the techniques used so

far to extract eye landmarks (eye corners, iris) require high resolution images (limit-

ing the freedom of motion) and relatively open eyes since the gaze is estimated from

sparse features which are most often detected in a separate task. The latter methods

have been shown to be more robust to eye resolution or gazing direction (e.g. looking

down with eyelid occlusion) variabilities. Thus, this is not surprising that recent works

have explored inferring gaze from the eye image via deep regression [9,12–14]. Never-

theless, although progress has been reported, direct regression of gaze still suffers from

limitations:

– Since the ground truth of gaze vector is hard to annotate, the amount of training

data for gaze estimation is limited (number of people, illumination conditions, an-

notation accuracies) compared to other computer vision tasks. Although there has

been some synthetic data [15] for gaze estimation, the appearance and gaze setting

of synthetic data is somehow different to real data. Therefore, this currently hinders

the benefits of deep learning for gaze.

– An accurate and unified eye cropping is difficult to achieve in real application. This

means the size and location of the eye regions may significantly vary in the cropped

eye images, due to bad eye/landmark localization, or when changing datasets. Since

the gaze estimation is very sensitive to the subtle relative positions and shapes of

eye landmarks, such variations can significantly alter the gaze estimation outcomes.

Though data augmentation can partially handle this problem, an explicit model of

this step may improve the generalization ability to new datasets, unperfect crop-

ping, or new eyes.

To address these issues, we propose an end-to-end trainable deep multitask frame-

work based on a Constrained Landmark-Gaze Model, with the following properties.

First, we address eye landmark (including iris center) detection and gaze estimation

jointly. Indeed, since gaze values are strongly correlated with eye landmark locations,

we hypothesize that modeling eye landmark detection (which is an explicit visual task)

as an auxiliary task can ease the learning of a predictive model of the more abstract gaze

information. To the best of our knowledge, this is the first time that multitask learning is

applied to gaze estimation. Since there is no existing large scale dataset which annotates

detailed eye landmarks, we rely on a synthetic dataset for the learning of the auxiliary

task in this paper. Note that we only use the landmark annotations from the synthetic

data because of the different gaze setting of synthetic data. The use of synthetic data

also expands the amount of training data to some extent.

Second, instead of predicting eye landmarks and gaze in two network branches as in

usual deep multitask learning, we build a Constrained Landmark-Gaze Model (CLGM)

modeling the joint variation of eye landmark location and gaze direction, which bridges

the two tasks in a closer and more explicit way.

Third, we make our approach more robust to scale, translation and even head pose

variations by relying on a deterministic decoder. More precisely, the network learns two

sets of parameters, which are the coefficients of the CLGM model, and the scale and

translation parameters defining the eye region. Using these parameters and the head

pose, the decoder deterministically predicts the eye landmark locations and gaze via
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the CLGM. Note however that while all parameters account for defining the landmark

positions, only the CLGM coefficients and the head pose are used for gaze prediction.

Thus, gaze estimation is decoupled from irrelevant variations in scale and translation

and geometrically modeled within the head pose frame.

Finally, note that while currently landmark detection is used as a secondary task, it

could be used as a primary task as well to extract the features (eye corners, iris center)

requested by a geometrical eye gaze model, which can potentially be more accurate.

In particular, the CLGM could help predicting iris location even when the eyes are not

fully open (see Fig. 7 for examples).

Thus, in summary, our contributions are as follows:

– A Constrained Landmark-Gaze Model modeling the joint variation of eye land-

marks and gaze;

– Gaze estimation robust to translation, scale and head pose achieved by a CLGM

based decoder;

– An end-to-end trainable deep multitask learning framework for gaze estimation

with the help of CLGM and synthetic data.

Thorough experiments on public datasets for both gaze estimation and landmark (iris)

localization demonstrate the validity of our approach.

The rest of the paper is organized as follows. We introduce related works in Section 2.

The correlation between eye landmarks and gaze is studied in Section 3. The proposed

method is presented in Section 4, while experimental results are reported in Section 5.

2 Related Work

We introduce the current related researches in gaze estimation and multitask learning

as follows.

Gaze Estimation. In this paper, we mainly investigated the vision based non-invasive

and non-active (i.e. without infra-red sources) remote gaze estimation methods. They

can be grouped into two categories, the geometric based methods (GBM) and appear-

ance based methods (ABM) [16].

GBM methods rely on a geometric model of the eye whose parameters (like eye

ball center and radius, pupil center and radius) can be estimated from features extracted

in training images [17–25] and can further be used to infer the gaze direction. They

usually require high resolution eye images from near frontal head poses to obtain stable

and accurate feature detection, which limits the user mobility and their application to

many settings of interest.

By learning a mapping from the eye appearance to the gaze, ABM methods [11,26]

are more robust to lower resolution images. They usually extract visual features like

Retinex feature [27] and mHOG [28], and train regression models such as Random

Forest [29], Adaptive Linear Rregression [30], Support Vector Regression [28] for gaze

estimation. Very often ABM methods assumed static head pose, but recently head pose

dependent image normalization have been tested with success, as done for instance

in [31] where a 3D morphable model is used for pose normalization. In general, ABM

methods require a large amount of data for training and they do not model the person

gaze variation explictly with a model.
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Recent works started to use deep learning to regress gaze directly from the eye

image [9, 12–14, 32]. Kyle et al. [9] proposed to learn the gaze fixation point on smart

phone screens using the images taken from the front-facing camera. Their network takes

4 channels including full face image and eye images as input. To train their network,

they collected a large dataset with 2.5M frames and an accurate estimator with 2cm

error is achieved. Nevertheless, this dataset does not provide the groundtruth for the

3D gaze direction, which is much harder to label than 2D gaze fixation point. Zhang et

al. [13] proposed a dataset for 3D gaze estimation. However, the number of participants

is much smaller, which may limit model generalization when being used for training. In

Zhang’s work, the head pose was linearly modeled when estimating gaze. This design

is challenged in [12] where the correlation between the gaze and head pose is explicitly

taken into account, which may reflect prior information between these two quantities,

but does not account for eye shape or eye cropping variabilities.

The above works basically regress gaze directly from the eye appearances or full

faces. In contrast, several methods [33–35] attempt to learn gaze via some intermediate

representations or features, including eye landmarks [34,35]. A similar approach to this

paper is proposed in [33] where the network learns the heatmaps of eye landmarks first.

The gaze is then predicted based on the landmark heatmaps. Our paper differs from

this work in that the eye landmarks and gaze are jointly modeled with a constrained

framework and they are predicted in the same stage.

Multitask learning. Multitask learning aims to improve the overall performance of

one or each task by providing implicit data augmentation or regularizations [36]. Due

to the flexibility of network architectures, a number of works have been proposed on

deep multitask learning. The classical implementation is to share parameters in shallow

layers and arrange task-specific branches in deeper layers. Many of the representative

works are face-related research [37–41] since there are plenty of datasets with rich an-

notations in this area and the face attributes are also well correlated. Some other works,

however, attempted to propose novel multitask learning architectures which could gen-

eralize well on other tasks. For example, the Cross-stitch Network [42] designed a

cross-stitch unit to leverage the activations from multiple models thus the parameters

are shared softly. However, the network architecture and the placing of cross-stitch are

still manually determined. Instead of hand designing the multitask learning architec-

ture, Lu et al. [43] proposed to dynamically create network branches for tasks during

training so fully adaptive feature sharing is achieved. Nevertheless, their approach did

not model the interactions between tasks.

To the best of our knowledge, we are not aware of any multi-task learning frame-

work for gaze estimation.

3 Correlation of Eye Landmarks and Gaze

Before introducing our method, we first study the correlation existing between the gaze

and eye landmarks. We used the synthetic database UnityEyes [15] for correlation anal-

ysis since this database provides rich and accurate information regarding the landmark

and gaze values. As this dataset relies on a synthetic yet realistic model of the eye ball

and shape, and since this database has been used for the training of gaze estimators
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a) b) c)

Fig. 1. Correlation between the eye landmark positions and gaze values, computed from the Uni-

tyEyes dataset. (a) Selected landmarks (bottom) from the UnityEyes landmark set (top). (b) Cor-

relation coefficients between the landmark horizontal or vertical positions and the gaze yaw or

pitch angles. (c) Joint distribution map of the horizontal or vertical positions of the iris center and

of the yaw or pitch gaze angles.

which have achieved very high performance on real datasets [15], we expect this corre-

lation analysis to be rather accurate. In any case, in Section 4.3, we show how we can

account for the discrepancy between the synthetic model and real data.

Landmark set. The UnityEyes annotates three types of eye landmarks, the caruncle

landmarks, the eyelid landmarks and the iris landmarks, as shown in the first row of

Fig. 1a. Considering that relying on many landmarks will not help improving the ro-

bustness and accuracy but simply increase the complexity of the method, we only se-

lected a subset I of the available landmark instead. It contains 16 landmarks from the

eyelid, and the iris center which is estimated from the iris contour landmarks. This is

illustrated in the second row of Fig. 1a.

Landmark alignment. We generated 50,000 UnityEyes samples with frontal head pose

and a gaze value uniformly sampled within the [-45◦, 45◦] range for both pitch and yaw.

All the samples are aligned on a global center point cl.

Correlation analysis. We assign the landmark indices as shown in Fig. 1a. Then we

compute the correlation coefficient between each landmark and gaze coordinates. More

precisely, two correlation coefficients are computed: the gaze yaw - horizontal landmark

position and the gaze pitch - vertical landmark position. They are displayed in Fig. 1b.

The following comments can be made. First, the position of the iris center (landmark

17) is strongly correlated with gaze, as expected. The correlation coefficient between

the horizontal (respectively vertical) position of the iris center and the gaze yaw (re-

spectively pitch) is close to 1. Furthermore, the joint data distribution between the iris

center and gaze displayed in Fig. 1c indicates that they seem to follow a linear relation-

ship, especially in the pitch direction. Second, the gaze pitch is also highly correlated

with other landmarks (red curve in Fig. 1b). This reflects that looking up or looking

down requires some eyelid movement which are thus quite indicative of the gaze pitch.

Third, the gaze yaw is only weakly correlated with eyelid landmarks, which means that

looking to the left or right is mainly conducted by iris movements.

In summary, we find that the eye landmarks are correlated with the gaze and there-

fore they can provide strong support cues for estimating gaze.
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Fig. 2. Framework of the proposed method.

4 Method

The proposed framework is shown in Fig. 2. It consists of two parts. The first part is

a neural network which takes an eye image as input and regresses two sets of parame-

ters: the coefficients of our joint CLGM landmarks and gaze model, and the scale and

translation defining the eye region. The second part is a deterministic decoder. Based on

the Constrained Landmark-Gaze model, it reconstructs the eye landmark positions and

gaze with the two sets of parameters and the head pose. Note that in the reconstruction,

the eye landmarks are computed using all parameters while the gaze is only determined

using the CLGM coefficients and the head pose. An end-to-end training of the network

is performed by combining the losses on landmark localization and gaze estimation. In

our approach, we assume that the head pose has been obtained in advance. Below, we

provide more details about the different parts of the model.

4.1 Constrained Landmark-Gaze Model

As with the 3D Morphable Model [44] or the Constrained Local Model [45] for faces,

the eye shape can also be modeled statistically. Concretely, an eye shape can be decom-

posed as a weighted linear combination of a mean shape and a series of deformation

bases according to:

vl(α) = µl +
∑

j

αjλ
l
jb

l
j , (1)

where µl is the mean eye shape and λl
j represents the eigenvalue of the jth linear de-

formation basis bl
j . The coefficients α denote the variation parameters determining eye

shape while the superscript l means landmark.

As demonstrated in the previous section, the eye landmark positions are correlated

with the gaze directions. In addition, we can safely assume that the landmark positions

are also correlated. Therefore, we propose the Constrained Landmark-Gaze Model to

explicitly model the joint variation of eye landmarks and gaze.

Concretely, we first extract the set of landmarks I from the Ns UnityEyes samples

and align them with the global eye center. Denoting by lk,i = (lxk,i, l
y
k,i), the horizontal

and vertical positions of the ith landmark of the kth UnityEyes sample, and by (gφ
k ,g

θ
k)

the gaze pitch and yaw of the same sample, we can define the 1-D landmark-gaze array:

[lyk,1, · · ·, l
y
k,Nl

, lxk,1, · · ·, l
x
k,Nl

,g
φ
k ,g

θ
k] (2)
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where Nl denotes the number of landmarks (Nl = 17), and the superscripts y, x, φ, θ

represent the vertical position, horizontal position, pitch angle and yaw angle, respec-

tively. This landmark-gaze vector has 2Nl + 2 elements.

We then stack the vector of each sample into a matrix M of dimension Ns×(2Nl+

2), from which the linear bases b
lg
j representing the joint variation of eye landmark

locations and gaze directions are derived through Principal Component Analysis (PCA).

Thus, the eye shape and gaze of any eye sample can be modeled as:

vlg(α) = µlg +

2Nl+2
∑

j=1

λ
lg
j αjb

lg
j (3)

where the superscript lg denotes the joint modeling of landmark and gaze. The defini-
tion of other symbols are similar to those in Eq. 1. Note that the resulting vector vlg(α)
contains both the eye shape and gaze information.

In Eq. 3, the only variable is the vector of coefficients α. With a suitable learning

algorithm, α can be determined to generate an accurate eye shape and gaze.

4.2 Joint gaze and landmark inference network

We use a deep convolutional neural network to jointly infer the gaze and landmark

locations, as illustrated in Fig. 2. It comprises two parts: an encoder network inferring

the coefficient α of the model in Eq. 3, as well as other geometric parameters, and a

decoder computing the actual landmark positions in the image and the gaze directions.

The specific architecture for the encoder is described in Section 4.4. Below, we detail

the decoder component and the loss used to train the network.

Decoder. We recall that the vector vlg(α) from the CLGM model only provides the

aligned landmark positions. Thus, to model the real landmark positions in the cropped

eye images, the head pose, the scale and the translation of the eye should be taken into

account. In our framework, the scale s and translation t are inferred explicitly by the

network, while the head pose is assumed to have already been estimated (see Fig. 2).

Given the head pose h and the inferred parameters α, s and t from the network, a

decoder is designed to compute the eye landmark locations and gaze direction. Con-

cretely, the decoder first uses α to computes the aligned eye shape and gaze according

to Eq. 3. Then the aligned eye shape is further transformed with the head pose rotation

matrix R(h), the scale s and the translation t to reconstruct the eye landmark positions

in the input image:

[

lxp

lyp

]

= s ·Pr ·R(h) ·









vx
lg(α)

v
y
lg(α)

0









+ t (4)









cos(gφ
p )sin(g

θ
p)

−sin(gφ
p )

cos(gφ
p )cos(g

θ
p)









= R(h) ·









cos(vφ
lg(α))sin(v

θ
lg(α))

−sin(vφ
lg(α))

cos(vφ
lg(α))cos(v

θ
lg(α))









(5)
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Fig. 3. Gaze bias between prediction and ground truth. 1st row: pitch angle. 2nd row: yaw angle.

Green line: identity mapping

where lp and gp denote the predicted eye landmark positions and gaze respectively,

and Pr is the projection matrix from 3D to 2D. From the equations above, note that

the eye landmark positions are determined by all parameters while the gaze angles

are only determined by the coefficient α and the head pose. Thus gaze estimation is

geometrically coupled with the head pose as it should be, but is decoupled from the eye

scale and translation.

Training loss. To train the network, we define loss on both the predicted eye landmark

positions and on the gaze according to

L(I) = wl||lp − lg||2 + wg||gp − gg||1 (6)

where lg and gg represent the ground truth in the image I for the landmark positions

and gaze respectively, and wl and wg denote the weights for the landmark loss and gaze

loss respectively. Note from Eq. 6 that we do not provide any groundtruth for scale

or translation during training (or to α), since the network automatically learns how to

predict them from the landmark loss.

4.3 CLGM revisited

As mentioned in Section 3, the UnityEyes models only reflects the main correlation be-

tween the gaze and eye landmarks. To account for real people and real images and ob-

tain a more accurate CLGM model, we perform an evaluation guided correction of the

CLGM model. The main idea is to evaluate how our gaze prediction approach trained

only with synthetic data (for both the CLGM model and the network model) performs

on target real data. Then, by comparing the gaze predictions with the actual gaze data

for a subject, we can estimate a gaze correction model mapping the prediction to the

real ones. Such a parametric model can then be exploited on the UnityEyes data to cor-

rect the gaze values associated with a given eye landmarks configuration. A corrected

CLGM model can then be obtained from the new data, and will implicitly model the

joint variations of eye landmarks on the real data with the actual gaze on real data.

More concretely, we proceed as follows. We first train a gaze estimator (and land-

mark detector at the same time) with the proposed framework using only the UnityEyes

synthetic data. Then the synthetic trained estimator is applied on a target database (UT-

Multiview, Eyediap) comprising Nsub subjects. For each subject, we can obtain gaze

prediction/ground truth pairs, as illustrated in Fig. 3. According to these plots, we found
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Fig. 4. Training combining synthetic and real data.

a linear model (different for each subject) can be fitted between the prediction and the

ground truth. In other words, the gaze predicted by the synthetic model is biased with

respect to the real one but can be corrected by applying a linear model. Thus, to obtain a

CLGM model linked to real people, for each subject j we fit two linear models f
φ
j and

fθ
j for the pitch and yaw prediction. Then, using the UnityEyes images, we construct

a matrix Mj similar to the M matrix in Section 4.1, but stacking now the following

landmark-gaze vectors instead of those in Eq. 2:

[lyk,1, · · ·, l
y
k,Nl

, lxk,1, · · ·, l
x
k,Nl

, f
φ
j (g

φ
k ), f

θ
j (g

θ
k)] (7)

Then, a matrix M is build by stacking all Mj matrices, from which the corrected CLGM

model taking into account real data is derived3.

4.4 Implementation Detail

Auxiliary database. To the best of our knowledge, the only public database annotat-

ing both eye landmark positions and gaze is MPIIGaze [13]. However, it only labels

three eye landmarks per image on a subset of the dataset, which is not enough for

our framework. Instead, we use the synthetic samples from UnityEyes as an auxiliary

database. Concretely, we sample m real eye images from the main database and another

m synthetic eye images from the auxiliary database in every training batch. After the

feedforward pass, the landmark loss in Eq. 6 is only computed on synthetic samples

(which have landmark annotations), whereas the gaze loss is only computed on real

eye samples, as illustrated in Fig. 4. Note that we do not consider the gaze loss on syn-

thetic samples (although they do have gaze groundtruth) to avoid a further potential bias

towards the synthetic data.

Eye image cropping. The original UnityEyes samples cover a wide region around the

eyes and we need a tighter cropping. To improve the generalization of the network, we

give random cropping centers and sizes while cropping UnityEyes samples. Cropped

images are then resized to fixed dimensions.

Network configuration. We set the size of the input images as 36×60. The network is

composed of 4 convolutional layers and 6 fully connected layers. The 4 convolutional

layers are shared among the predictions of the CLGM coefficients, scale and translation.

After the 4 convolutional layers, the network is split into 3 task-specific branches and

3 Note that the corrected model relies on real data. In all experiments, the subject(s) used in the

test set are never used for computing a corrected CLGM model.
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each branch consists of 2 fully connected layers. Note that the head pose information

is also concatenated with the feature maps before the first fully connected layer in the

CLGM coefficient branch since the eye shape is also affected by the head pose. The

network is learned from scratch in this paper.

5 Experiment Protocol

5.1 Dataset

Two public datasets of real images are used: UTMultiview [29] and Eyediap [46].

UTMultiview dataset. It contains a large amount of eye appearances under different

view points for 50 subjects thanks to a 3D reconstruction approach. This dataset pro-

vides the ground truth of gaze and head pose, both with large variablity. In our experi-

ment, we follow the same protocol as [29] which relies on a 3-fold cross validation.

Eyediap dataset. It was collected in office conditions. It contains 94 videos from 16

participants. The recording sessions include continuous screen gaze target (CS, small

gaze range) and 3D floating gaze target (FT, large gaze range), both based either on

a close to static head pose (SP) and mobile head pose (MP) scenario. In experiment,

we follow the same person-independent (PI) protocol as [31]. Concretely, for the CS

case, we first train a deep network with all the SP-CS subjects but leave one person out.

Then the network is tested on the left one in both SP-CS and MP-CS sessions (for cross

session validation). We do the same for FT case (SP-FT and MP-FT sessions). Note that

all eye images are rectified so that their associated head poses are frontal [31].

5.2 Synthetic dataset and CLGM training

As mentioned above, we use UnityEyes as the auxiliary dataset.

CLGM. For each experimental setting (datasets or sessions), we derive a CLGM model

trained from frontal head pose samples using the gaze ranges of this setting. The result-

ing CLGM models is then further corrected as described in Section 4.3.

Auxiliary training samples. For multitask training, the auxiliary synthetic samples are

generated with corresponding gaze and head pose ranges matching those of the dataset

and session settings.

Synthetic sample refinement. One challenge when training using multiple datasets is

the different data distribution. Although SimGAN [47] has been proposed to narrow

down the distribution gap between synthetic images and real images, optimizing GAN

models is difficult. Without suitable hyper parameters and tricks, the semantic of im-

ages after refining can be distorted. In our experiment, we simply adapt the UnityEyes

synthetic images to UTMultiview samples by grayscale histogram equalization, and to

Eyediap samples by Gaussian blurring.

5.3 Model Setup

In terms of gaze estimation models, we considered the models below. The architectures

are given in Fig. 2 (proposed approach) and in Fig. 5 (contrastive approaches). Note

that the architectures of the first three models below are the same whenever possible
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Fig. 5. Contrast models. (a) MTL architecture. (b) Baseline architecture.

and all the models below are pretrained with synthetic data so that a fair comparison

can be made.

CrtCLGM + MTL. This is our proposed multitask framework based on the corrected

CLGM model, see Fig. 2.

CLGM + MTL. This model is the same as above (CrtCLGM + MTL), except that the

CLGM model is not corrected.

MTL. To contrast the proposed model, we implement a multitask learning network

which also predicts landmarks and gaze jointly. Unlike the CrtCLGM + MTL, this

model predicts the two labels directly by splitting the network into 2 separate branches

after several shared layers. We also forward the head pose information to the features

in both branches since both landmarks and gaze are affected by head pose.

Baseline. The baseline model performs a direct gaze regression from the eye appear-

ances using the same base network architecture as in the two previous cases. The head

pose is also used in this architecture.

MPIIGaze. For experiments on the Eyediap dataset, we also implemented the network

of [13] to allow the comparison of different architectures. For the UTMultiview dataset,

we directly report the result of this architecture from [13].

5.4 Performance Measurement

Gaze estimation. We used the same accuracy measurement as [31] for gaze estimation.

The gaze estimation error is defined as the angle between the predicted gaze vector and

the groundtruth gaze vector.

Landmark detection. We also measure the auxiliary task of our model. The GI4E

database [48] is used to test the performance of iris center localization. To apply our

method, we extracted eye images from the faces using dlib [49] and processed them

with grayscale histogram equalization. The eye images are then forwarded to the UT-

Multiview trained network (frontal head pose assumed). In the evaluation, we adopt the

maximum normalized error [23].

6 Results

We report the gaze estimation accuracy of UTMultiview and Eyediap in Fig. 6a and

Fig. 6b respectively. Some qualitative results are demonstrated in Fig. 7. Please note that

this paper targets at single eye gaze estimation. We think it is not suitable to compare

with full face based methods since some datasets (UTMultiview) do not provide the full
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Fig. 6. Gaze estimation accuracy on UTMultiview and Eyediap.

face and the gaze definition can be different (e.g. gaze fixation points [9] and middle

point of face as the origin of gaze direction [14]).

6.1 UTMultiview dataset

From Fig. 6a, we note that the proposed CrtCLGM + MTL model shows the best per-

formance (5.7◦) among the constrast methods including two state-of-the-art works,

MPIIGaze net [13] (6.3◦with our implementation) and RF [29] (6.5◦). We also note

from Fig. 7 that accurate gaze estimation and landmark localization are achieved by our

method regardless of eye scale, eye translation and large head pose.

In contrast, we find that the CLGM + MTL model performs worse than the Crt-

CLGM + MTL model. This is understandable since the optimization of the multitask

loss can be difficult if the landmark-gaze correlations are different between the syn-

thetic data and real data. Sometimes the optimization process competes between the

two tasks and the final network can be bad for both tasks. This is also shown in Tab. 1

where the iris center localization of the CLGM + MTL model is not so accurate. This

result demonstrates the importance of the CLGM correction.

When looking at the result of MTL model, it is a bit surprising that its error is on a

par with the Baseline method and MPIIGaze net which only target gaze optimization. It

thus seems that the MTL model failed to improve gaze estimation through a direct and

pure feature sharing strategy. As shown in Fig 5a, the landmark positions are regressed

from the shared features directly in the landmark branch, which means some informa-

tion such as eye scale and eye translation are contained in the shared features. Although

this geometric information is important to landmark localization, they are irrelevant el-

ements for gaze estimation and might even degrade it. Therefore, our mechanism which

decouples the eye scale and translation from eye shape variation is thus necessary and

important.

Owing to the reasonable geometric modeling of the scale, translation and head pose,

our method also demonstrates superior performance to the Baseline model and the MPI-

IGaze network. Note that our Baseline model is slightly better than the MPIIGaze net,

possibly because in the Baseline, the head pose information is added earlier and thus

processed by more layers. Thanks to the large data amount (including the synthetic data
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Fig. 7. Eye landmark detection and gaze estimation results on UTMultiview (Left), Eyediap (Mid-

dle) and GI4E (Right) dataset. The cyan line represents the estimated gaze direction.

used for pretraining), all the network models perform better than the RF (random forest)

method.

6.2 Eyediap dataset

Two existing methods H-SVR and R-SVR [31] are used for comparison. From Fig. 6b,

we note that the proposed CrtCLGM + MTL model achieves the best result in all ses-

sions (5.4◦, 6.5◦, 8.5◦, 10.5◦respectively) except the SP-CS session (MPIIGaze: 6.3◦).

In particular, compared with other methods, the performance improvement is much

larger in the floating target (FT) session than in the continuous screen (CS) session, in-

dicating that our method can perform even better for applications requiring gaze in the

3D space, when large head pose and gaze angles are present.

When comparing the results of the CrtCLGM + MTL model and CLGM + MTL

model, we note that the former is better for all the sessions which further corrobo-

rate the importance of CLGM correction. Compared with the UTMultiview dataset, the

MTL model obtains much worse results than other network based methods (especially

the Baseline and the MPIIGaze) in Eyediap dataset. Given that the Eyediap samples

are much more blurry than the UTMultiview dataset, the direct regression of landmark

positions without the constrained model is difficult and inaccurate, and the inaccurate

landmark detection may confuse the shared architecture and ultimately instead of help-

ing gaze inference, tends to degrade the results. In contrast, our CLGM model is better

at handling blurry data thanks to the introduction of an explicit geometrical model, and

that learning the parameters of the CLGM model rather than the unconstrained land-

mark positions provides some form of regularization which prevents the network from

overfitting. This also demonstrates the advantage of our method over traditional geo-

metrical approaches where high resolution images are usually required.

When comparing the results across sessions (i.e recording situations, see Sec. 5.1),

we can observe that the accuracy of the floating target (FT) sessions are worse than

the CS screen sessions, which is intrisincally due to the more difficult task (looking at

a 3D space target) involving much larger head poses (potentially harming eye image

frontalization) and gaze ranges. On the other hand, the results show that our method
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Table 1. Iris center localization on GI4E dataset.

Method deye ≤ 0.05(%) deye ≤ 0.1(%) deye ≤ 0.25(%)

Timm et al. [24] 92.4 96.0 97.5

Villanueva et al. [25] 93.9 97.3 98.5

Gou et al. [23] 94.2 99.1 99.8

CLGM + MTL 92.5 99.7 100

CrtCLGM + MTL 95.1 99.7 100

achieves the most robust performance in cross session validation (train on SP, test on

MP).

6.3 Iris center localization

Lastly, we show the performance of the auxiliary task, landmark detection. Tab. 1 re-

ports the accuracy of the iris center localization.

From the table, our method achieves the best performance compared with the state-

of-the-art works in all the three criteria which correspond to the range of pupil diame-

ter, the range of iris diameter and the distance between eye center and eye corner [24]

respectively. Concretely, most of the detections are within the pupil, few of them lie

outside the iris and almost all falls inside the eye region. In contrast, the CLGM + MTL

model is inferior to the CrtCLGM + MTL one in the deye ≤ 0.05(%) measurement,

which means more detections of the CLGM + MTL model deviate from the pupil. As

discussed in Sec.6.1, it can be explained by the differences in landmark-gaze correla-

tions between the synthetic data and real data.

Some qualitative results are shown in Fig. 7. Note that we assumed that the head

poses of all the samples were frontal since this label was not provided in this dataset.

Even under this assumption we still achieved accurate iris center localization, which

demonstrates that our method can be used in a wide scope of eye landmark detection

applications where head pose information may not be available.

7 Conclusion

In this paper, we proposed a multitask learning approach for gaze estimation. This ap-

proach is based on a Constrained Landmark-Gaze Model which models the joint vari-

ation of the eye landmarks and gaze in an explicit way, which helps in (i) solving the

absence of annotation on different datasets for some task (in our case, landmarks); (ii)

better leveraging in this way the benefits of the multitask approach. This model dif-

fers from geometrical methods since landmarks and gaze are jointly extracted from eye

appearance. Experiments demonstrate the capacity of our approach, which is shown

to outperform the state-of-the-art in challenging situations where large head poses and

low resolution eye appearances are presented. Our idea of CLGM model can also be

extended to joint tasks like facial landmark detection and head pose estimation. For in-

stance, using the FaceWarehouse [50] dataset as 3D face and landmark statistical model

to generate faces with different identities and expressions which can be randomly ro-

tated with different head poses. Since pose and landmarks are correlated, a constrained

landmark-head pose model could be built and trained as we propose.
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On the hand, although the head pose is not so important for landmark detection as

shown in Tab. 1, we note from Eq. 5 that our model requires precise head pose label for

gaze estimation, which may limit the application scope of our method. This problem

can be possibly addressed by estimating the head pose from the eye appearance or full

face as another task. We leave this as a future work.
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