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Abstract. Cognitive neuroscience experiments show how people inten-
sify the exchange of non-verbal cues when they work on a joint task
towards a common goal. When individuals share their intentions, it cre-
ates a social interaction that drives the mutual alignment of their actions
and behavior. To understand the intentions of others, we strongly rely
on the gaze cues. According to the role each person plays in the inter-
action, the resulting alignment of the body and gaze movements will be
different. This mechanism is key to understand and model the socially
dyadic interactions.

We focus on the alignment of the leader’s behavior during dyadic interac-
tions. The recorded gaze movements of dyads are used to build a model
of the leader’s gaze behavior. The use of the follower’s gaze behavior
data is two-fold: (i) to determine whether the follower is involved in the
interaction, and (ii) if the follower’s gaze behavior correlates to the type
of the action under execution. This information is then used to plan the
leader’s actions in order to sustain the leader/follower alignment in the
social interaction.

The model of the leader’s gaze behavior and the alignment of the inten-
tions is evaluated in a human-robot interaction scenario, with the robot
acting as a leader and the human as a follower. During the interaction,
the robot (i) emits non-verbal cues consistent with the action performed;
(ii) predicts the human actions, and (iii) aligns its motion according to
the human behavior.
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1 Introduction

Humans can interact with the environment, objects, or with other humans. In-
teracting with the environment and objects requires visually adjusting our move-
ments in order to correctly perform the intended action. The interaction with
other humans requires the contribution of different components. Humans use
verbal communication to express motion and intent to others. However, since
verbalizing every step of the interaction would be time-consuming and cogni-
tively expensive, humans use the body as a communication tool. This means
that while we are executing our intended action, we are also communicating
to others the exact action we are performing. This capacity is referred to as
non-verbal communication and involves all the motion degrees of freedom in our
bodies: from pointing a finger expressing a direction of interest, to a saccadic
eye movement to specify a place that attracted our attention.

The work described in [6] investigates how the non-verbal communication
cues of one human allows the others to read his action intentions. The non-
verbal communication of the actor was recorded using a motion tracking system
for the motion of the body, and a head mounted eye tracker for the gaze behavior
of the eyes. The scenario involved one actor, interacting with 3 humans, and
performing one of two actions: placing of an object on a table, or giving the
object to one of the humans facing him. These actions were chosen as they
fall into two categories of actions defined in micro-sociological studies [3]. The
placing action is an instance of an individual action, while the giving action
is part of the category action-in-interaction, that requires for communications
between the interaction partners.

The focus of [6] was on the importance of the different non-verbal commu-
nication cues: arm movement, head movement, and eye movement. A human
study was performed in which subjects watched short fragments of videos of the
actor performing one of two possible actions. These fragments contain different
amounts of information concerning the non-verbal cues, and the objective was
to analyze the impact of each cue on the capacity to “read” the intentions of
the actor. The data collected was used to model the arm behavior for the two
types of actions, and to propose a gaze controller that, combined with the arm
movement, is able to generate human-like movements, just like those observed
in the Human-human interaction (HHI) experiments. This was corroborated by
building a robotic controller that, when applied to a humanoid robot to perform
the same actions, allows human subjects to understand the robot’s intentions
from the video fragments, with an accuracy similar to the case of a human actor.

Nevertheless, the work was incomplete as it only studied the behavior of one
of the parts of the interaction. So the logical step was to study not only the
non-verbal communication of the human performing the action, but also the
communication cues emitted by the second participant in the interaction. The
focal point of Raković et. al. paper [23] was on the eyes’ non-verbal communica-
tion, and the “gaze dialogue” model derived to couple the agent’s gaze behavior.
Each agent’s behavior was modeled as a Hidden Markov Model (HMM), where
the states were the gaze fixations, and the observations the gaze fixations of the
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other agent. However, the approach discusses the prediction of one agent’s action
from his gaze fixations in order to adapt the gaze behavior of the second agent
for an improved collaboration.

We adopt the terminology of [10] concerning the interaction roles, where one
agent can be viewed as the leader and the other one as the follower, in the sense
that the follower adapts his/her behavior to the leader, but not the other way
around. Hence, in a human-robot interaction (HRI) scenario, a robotic follower
will adapt to a human leader. However, when the robot is the leader, the model
behaves deterministically and it does not adapt to the behavior of the human
follower. In this case, the robot (leader) does not take the speed of the human
participant into account, and it is not concerned with the human’s understanding
of the action. The contribution of the current paper is on tackling this issue.

In [23] the leader’s gaze behavior was pre-defined as the average, most likely
behavior observed from the HHI scenario. Although this behavior may work on
average for most interactions, an HRI is never deterministic since humans are
naturally unpredictable and stochastic. As such, a reliable model for the leader’s
behavior needs to take the feedback of the follower’s behavior into account.
In this way, it becomes possible to achieve the third level of interaction [10],
where both agents, the leader and the follower, adapt to each other in order to
achieve a mutual alignment. The focus of this work is on closing the loop of the
mutual alignment, by adapting the behavior of the actor performing the action
(leader), to the behavior of the actor observing and eventually participating in
the interaction (follower).

Section 2 discusses the relevant work done in the quest of understanding non-
verbal communication, as well as on human action anticipation, when humans
interact with other humans or objects. Section 3 describes the dataset and the
HHI scenario used in this work, and the analysis of the data collected from the
head mounted gaze tracker. The modeling of the gaze behavior is included in
Section 4 and the HRI implementation with the results are shown in Section 5.
The paper ends with a discussion of the results obtained, followed by an overall
conclusion and delineating future work challenges.

2 Related Work

HRI requires the human and the robot to understand each other [27]. Model-
ing the interaction between agents has been tackled in several fields, including
robotics, computer vision, and cognitive and behavioral science. Lukic et al. [18]
presented the intrapersonal model for manipulating objects based on Gaussian
Mixture Models to generate human-like behavior of the hand, arm, and eyes.
This was later adapted to human-robot interaction in [6] to yield human-like be-
havior when involving non-verbal communication. Furthermore, the model was
adapted in [23] to describe the non-verbal cues of the eyes of two agents using a
cross-agent HMM.

There have been other approaches for modeling the eye gaze behavior over
the years [7]. S. Ivaldi et al. [12] developed a robotic controller that uses the



4 N. Ferreira Duarte, M. Raković, J. Marques and J. Santos-Victor

head gaze orientation to understand which object the human is gazing at. One
drawback is the use of head orientation as a proxy to estimate the eye gaze. In
[5], the eye gaze estimates are used to understand the fixation point of humans.
This combines eye tracking data with pointing gestures extracted from RGB-
depth cameras, to estimate eye gaze fixation. The limitation with this approach
is that all the processing is done off-line, and not during the interaction. Andrist
et. al. [2] studied the gaze interaction of a human with a virtual agent in a
sandwich-making task based on HHI experiments to improve the speed of the
collaboration. However, this work only applies to the ’instructor role’, that we
designate as the leader’s perspective, and lacks generality.

Palinko et al. [20] identify the pupil position in the eye in order to estimate
the gaze direction. Despite not requiring any additional hardware to track the
gaze orientation, they are constrained by the limited resolution of the iCub robot
cameras and the accuracy will depend on lighting conditions. As for detecting
joint attention, [28] describes work on the extraction of the gaze direction from
the head pose of the human. Instead, we intend to extract the visual information
collected with the two eye trackers during the HHI experiment scenario, that is
publicly available from the Raković et. al. [24].

Regarding action anticipation, there has been research on the understanding
of human motion [15], modeling the human motion to infer the executed action
[29] and predicting human trajectories to trace a path of least collision for the
robot, [22]. The prediction algorithm takes into account the human-environment
and human-human natural adaptation to calculate the optimal path for the
robot. Farhan et. al. [8] instead focus on predicting the action happening in the
long future, instead of anticipating the ongoing action, using pre-recorded videos
trained in large datasets of humans performing several different actions.

Koppula et. al. [16] include a rich dataset of human poses and objects to
classify the action. However, it does not take advantage of the gaze behavior of
humans to predict the action sooner and with higher accuracy. There are several
papers presenting the use of human body coordinates, and only very few have
gaze information, often limited to a couple of example scenarios [1, 9, 11].

Schydlo et al. [26] developed a learning based action anticipation model using
motion and gaze fixation data of the human-human interaction experiment from
the publicly available dataset of [6]. The model can quite accurately perform an
early anticipation of the ongoing action, using a combination of the body and
gaze coordinates. This action anticipation model uses a recurrent neural network
to learn the non-verbal cues that the body and gaze behavior provide in order
to distinguish between two actions: a giving or placing action. Although it can
accurately predict the action at an early stage, the information given to the
network can not be generalized to different HHI or HRI scenarios. Additionally,
it does not provide the robot with any information on how to behave after the
action is predicted, thus breaking any possibility of mutual understanding and
alignment. Moreover, the results in [26] were deterministic, meaning it would
give the same output when given the same data. Instead, the human behavior
is stochastic and mutual alignment requires the robot to adapt to a specific
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participant and not to an average behavior of a group of humans. In this paper,
we discuss the importance of the two agents aligning with each other, and an
approach where the agents exchange information from each other in order to
predict the other’s action, and adapt his/her own behavior.

3 Dyad Interaction Experiment

The dyad interaction experiment is composed of two actors participating in a
joint task (Fig. 1). The two actors have to perform a turn-taking task of placing
an object on the table, or giving the object to the other person. From this
experiment we collect the gaze fixations of 6 participants, i.e. 3 dyads. We get
a total of 72 actions seen from two perspectives. Out of 72 actions, 36 actions
were giving and 36 were placing. The gaze fixations are tracked using the Pupil
Labs eye tracker [13]. These sensors are connected through an LSL Network [17]
which synchronizes and collects the data together with cameras recording the
interaction - the egocentric view camera gives the subject’s perspective. The
gaze behavior of all 144 actions are labeled with identified relevant fixations and
events throughout the action. The fixations are object (i.e. brick), team-mates’
face (TM face), team-mates’ hand (TM hand), own hand, team-mates’ tower
(TM tower), and own tower; and the events are object picked, object handed
over, and object placed. Object handed over exists only in the giving action. In
[24] it can be found a detail description of the experimental set-up and the data
acquisition procedure. The focus of this paper is two-fold: (i) the gaze behavior
of the leader during the giving action, more specifically on how he/she behaves
before and after the handover, and (ii) follower’s gaze fixation behavior when
the action is giving or placing.

Fig. 1. Representation of the HHI experimental set-up and all the different communi-
cation systems. The image is taken from [24].

Fig. 2 shows the time spent on each of these gaze fixation states, throughout
the whole action, and for the two perspectives. In addition to the total amount
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of time spent on each state, we distinguish the gaze behavior before and after the
handover. For these experiments, the handover time is defined as the moment
when the leader’s hand releases the object, and it is identified by the change in
the fingers acceleration with respect to the brick.

Fig. 2. Cumulative analysis of the gaze behavior during the HHI experiment for the
complete action, before and after handover, showing the leader’s (top) and the follower’s
fixations (bottom).

Fig. 2 (top image) shows how the leader is mainly focused at the object, and
the TM face and hand, right before the handover. The brick is fixated when
the leader is visual searching and/or grasping the object - the gaze assisting
the motor control function. After the object is grasped, the leader looks mainly
at the TM face, hand, and towers - the non-verbal cues to communicate the
intention - the gaze engaged in communication purposes. Before the handover,
Fig. 2 (bottom image), the follower fixates the TM’s face and hand, aiming
at reading the action intention of the leader - communicative gaze. After the
handover, the non-verbal cues serve purely functional goals. As the object is
already in the follower’s possession, the remainder of the action requires the
follower to fixate his own tower and controlling the arm towards the goal - the
functional role of gaze to assist the motor control.
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In the next section, the information from the HHI dataset is used to model the
leader’s behavior. The leader’s gaze data will be used to model the stochastic
behavior of the human that is different before and after the handover. The
follower’s gaze behavior will be used to retrieve his/her own understanding of the
action, which is then provided to the leader to assess the follower’s engagement
in the interaction.

4 Modeling of the leader’s behavior

Fig. 3 shows the block diagram for modeling the gaze behavior and aligned mo-
tion planning of agents P1 and P2. The state of each agent is defined as the gaze
fixation Sk and type of action Ak. The fixations [S1(k), S1(k − 1), ...] are emitted
by agent P1, which are from the perspective of agent P2, represented as obser-
vations [O1(k), O1(k − 1), ...]. Simultaneously, fixations [S2(k), S2(k − 1), ...] are
emitted by agent P2, and represented as observations [O2(k), O2(k − 1), ...] of
agent P1.

Fig. 3. Block diagram of the proposed leader’s gaze behavior and alignment model.
Agent P1 emits fixations S1 which corresponds to a particular action A1. From the
’Gaze behavior models’ it is generated the next fixation, Ŝ1(k + 1), from the previous
knowledge, S1(k) and A1(k). The Ŝ1(k + 1) is the next fixation without the influence
of agent P2 in the interaction, i.e. without mutual alignment. Agent P1 observation,
O2(k), is used to calculate the understanding of agent P2, Â2(k+1). This is then fed
to the ’Planning/Control’ block, together with the next fixation Ŝ1(k+1), to estimate

the new fixation and action of agent P1, S
′

1(k+1) and A
′

1(k+1), respectively.

The central parts on Fig. 3 correspond to the gaze behavior models (blue
block) and human action understanding (yellow block) and will be detailed in
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Sections 4.1 and 4.2, respectively. The ’Gaze behavior models’ encode the leader’s
gaze stochastic behavior, that depends on the type of action (in this paper the
focus is on modeling the giving action, i.e. action-in-interaction) and can change
over time after a significant event (i.e. object handover). Action understanding
uses the gaze fixation of the human to estimate the probabilities of giving versus
placing action. This is fed back to the ’Planning/Control’ block for the motion
planning of the agent and selection of appropriate gaze behavior model.

4.1 Gaze behavior of the leader

The leader’s gaze behavior is modeled with Discrete-Time Markov Chains (DTMC)
[4]. A DTMC represents the evolution of a system that stochastically switches
from one state to another, at discrete time instances. The model has an asso-
ciated internal state variable: Sk ∈

{

U1, ..., UN

}

where U1, ..., UN denotes ad-

missible state values, i.e. fixations, and k ∈

{

1, ..., T
}

denotes the discrete time
instants. In the case of a giving action, the leader has six admissible states before
the handover, and four states after (Fig. 4). This corresponds to the top image
from Fig. 2 with six fixations before handover. After the handover, the brick is
never fixated and the fixation of one’s own hand is negligibly small.

Fig. 4. DTMC for the behavior of a leader: (left) before the brick handover; (right)
after the brick handover.

The two DTMCs (for the period before and after the handover) are rep-
resented by transition matrices learned from the HHI data, which has labeled
fixations of the dyad throughout all the actions. Transitions of the fixations
for giving before and after handover are counted, and the obtained transition
matrices are given in Table 1.

The admissible states that correspond to the indexes of the rows and columns
of the transition matrices are: 1 - Brick, 2 - TM Face, 3 - TM Hand, 4 - Own
hand, 5 - TM tower and 6 - Own tower, before handover; and 1 - TM Face,
2 - TM Hand, 3 - TM tower and 4 - Own tower, after handover. To illustrate
the output behavior that can be obtained with the DTMCs, we generated the
fixation sequence of 400 samples (Fig. 5), the first 200 samples using the DTMC
before handover and 200 samples using the DTMC after handover. Fig. 5 show
that the fixations before handover are the brick, follower’s face, and hand. After
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Table 1. Transition matrix before handover A
L

bhon and after handover A
L

ahon for the
giving action

Handover Leader

Before A
L

bhon=

















0.9861 0.0016 0.0045 0.0016 0.0041 0.0020
0.0038 0.9505 0.0438 0.0019 0 0
0.0018 0.0211 0.9718 8.81e−04 0.0044 0

0 0 0.0571 0.933 0.0095 0
0.0072 0.0145 0.0435 0.0036 0.9239 0.0072
0.0566 0.0031 0.0031 0.0126 0 0.9245

















After A
L

ahon=









0.9623 0.0205 0.0154 0.0017
0.0309 0.9423 0.0247 0.0021
0.0196 0.0039 0.9712 0.0052
0.0179 0.0179 0 0.9643









Fig. 5. Leader’s fixations when is applied the DTMC before handover (blue section)
and DTMC after handover (green section).

the handover, the fixations are the follower’s face, hand, and tower, with very
short fixation of the own tower. The leader’s fixation are given in the top image
of Fig. 2.

4.2 Human action understanding

Referring to Fig. 3, the robot (agent P1) has access to the fixations of the human
(agent P2) which are represented as observations O2 (k) ∈

{

V1, ..., VM

}

. The
admissible fixations of the human are denoted by V1, ..., VM . The type of action
is inferred from the HHI data of the follower’s gaze fixations, by calculating
the (average) empirical probabilities for giving versus placing conditioned to the
follower’s fixation, see Table 2.

When the follower looks at the leader’s face, the probabilities for giving and
placing are respectively 49.5% and 50.5%, meaning that it is not a strong cue for
the action. Instead, when the follower looks at the leader’s hand or at his own
tower, it signals that the follower understood that the leader intends to give him
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Table 2. Average probabilities for the giving and placing actions, with respect to the
follower’s gaze fixations

Giving Placing

Leader’s face 0.495 0.505

Leader’s hand 0.617 0.383

Leader’s tower 0.293 0.706

Own tower 0.844 0.156

the brick. Finally, if the follower fixates the leader’s tower, this is a strong signal
that the follower understood that the leader will perform a placing action.

To select which action is being performed, we estimate the an action proba-
bility by combining the information related to the instantaneous follower’s fix-
ations, with the past history of that probability. These probability signals are
denoted as PG and PP , respectively for the giving and placing actions.

Based on the current instantaneous follower’s fixation, we use the action
probabilities from Table 2, to update PG) and PP with an exponential moving
average:

PG(k + 1) = (1− α)PG(k) + αδ(k)

where k refers to time, and α = 0.05. The update δ(k) depends on the values
of Table 2, evaluated with the instantaneous follower’s fixations. If the follower
is currently fixating the leader’s hand, and the giving action is selected, PG

is updated with δ(k) = 0.617, and PP is updated with δ(k) = −0.617. If the
placing action is selected, PG is updated with δ(k) = −0.383, and PP is updated
with δ(k) = 0.383. This mechanism ensures a smooth evolution of the action
probabilities and filters out spurious noisy measurements.

An example of human fixation, and the output of action understanding block
are given in Figs. 7 and 9. In Fig. 7, the human is engaged in the action and the
probability of giving is always higher than the probability for placing. However,
in the second example, during a certain period of time, the human fixates the
leader’s tower, communicating that he is understanding that the agent will per-
form a placing action. In this period, the probability for placing grows, until the
human switches the fixations to the agent’s hand or its own tower. The second
example will illustrate on-line alignment of the leader’s action planning from the
follower’s gaze cues.

5 Human Robot Interaction Experiment

We used the iCub robotic platform [19] for our experiments. As a humanoid
robot, the iCub has a body structure that is similar to the human body, so that
humans can more easily understand the robot’s motor behavior and, hence, its
intentions [6], [14]. The eyes of the robot are 2 cameras capable of vergence and
version movements, as in the human oculomotor system.
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We used the same HRI experiment scheme as in [23], with the objective to
track the gaze fixations of the human as a follower, while (s)he interacts with the
robot. The gaze fixations are tracked with the Pupil Labs tracker, see Section 3.

A Cartesian-based gaze controller [25] was used to control the robot’s eyes
when fixating 3D coordinate points. The motor control of the torso, arm, hand,
and fingers was done with a minimum jerk Cartesian controller [21], which is
responsible for guiding the movement of the robot to grasp the object, as well as
to move the object to the handover location, and return to the resting position.

Fig. 6 shows a robot performing a giving action. The HRI experiment starts
with the human not attending to the robot, and looking at his notebook. During

Fig. 6. The first experiment of a robot interacting with a human initially disengaged
from the interaction. The green hallow circle in the top row images is the human gaze
fixation. The red dots mark the important interaction cues (robot’s face, robot’s hand,
robot’s tower, own tower). When the green circle is in the region of interest of the red
dot, then it is classified as the human looking at that cue.

Fig. 7. Top: Human gaze fixations during the first HRI experiment. Bottom: The pre-
diction of the understood action, i.e. the robot’s understanding of the human behavior
based on his gaze cues.



12 N. Ferreira Duarte, M. Raković, J. Marques and J. Santos-Victor

that time, the robot is continuing the non-verbal communication described in
Section 4. This is an attempt of reaching action alignment with the human
through the robot’s gaze behavior. Since the robot does get any information
from the human, i.e. no important cue provided by the eye tracker, the robot
assumes the human did not yet understand the interaction intention, and will
not complete the giving action. After the robot manages to catch the attention
of the human, i.e. the human is looking at important cues of the interaction -
states S2 of the gaze behavior - the robot realizes the human understood the
interaction intent, and proceeds to complete the handover action, see Fig. 7.

Fig. 8. The second experiment of a robot interacting with a human that misunder-
stands the robot’s action. The interaction starts with an engaged human with the cor-
rect action, then the human misunderstands the robot’s action, i.e. the action align-
ment, and hence, mutual alignment is broken. Only after looking at the robot, the
human finally understands the actual robot action.

In the second experiment, we test the alignment of the robot, when the
human misunderstands the action. Fig. 8 shows the human initially looking at
the robot’s face and hand. This implies that the human understands the on-going
action, as it is seen from the action prediction outcome in Fig. 9.

The human then switches to fixate the robot’s tower, see human gaze fixations
in the top plot of Fig. 9 (samples [190-310]). This changes the prediction of the
robot, concerning what the human understands, to a placing action. This results
in the robot retracting the arm, signaling that there is no action alignment, and
that the interaction needs to adapt. The human then looks again at the robot’s
face and hand, giving the robot the correct prediction of the action. The robot
resumes the interaction and finally hands over the object. Supplementary video
material is included for both interaction scenarios.

6 Conclusion and Future Work

This work describes a model of the stochastic gaze behavior of a leader, in a
leader-follower social interaction. The gaze fixations are used as an instrument
for non-verbal communication, to achieve transparency of the intended actions of
an artificial agent. Simultaneously, the agent also reads the human partner’s gaze
cues to understand the action (s)he performs. Based on this feedback, an agent
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Fig. 9. Top: Human gaze fixations for the second HRI experiment. Bottom: Robot pre-
dictions of the human actions, updated over time. The robot adapts the arm movement
in response to the human gaze behavior (Fig. 8).

can plan its motion to align its behavior to the current conditions of the social
interaction. The proposed models for gaze behavior and action understanding,
were integrated in the iCub’s robot controller and validated in a HRI scenario
with a human in the loop.

The iCub’s gaze behavior was modeled with two discrete-time Markov chains,
to drive the gaze before and after handover. The outcome of the models correlates
to the analysis obtained from the HHI experiment data.

Inferring the level of understanding of the action by a human is also based
on the HHI experiment data. From these data, an instantaneous probability
of the two types of action (giving and placing) is built. These instantaneous
probabilities integrated over time, are used to decide if the human understands
the robot’s action. Our experiments illustrate how the understanding of the
action changes from the correct to the wrong action, and back again to the
correct one. When the inferred action is misunderstood, it signals the robot
to stop moving the arm toward the handover location, and to go back to the
resting position. During that period, the gaze behavior continued to emit cues
to communicate the intention of the interaction.

The future work will involve more thorough evaluation of the impact of the
gaze behavior controller and motion planning alignment in the quality of HRI.
We aim to enroll a group of naive subjects in a HRI with the iCub running the
gaze behavior model and compared it to an alternative controller. It will allow
us to analyze how the human gaze reaction time correlates with the understand-
ing of the robot’s action, and the initiation of the arm movement towards the
handover location to take the object from the robot.
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