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Abstract. Deep Neural Networks (DNNs) are the leading models for
explaining the population responses of neurons in the visual cortex. Re-
cent studies show that responses of some task-specific brain regions can
also be explained by a DNN trained for classification. In this work, we
propose that responses of task-specific brain regions are better explained
by DNNs trained on a similar task. We first show that responses of scene
selective visual areas like parahippocampal place area (PPA) and Occip-
ital Place Area (OPA) are better explained by a DNN trained for scene
classification than one trained for object classification. Next, we consider
a particular case of OPA which has been shown to encode navigational
affordances. We argue that a scene parsing task, which predicts the class
of each pixel in the scene is more related to navigational affordances than
scene classification. Our results show that the responses in OPA are bet-
ter explained by the scene parsing model than the scene classification
model.
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1 Introduction

In recent works, DNNs have been shown to explain the responses of the hu-
man visual cortex. In several recent works [16, 12, 15, 8, 3, 17, 7], it has also been
demonstrated that responses in visual cortex during perception and neural net-
work activations of different layers of a DNN are highly correlated. Areas from
higher visual cortex have been shown to be more correlated with the deeper
layers [17, 7] and areas of lower visual cortex have been shown to be highly
correlated with the initial layers of the DNN [7].

DNNs have also been used to explain responses of brain areas associated with
specific visual tasks. In a recent work by Bonner and Epstein [2], they explore
the possibility of explaining the navigational affordances with the functional
Magnetic Resonance Imaging (fMRI) activation patterns in the OPA. They show
that fMRI responses in OPA are associated with the navigational affordances of
the scenes. In a subsequent work [1], they explore if layers of a DNN trained for
scene classification can serve as a computational model of navigational affordance
related responses in the OPA.
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In this work, we investigate if the responses of a brain area performing specific
visual tasks are explained better by a computational model performing a similar
task rather than a generic classification model. In scene parsing task, the aim
is to predict the class labels for all the locations in the image. The output of
the scene parsing task can label the free space available for navigation and the
obstacles present in the scene. Thus, we argue that a scene parsing model will
explain the spatial scene property like navigational affordances, and hence, the
OPA responses better than a scene classification model. We investigate this in
the following steps:

1. We investigate if a scene classification model better explains the responses in
scene-selective areas PPA [6] and OPA [5] better than an object classification
model.

2. We investigate if a model trained on a potential task similar to navigational
affordance such as scene parsing explains OPA responses and behavioral
model for navigational affordances better than a scene classification model.

3. We perform a detailed comparative analysis of the specific class labels with
the OPA and PPA responses to gain more insights into the functionality of
these areas.

The results from all the experiments above suggest that due to task similarity,
scene parsing model explains cortical responses to the navigational affordance in
scenes better than a classification model. Our results reinforce the use of models
trained to perform similar tasks for explaining responses of task-specific areas
in the visual cortex.

2 Methods

In the first section, we describe RSA [9] which is a standard method to compare
the correlation of computational and behavioral models with human brain ac-
tivity. In the second section, we briefly describe the dataset we used in this work
and then in the following sections we provide the details of the DNN models
used for analysis.

2.1 Representation similarity analysis (RSA)

RSA is used to compare the information encoded in brain responses with a com-
putational or behavioral model by computing the correlation of the correspond-
ing Representation Dissimilarity matrices (RDMs). In the case of comparison
with DNNs, we compute the correlation of RDMs of the brain responses with
the RDM of layer activations of the DNNs.

Representation Dissimilarity Matrix (RDM) The RDM for a dataset is
constructed by computing dissimilarities of all possible pairs of stimulus images.
For fMRI data, the RDMs are computed by comparing the fMRI responses while
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Fig. 1: Top row: RDM of the behavioral model for navigational affordance fol-
lowed by RDMs of brain responses in OPA and PPA. Bottom row: RDMs of
final layer, free space labels, and floor mask output of a scene parsing DNN

for DNNs the RDMs are computed by comparing the layer activations for each
image pair in the dataset. In this work, we consider OPA and PPA RDMs for
comparison as these areas have been hypothesized to represent scene affordances
[2] and scene layout [6] respectively. We also compare the DNN RDMs with a
behavior Navigational Affordance Map (NAM) [1] that represents navigational
affordances in a scene. The top row in Fig. 1 shows RDMs of NAM, OPA,
PPA obtained from the dataset and bottom row shows the RDMs of the final
layer output, combined activations of categories corresponding to free space, and
activation of the floor of the scene parsing DNN.

The dissimilarity metric used in this work is 1 − ρ where ρ is the Pearson’s
correlation coefficient. Although in previous work [1], where a scene classification
DNN was compared with the navigational affordance the dissimilarity metric
used was the Euclidean distance, we observed that with 1−ρ as the dissimilarity
metric, the correlation was higher. Hence, in this work for all the analysis 1− ρ

is used as the dissimilarity metric to compute RDMs of layer activations. We did
not use PCA on layer activations as done in [1] since the spatial information in
the case of convolutional layer outputs is lost by performing PCA.

Statistical analysis We use RSA toolbox [13] to compute RDM correlations
and corresponding p-values and standard deviation using bootstrap similar to
[1]. For determining which RDM better explains the behavioral or neural RDMs,
we perform a two-sided statistical comparison. The p-values are estimated as
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the proportion of bootstrap samples further in the tails than 0. The number of
bootstrap iterations for all the analysis was set to 5000.

2.2 Navigational Affordance Dataset and Model

The stimuli images used for analysis consisted of 50 images of indoor environ-
ments. The subject’s fMRI responses were obtained while they performed a
category-recognition task (bathroom or not). In this work, we directly use the
precomputed RDMs of the navigational affordance map (NAM), PPA and OPA
provided by Bonner and Epstein [1]. Recall that RDMs are constructed by com-
puting dissimilarities of all possible pairs in the dataset as explained in section
2.1.

To obtain NAM, first, an independent group of subjects was asked to indicate
the paths in each image starting from the bottom using a computer mouse. The
probabilistic maps of paths for each image were created followed by histogram
construction of navigational probability in one-degree angular bins radiating
from the bottom center of the image. This histogram represents a probabilistic
map of potential navigation routes from the viewer’s perspective. For further
details of the navigational affordance model or dataset, we refer the reader to
[2, 1].

2.3 Deep Neural Network Models to explain brain responses

In this section, we describe the architecture of the DNN models used in the
analysis.

Object classification model We used Alexnet [10] which we refer as Alexnetobject,
trained on Imagenet [4] dataset (an object classification dataset) as the object
classification model. The Alexnet model [10] consists of 5 convolutional layers
each followed by a pooling layer and 3 fully connected layers after the last pooling
layer.

Scene classification models We used the same model as above (Alexnet) but
trained on Places [18] dataset (a scene classification dataset) as the scene clas-
sification model (referred as Alexnetscene). For comparison with scene parsing
model we choose VGG16 [14] trained on Places as the scene classification model
(VGGscene-class). The reason behind the different choice of scene classification
models was that we were unable to find a pretrained scene parsing model with
similar architecture as Alexnet. The VGG16 model contains 13 convolutional
layers with 5 pooling layer after a convolutional block of either 2 or 3 convo-
lutional layers and 3 fully connected (FC) layers after the last convolutional
layer.
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Scene parsing models We use fully convolutional modification of VGG16 [11]
trained on the scene parsing dataset ADE20k [19], [20] as the scene parsing model
(VGGscene-parse). In VGGscene-parse, the FC layers are replaced by convolutional
layers to predict pixel-wise spatial mask. We use pyramid scene parsing network
(PSPscene-parse) for performing analysis of class specific masks as PSPscene-parse

outperforms VGGscene-parse on scene parsing task and hence the class masks are
more accurate and suitable for this particular analysis. The PSPscene-parse model
introduces a pyramid pooling module that fuses features of four different scales
to obtain superior performance on scene parsing task.
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Fig. 2: RSA of (a) PPA with layers of DNN trained on scene and object classi-
fication.(b) OPA with layers of DNN trained on scene and object classification.
The asterisk at the top indicates the significance of difference (*p <0.05, **p
<0.01, ***p <0.001)

3 Results

Here, we first report the correlation results of the scene-selective areas (OPA
and PPA) with an object classification model (Alexnetobject) and a scene clas-
sification model (Alexnetscene). Then, we report the correlation results of the
NAM, OPA, and PPA with a scene parsing model (VGGscene-parse) and a scene
classification model (VGGscene-class). Finally, we investigate category specific ac-
tivations of the scene-parsing model and compare the correlations of NAM, OPA,
and PPA with relevant categories.

3.1 Scene vs. Object classification

We compare the correlation of all pooling and fully connected layer outputs of
Alexnetscene and Alexnetobject with scene-selective brain areas (OPA and PPA).
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From the comparison result with PPA, we observe that for all the layers except
pool3 the Alexnetscene show a higher correlation (Fig. 2(a)). A similar trend is
observed by comparing with OPA(Fig. 2(b)). The results support our hypothesis
that a model trained on a related type of images better represents the brain
activity.
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Fig. 3: RSA of (a) NAM with layers of DNN trained on scene classification and
parsing,(b) OPA with layers of DNN trained on scene classification and parsing,
and, (c) PPA with layers of DNN trained on scene classification and parsing.
The asterisk at the top indicates the significance of difference (*p <0.05, **p
<0.01, ***p <0.001)

3.2 Scene-parsing vs. Scene-classification

For computing the correlation with OPA, PPA, and NAM, we use the outputs
of 5 pooling layer and 3 fully connected layers of VGGscene-class and 5 pooling
layers and convolutionalized version of 3 fully connected layers of VGGscene-parse.

In general, from Fig. 3 we observe that deeper layers of VGGscene-parse model
have higher correlation values with the behavioral model and brain responses
than the earlier layers. Further, for all three cases, we observe that the difference
in correlation values of VGGscene-parse and VGGscene-class is more significant in
the deeper layers with higher correlation values for VGGscene-parse layers.

One explanation for these results that supports our hypothesis is that the
deeper layers of the DNNs are more task-relevant while earlier layers perform
generic feature processing. A related possible explanation might be that since
VGGscene-parse is a fully convolutional model, it’s last three layers are convolu-
tional while in VGGscene-class the last 3 layers are fully connected. This suggests
that convolutional layers may better represent a spatial scene property such as
navigational affordance. The convolutional layer output has information about
the spatial structure of the scene in explicit form while fully connected layers lose
the spatial information, and therefore this might be another possible reason for
the high difference in the correlation values. This again supports our hypothesis
of task-related models being more correlated as compared to a generic model.

The results also suggest that spatial information is preserved in the higher
brain areas such as PPA and OPA and the models with the fully connected
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layers may not represent these areas better than fully convolutional models. The
results show navigational affordance related model VGGscene-parse shows a higher
correlation in most of the layers with NAM, PPA, and OPA.
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Fig. 4: Top: RSA of final layer output of VGGscene-parse, free space, floor labels
with (a) NAM,(b) OPA, and (c) PPA . Bottom: Top-10 correlated classes with
(d) NAM,(e) OPA, and (f) PPA. Error bars represent bootstrap ±1 s.e.m. (*p
<0.05, **p <0.01, ***p <0.001).

3.3 Floor and free space labels

To investigate further what information is present in the OPA activity, we first
separate out labels from the ADE20k dataset which correspond to free space. We
found 13 such labels (road, floor, sidewalk, etc.) that correspond to free spaces.
Since the images in the dataset were from indoor scenes, we considered one more
case with only floor label. The output of VGGscene-parse consists of 151 channels
in which 150 channels correspond to a class in the ADE20k dataset, and one
channel corresponds to the background. Therefore, we investigated if the output
of channels corresponding to free space classes such as roads and floor might
have a higher correlation with the NAM and OPA.

Using RSA, we compute the correlation of the final layer of the scene pars-
ing with NAM and OPA and compare it with the output containing only free
space labels (13 channels) and floor labels (1 channel). From the results of the
comparison, shown in Fig. 4 (top row), we observe that although for RSA anal-
ysis with NAM the output with only floor label shows the highest correlation
this is not the case with the OPA. The results suggest that OPA might encode
information more than just the floor labels which are highly representative of
the navigational affordance in the images considered.
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Top correlated classes To gain further insights about the information encoded
in OPA and PPA we computed the correlation of each class activation from the
DNN with place areas OPA and PPA and also with the NAM. From the class
activation maps with high correlation values, we may gain some insights about
what is encoded in the place areas. For this analysis, we choose a highly accurate
scene-parsing model PSPscene-parse which generates more accurate masks than
VGGscene-parse model used in the previous analysis. We take the activations of
the last output layers which has 150 channels corresponding to each class in the
ADE20k dataset and then compute RDMs corresponding to each channel output
for RSA analysis.

For the NAM (Fig. 4(d)), as expected the floor class has the highest correla-
tion. The next few classes that showed the highest correlation values were also
indicative of free space such as rug, sidewalk, runway, etc. Surprisingly, the ob-
jects such as vase and clock also showed high correlation. This might be because
vase and clock are typically placed on floor and wall, respectively.

For OPA (Fig. 4(e)), although 50 percent of the labels in the top-10 list
included labels corresponding to free space, rest of the labels include objects
like plate, vase, sink, kitchen, and barrel. One possible explanation for these
classes is the experimental design in which the OPA responses were recorded.
The subjects were asked to classify whether the room displayed is a bathroom or
not. The objects such as sink, plate, and vase are highly indicative of the room
type, and OPA responses may be related to the classification task. Therefore,
the high correlation of OPA with these objects is explained by assuming that
OPA is involved in the classification task. Further, knowing the scene category
is also crucial for planning navigation. A related possible explanation is that the
objects also suggest the spatial layout of the scene by indicating the presence of
obstacles and therefore can be relevant for navigational affordances.

PPA, on the other hand, is hypothesized to represent the spatial layout of
the scenes and is insensitive to the navigational affordance as shown in [1]. The
results from this analysis (Fig. 4(f)) are consistent with [1] as the majority of
the labels with high correlation are objects that are indicative of scene layout
and category and only a few of the highly correlated classes correspond to free
space.

4 Conclusion

In this work, we demonstrated that task-specific areas in the visual cortex are
better explained by a model trained to perform a similar task. In particular, we
first showed that responses of scene selective visual areas are better explained
by a DNN trained on the similar type of the images. Next, we showed that OPA
activity which has been hypothesized to be associated with the navigational
affordances shows a higher correlation with task-relevant deeper layers of a scene
parsing DNN than a scene classification DNN.

Our results also show that a DNN model trained for scene parsing task may
provide more insights about the brain responses associated with navigational
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affordances (OPA brain area). With the scene parsing model, we were able to
perform the detailed analysis with each class activation showing that OPA re-
sponses are also highly correlated with the objects that are indicative of the
scene type. This suggests that OPA also plays a role in scene classification since
knowing scene category is also crucial for planning navigation.
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