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Abstract. This paper presents an approach to forecast future presence and loca-

tion of human hands and objects. Given an image frame, the goal is to predict

what objects will appear in the future frame (e.g., 5 seconds later) and where they

will be located at, even when they are not visible in the current frame. The key

idea is that (1) an intermediate representation of a convolutional object recogni-

tion model abstracts scene information in its frame and that (2) we can predict

(i.e., regress) such representations corresponding to the future frames based on

that of the current frame. We present a new two-stream fully convolutional neu-

ral network (CNN) architecture designed for forecasting future objects given a

video. The experiments confirm that our approach allows reliable estimation of

future objects in videos, obtaining much higher accuracy compared to the state-

of-the-art future object presence forecast method on public datasets.

Keywords: Future location forecast, activity prediction, object forecast

1 Introduction

The ability to forecast future scene is very important for intelligent agents. The idea is

to provide them an ability to infer future objects, similar to humans predicting how the

objects in front of them will move and what objects would newly appear. This is par-

ticularly necessary for interactive/collaborative systems, including robots, autonomous

cars, surveillance systems, and wearable devices. For instance, a robot working on a col-

laborative task with a human needs to predict what objects the human is expect to move

and how they will move; a surgery robot needs to forecast what surgical instruments

a human surgeon will need in a few seconds to better support the person. Similarly,

forecasting will enable an autonomous driving agent to predict when and where pedes-

trians or other vehicles are likely to appear even before they are within the view. The

forecasting is also necessary for more natural human-robot interaction as well as better

real-time surveillance, since this will allow faster reaction of such systems in response

to humans and objects.

In the past 2-3 years, there has been an increasing number of works on ‘forecast-

ing’ in computer vision. Researchers studied forecasting trajectories [6, 19], convolu-

tional neural network (CNN) representations [17], optical flows and human body parts

[9], and video frames [8, 4]. However, none of these approaches were optimized for

forecasting explicit locations of objects appearing in videos. Vondrick et al. [17] only

forecast presence of objects without giving their future locations. The method of Luo et

al. [9] requires the person to be already in the scene in order to forecast his/her future
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Fig. 1: Example object location forecasts on the ADL dataset. Both 1 second and 5 second future

bounding box forecasts are presented, overlaid on the actual future frames. The approach only

uses the current frame as an input to forecast future boxes. Three types of objects, oven, tap, and

person, are predicted in the two examples.

pose, also it does not consider objects. [8] and [4] were designed for forecasting direct

image frames, instead of doing object-level estimations of locations. To our knowledge,

an end-to-end approach to learn the forecast model optimized for future object location

estimation has been lacking.

This paper introduces a new approach to forecast presence and location of hands

and objects in future frames (e.g., 5 seconds later). Given an image frame, the objective

is to predict future bounding boxes of appearing objects even when they are not visible

in the current frame (e.g., Figure 1). Our key idea is that (1) an intermediate CNN repre-

sentation of an object recognition model abstracts scene/motion information in its frame

and that (2) we can model how such representation changes in the future frames based

on the training data. For (1), we design a new two-stream CNN architecture with an

auto-encoder by extending the state-of-the-art convolutional object detection network

(SSD [7]). For (2), we present a fully convolutional regression network that allows us to

infer future CNN representations. These two networks are combined to directly predict

future locations of human hands and objects, forming a deeper network that could be

trained in an end-to-end fashion (Figure 2).

We evaluate our proposed approach with two first-person video datasets and one

urban street scene dataset. Hands and objects dynamically appear and disappear in first-

person videos taken with wearable cameras, making them suitable for the evaluation

of our approach. Notably, in our experiments with the public ADL dataset [12], our

accuracy was higher than the previous state-of-the-art [17] by more than 0.25 mean

average precision (AP).

2 Related work

Researchers are increasingly focusing on ‘forecasting’ of future scene. This work in-

cludes early recognition of ongoing human activities [14, 5] as well as more explicit

forecasting of human trajectories and future locations [6, 19, 10, 11, 21]. There are also

works forecasting future features or video frames themselves [17, 4, 9].

Kitani et al. [6] presented an approach to predict human trajectories in surveillance

videos. [19] and [10] also focused on forecasting trajectories. However, most of these

trajectory-based works are limited in the sense that they assume the person/object to

be forecasted is already present in the scene. This is particularly limited when dealing

with objects recorded in wearable/robot cameras, since objects often go out of the scene

and return as the camera and the body parts move. Park et al. [11] tried to predict the
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future location of the person, while using egocentric videos. Rhinehart and Kitani [13]

used egocentric videos to learn a reinforcement learning model of the tasks, in order to

forecast semantic states and goals. However, their forecasts were done without explicit

modeling of when/where the objects need to appear.

Recently, Vondrick et al. [17] showed that forecasting fully connected layer out-

puts of a convolutional neural network (e.g., VGG [16]) is possible. The paper further

demonstrated that such representation forecast can be used to predict the future pres-

ence of objects (i.e., whether a particular object will appear within 5 seconds later or

not). However, due to the limited dimensionality of the representation (i.e., 4K-D), the

approach was not directly applicable for predicting ‘locations’ of objects in the scene.

Similarly, Luo et al. [9] used CNN regression to forecast optical flow fields, and used

such optical flows to predict how human body part will move. It requires the human to

be present in the scene initially and his/her body pose is correctly estimated. Finn et

al. [4] predicted future video frames by learning dynamics from training videos, but it

also assumed the objects to be already present in the scene.

We believe this is the first paper to present a method to explicitly forecast location

of objects in future frames using a fully convolutional network. The contribution of this

paper is in (1) introducing the concept of future object forecast using fully convolutional

regression of intermediate CNN representations, and (2) the design of the two-stream

SSD model to consider both appearance and motion optimized for video-based future

forecasting. There were previous works on pixel-level forecasting of future frames in-

cluding [9, 4, 20, 18], but they were limited to pixel-level motion prediction instead of

doing object-level predictions. Our approach does not assume hand/object to be in the

scene for their future location prediction, unlike prior works based on tracking (e.g.,

trajectory-based estimation) or pixel motion (e.g., optical flow estimation). For exam-

ple, Figure 1 shows our model forecasting an oven to appear 5-sec later, which is not

visible in the current frame.

3 Approach

The objective of our approach is to predict hands and objects in the future scene given

the current image frame. We propose a new two-stream convolutional neural network

architecture, with a fully convolutional future representation regression module (Fig-

ure 2). The proposed model consists of two CNNs: (1) an extended two-stream video

version of the Single Shot MultiBox Detector (SSD) [7] also with a convolutional auto-

encoder, and (2) a future regression network to predict the intermediate scene represen-

tation corresponding to the future frame.

The key idea of our approach is that we can forecast scene configurations of the near

future (e.g., 5 seconds later) by predicting (i.e., regressing) its intermediate CNN rep-

resentation. Inside our fully convolutional hand/object detection network, we abstract

scene/motion information of the input frame as its intermediate representation (i.e., F̂t

in Figure 2) using convolutional auto-encoder. Our approach estimates the intermediate

representation of the ‘future frame’ (i.e., F̂t+∆) from it, and combines it with the later

layers of the object detection network to obtain their future bounding boxes.
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Fig. 2: Overview of our approach: It consists of two fully convolutional neural networks: The first

network is the two-stream object detection network (the 1st row and the 3rd row of the figure).

The 1st row and the 3rd row are the duplicates of the same model. The second network is the fully

convolutional regression network to predict the future intermediate scene representation (the 2nd

row). Only the colored layers are used in the actual testing/inference stage.

3.1 Two-stream network for scene representation

In this subsection, we introduce our two-stream CNN extending the previous fully con-

volutional object detection network. The objective of this component is to abstract the

scene at time t into a lower dimensional representation, so that estimation of hand and

object locations becomes possible.

Our two-stream CNN is designed to combine evidence from both spatial and motion

information to represent the scene, as shown in the top row of Figure 2. The spatial

stream receives the RGB input, while the temporal stream receives the corresponding X

and Y gradients of optical flows. This design was inspired by the two-stream network of

Simonyan and Zisserman [15], which was originally proposed for activity recognition.

The intuition behind the use of the two-stream network is that it allows capturing of

temporal motion patterns in activity videos as well as spatial information. We used

OpenCV TVL1 optical flow algorithm to extract flow images.

We extend the SSD object detection network for our forecast task. We first insert a

fully convolutional auto-encoder to our model, including five convolutional layers fol-

lowed by five deconvolutional layers. We extract feature maps from the bottleneck layer

as our compact scene representation. Each convolutional and deconvolutional layers of

the auto-encoder has 5 × 5 learnable filters. The number of filters in the convolutional

layers are: 512, 256, 128, 64, and 256. The deconvolutional layers have the symmetric

number of filters: 256, 64, 128, 256, and 512. No pooling is applied and instead, down-
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sampling is achieved by convolution operation with stride=2. This design allows the ab-

straction of scene information in an image frame into a lower dimensional (256x25x25)

intermediate representation.

We design our object-based scene representation network to have both the spatial-

steam and temporal-stream part. Instead of using a late-fusion to combine spatial and

temporal streams at the end of network as was done in [15], we design an early-fusion by

combining two streams’ feature maps before the encoder-decoder component. Specif-

ically, at the conv5 layers, two 256 × 25 × 25 feature blobs from both streams are

combined to form a single 256× 25× 25 blob by learning one-by-one kernels.

In addition, since our future regression component (to be described in Subsection

3.2) handles combining representations of multiple past frame, we reduce the amount of

computations in our temporal stream by making it receive only one optical flow image

instead of stacked optical flows from multiple frames.

Let f denote the proposed two-stream CNN to estimate object locations given a

video frame at time t. This function has two input variables X̂It and X̂Ot, which repre-

sent the given image frame and the corresponding optical flow image at time t respec-

tively. Note that X̂Ot is calculated from image It−1 and It, so no future information

after time t is used. Then, we can decompose this function into two sub functions,

f = g ◦ h:

Ŷt = f(X̂It, X̂Ot) = h(F̂t) = h(g(X̂It, X̂Ot)), (1)

where a function g : (X̂I, X̂O) → F̂ denotes convolutional layers to extract com-

pressed visual representation (feature map) F̂ from X̂It and X̂Ot, and h : F̂ → Ŷ

indicates the remaining part of the proposed network that uses the compressed feature

map as an input for predicting hands and object locations Ŷt at time t. The first row

and the last row of Figure 2 shows such architecture.

The loss function used for the training is identical to the original SSD [7], which is

a combination of localization and confidence losses.

3.2 Future regression network

Our objective is to forecast the locations of objects in the future frame Ŷt+∆ based on

current frame Ŷt. We formulate this as a regression task of forecasting future intermedi-

ate representation F̂t+∆ of the proposed two-stream network based on its current inter-

mediate representation F̂t. The main idea is that the intermediate representation of our

proposed network abstracts spatial and motion information of hands and objects, and

that we can learn a convolutional network modeling how such representation changes

over time. Importantly, once we obtain the future intermediate representation F̂t+∆,

we pass the predicted future representation to the decoder part of the auto-encoder as

well as the remaining part of the SSD backbone network to explicitly forecast future

hand/object bounding boxes. By feeding the regressed future intermediate representa-

tion, the SSD network will give the predicted coordinates of objects as if it has “seen”

the future scene.

Let r denote our future regression network to predict the future intermediate scene

representation F̂t+∆ given a current scene representation F̂t.

F̂t+∆ = rw(F̂t). (2)
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The regression network consist of nine convolutional layers, each having 256 channels

of 5 × 5 filters except the last two layers. We use dilated convolution with 1024 filters

to cover a large receptive field of 13 × 13 for the 8th layer, and 256 1 × 1 filters are

used for the last layer.

A desirable property of this formulation is that it allows training of the weights (w)

of the regression network with unlabeled videos using the reconstruction loss as shown

below:

w∗ = argmin
w

∑

i,t

‖rw(g(X̂I

i

t, X̂O

i

t))− g(X̂I

i

t+∆, X̂O

i

t+∆)‖22 (3)

where X̂
i
t indicates the frame or flow image at time t from video i. Once we get the

future scene representation F̂t+∆, it is fed to h to forecast hand/object locations corre-

sponding to the future frame:

Ŷt+∆ = h(F̂t+∆). (4)

Figure 2 shows data flow of our proposed approach during the inference (i.e., test-

ing) phase. Given a video frame X̂It and its corresponding optical flow image X̂Ot at

time t, (1) we first extract the intermediate representation (g), and (2) give it to the fu-

ture regression network (r) to obtain future scene representation F̂t+∆. Finally, (3) we

predict future location of hands/objects Ŷt+∆ by providing the predicted future scene

representation to the remaining part of the proposed two-stream CNN (h) at time t.

Ŷt+∆ = h(F̂t+∆) = h(r(F̂t)) = h(r(g(X̂It, X̂Ot))). (5)

In addition to the above basic formulation, our proposed approach is extended to

use previous K frames to obtain F̂t+∆ as illustrated in Figure 2.

Ŷt+∆ = h(r([g(X̂It, X̂Ot), ..., g(X̂It−(K−1), X̂Ot−(K−1)])). (6)

Our future representation regression network allows predicting future objects while

considering the implicit scene/object/motion context in the scene. The intermediate rep-

resentation F̂t abstracts spatial/motion information in the current scene, and our fully

convolutional future regressor takes advantage of it for the forecast.

4 Experiments

We conducted three sets of experiments to confirm the forecast ability of our approach

using the fully convolutional two-stream regression architecture. In the first experiment,

we use a first-person video dataset to predict future human hand locations. In the sec-

ond and third experiments, we use one public egocentric video dataset and one street

scene dataset with object annotations to evaluate our methods of predicting future object

locations and presences.
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4.1 Dataset

Human Interaction Videos: We collected an in-house dataset which contains 47 first-

person videos of human-human collaboration scenarios with a wearable camera. The

dataset contains videos with two types of collaborative scenarios: (1) a person wearing

the camera cleaning up objects on a table as another person approaches the table while

holding a large box (i.e., making a room to put the box), and (2) the camera wearer

pushes a trivet on a table as another person with a cooking pan approaches. The duration

of each video clip is between 4 and 10 seconds. In our future location forecast task, we

fix the SSD backbone including the auto-encoder part, and train the regressor part based

on Section 3.2.

Activities of Daily Living (ADL): This first-person video dataset [12] contains 20

videos of 18 daily activities, such as making tea and doing laundry. This is a challenging

dataset since frames display a significant amount of motion blur caused by the camera

wearer’s movement. This dataset also suffers from noisy annotations. Object bounding

boxes were provided as ground truth annotations. Although there are 43 types of objects

in the dataset, we trained our model (and the baselines) for the 15 most common cate-

gories, following the setting used in [17]. We split the ADL dataset into four sets, using

three sets for the training and the remaining set for the testing, following the setting.

Cityscapes: This dataset [3, 2] is a benchmark dataset for semantic segmentation of

objects in urban street scenes, which has 30 different classes of objects/scenes (e.g.,

person, car, sidewalk, ...) with both pixel-level and instance level annotations. For each

video, the 20th image of every 30 frame video snippet has been annotated. That is, the

time interval between two adjacent frames is 1.8 seconds. We split 27 videos with fine-

grained segmentation masks into 17/5/5 as our training/validation/test sets following

the standard setting. We chose seven ‘object’ classes with sufficient number of training

instances in the dataset: bike, traffic sign, traffic light, rider, bus, car, and person. We

evaluated forecasting future locations and presences of these objects as they are major

moving objects in the scenes and also have enough numbers of occurrences in both

train and testing sets (i.e., more than 200 samples). The original annotations are in

forms of polygons as instance-level segmentation masks. We convert those polygons

to bounding boxes to make our setting similar to the ADL forecast setting described

above. Forecasting objects in the next annotated frame (1.8s later) and the next third

annotated frame (5.4s later) was evaluated.

4.2 Baselines

In order to confirm the benefits of our proposed approach quantitatively, we created

multiple baselines.

(i) SSD trained with future annotations is the original SSD model [7] for object

bounding box estimation, which was trained to forecast future hands/objects. Instead

of providing current-frame object bound boxes as ground truths in the training step, we

provided ‘future’ ground truth hand/object locations. This enables the model to directly

regress future object boxes given the current frame. We also implemented a (ii) two-

stream version of SSD, making the SSD architecture to also consider optical flows.
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Fig. 3: Examples of hand location forecast. The first row shows the input frames and the second

row shows the optical flows. The third row shows our future hand forecast results and we overlaid

our predictions on ‘future’ frames in the last row. Red boxes correspond to the predicted ‘my

left hand’ locations, blue boxes correspond to ‘my right hand’, green boxes correspond to the

opponent’s left hand, and the cyan boxes correspond to the opponent’s right hand. In the first

frame, the model forecasts that the right hand ‘will appear’, before it actually sees the hand.

(iii) Hands only is the baseline only using estimated hand locations in the current

frame to predict their future locations. The idea is to confirm whether the detection of

hand locations is sufficient to infer their future locations. A set of fully connected layers

were used for the future location estimation, taking the current frame hand locations as

its input representation.

In addition, we implemented simpler versions of our approach, (iv) one-stream

networks, which use the same CNN architecture as our proposed approach except that

it only has the spatial stream (taking RGB input) without the temporal stream (taking

optical flow input). We constructed this baseline to confirm how much the temporal-

stream of our network helps predicting future hand/object locations. We also compare

ours against [17] for future object presence forecast. Finally, we are comparing our

approach with the (v) Vondrick et al.’s method [17] designed for the object presence

forecast. This was done by evaluating our approach on the ADL dataset with the same

experimental setup as [17].

4.3 Training

The training of our models was done in two stages. We first finetune the modified SSD

network including the auto-encoder part (for scene representation) based on ground-

truth object locations. Next, we train the future regressor (i.e., r) based on interme-

diate representations extracting from any current and future frame pair in training

videos, with the L2 loss (between r(F̂t) and F̂t+∆) for measuring reconstruction errors.

The second step is unsupervised learning, without requiring additional annotations. We

found it more stable to separate these two stages than end-to-end training the entire

model, since the 2nd stage can benefit more from unlabeled videos.
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Table 1: Future hand location forecasts measured with Human Interaction dataset.

Method
Evaluation

Precision Recall F-measure

Hands only 4.78 ± 3.70 5.06 ± 4.06 4.87 ± 3.81
SSD w/ future Annot. 27.53 ± 23.36 9.09 ± 8.96 13.23 ± 12.62

Ours (one-stream): K=1 27.04 ± 16.50 21.71 ± 14.71 23.45 ± 14.99
Ours (one-stream): K=5 29.97 ± 15.37 23.89 ± 16.45 25.40 ± 15.51
Ours (one-stream): K=10 36.58 ± 16.91 28.78 ± 17.96 30.90 ± 17.02

Ours (two-stream): K=1 37.21 ± 22.49 26.69 ± 14.28 30.21 ± 16.07
Ours (two-stream): K=5 37.41 ± 22.97 26.19 ± 14.93 30.06 ± 17.16
Ours (two-stream): K=10 42.89 ± 23.61 30.46 ± 13.08 34.18 ± 16.48

4.4 Evaluation

Hand location forecast: We first evaluated the performance of our approach to predict

future hand locations using our unlabeled human interaction dataset. This is a less nois-

ier dataset than the ADL dataset. Here, we use hand detection results (from the original

SSD model trained on the EgoHands dataset [1]) as the ground truth hand labels for

the evaluation, since the interaction videos do not have any human annotations. We ran-

domly split the dataset into the training set and the test set; we used 32 videos for the

training and the remaining 15 videos for the testing. We used the precision and recall

as our evaluation measure. Whether the forecasted bounding boxes are true positives or

not was decided based on the intersection over union (IoU) ratio between areas of each

predicted box and the (future) ground truth box. The IoU threshold was 0.5.

Table 1 shows quantitative results of 1-second future hand prediction. Since our

network may use previous K frames as an input for the future regression, we reported

the performances of our approach with K=1, 5, 10 frames. We observe that our pro-

posed approaches significantly outperform the original SSD trained with future hand

locations. The one-stream model performed better than the SSD baseline, suggesting

the effectiveness of our concept of future regression. Note that our one-stream K=1

takes the exactly same amount of input as the SSD baseline. Our two-stream models

performed better than the one-stream models, indicating the temporal stream is helpful

to predict future locations. Our proposed model with K = 10 yields the best perfor-

mance in terms of all three metrics, at about 34.18 score in F-measure. Figure 3 shows

example hand forecast results.

Object location forecast: We used the ADL dataset [12] to evaluate future object loca-

tion forecast performances. Both 1-second and 5-second future bounding box locations

are predicted, and the performances were measured in terms of mean average precision

(mAP). The IoU ratio of 0.5 was used to determine whether a predicted bounding box

is correct compared to the ground truth. Note that ADL dataset is a challenging dataset

for future prediction, since the videos were taken from the first-person view displaying

strong egocentric motion. Further, appearing objects are not evenly distributed across

different videos. Many objects appear and disappear from the scene even within the 5

second window due to the camera ego-motion.

Table 2 shows average precision (AP) of each object category. We show that our

approach significantly outperforms the SSD baseline. While only taking advantage of

the same amount of information (i.e., a single frame), our approach (one-stream K=1)
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Table 2: Future object location forecast evaluation using the ADL dataset.

Method dish door utensil cup oven person soap tap tbrush tpaste towel trashc tv remote mAP

1 sec

SSD with future annotation 0 0.5 0 0 0 0.2 0 1.3 0 0 0 0 0 0 0.1

SSD (two-stream) 1.6 12.4 0 0.9 5.1 9.6 0 2.8 0 0 0 0 29.8 1.3 4.5

Ours (one-stream K=1) 0.4 15.0 1.2 2.6 13.8 43.4 4.4 19.0 0 0 0.3 0 16.0 18.8 9.6

Ours (one-stream K=10) 0.4 14.0 0 0.7 16.1 45.8 5.4 22.9 0 0 0.9 0 20.5 6.8 9.5

Ours (two-stream K=1) 7.3 19.6 1.9 1.8 37.2 26.2 11.6 33.8 0.0 1.4 1.5 0.8 11.0 11.9 11.9

Ours (two-stream K=10) 3.8 10.1 1.8 5.5 19.0 59.6 2.8 41.8 0.0 0.0 3.4 0.0 15.9 45.2 14.9

5 sec

SSD with future annotation 0 0 0 0 0.2 0 0 0 0 0 0 0 3.0 0 0.2

SSD (two-stream) 2.0 11.7 0 3.2 10.2 0.5 3.2 0 0 0 0 0 20.0 0 3.7

Ours (one-stream K=1) 0.5 10.8 0 0.3 16.5 10.4 3.2 8.2 0 0 0.7 0 3.9 1.7 4.0

Ours (one-stream K=10) 0.2 10.7 0 0.2 0.7 35.7 1.3 5.6 0 0 0.5 0 3.8 1.2 4.7

Ours (two-stream K=1) 1.5 9.8 0.4 0.4 24.1 17.0 8.6 15.8 0.0 0.0 1.6 0.2 7.5 5.8 6.6

Ours (two-stream K=10) 0.7 4.7 0.0 5.0 9.7 35.6 0.7 10.5 0.0 0.0 1.4 0.0 15.0 24.8 7.7

Table 3: Future object presence forecast (5sec) evaluation using the ADL dataset.

Method dish door utensil cup oven person soap tap tbrush tpaste towel trashc tv remote mAP

5 sec

Vondrick [17] 4.1 22.2 5.7 16.4 17.5 8.4 19.5 20.6 9.2 5.3 5.6 4.2 8.0 2.6 10.7

SSD with future annotation 18.9 17.6 0 28.1 7.1 23.0 0 37.7 0 0 0 0 20.4 0 10.9

SSD (two-stream) 13.5 22.4 0 15.2 4.1 14.3 39.8 21.4 0 0 0 0.4 48.4 0 12.8

Ours (one-stream K=1) 34.4 37.0 18.9 19.2 24.3 75.1 70.0 55.0 23.8 6.7 16.6 2.1 57.5 61.7 35.9

Ours (one-stream K=10) 35.1 42.4 22.2 29.9 37.9 69.9 68.0 67.6 21.7 47.7 17.7 5.2 30.5 36.4 38.0

Ours (two-stream K=1) 38.2 44.1 23.8 29.1 37.2 73.1 67.1 60.6 12.2 38.0 13.7 4.4 37.2 58.5 38.4

Ours (two-stream K=10) 35.7 44.0 24.2 29.3 39.6 75.7 68.9 63.2 20.4 47.2 18.2 4.6 40.4 60.3 40.8

achieved a superior performance. By using additional temporal information, our ap-

proach (two-stream K=1,10) outperforms its one-stream version by 2-5% in mAP. This

indicates that motion information is helpful in predicting the right location of objects in

future frames, especially in first-person videos with strong ego-motion. Figure 1 shows

example object predictions in 1-second and 5-second future. Based on RGB and optical

flow information in the frames, our approach is able to predict future objects even when

they are not visible in the current scene.

Object presence forecast: In this experiment, we used the ADL dataset to evaluate our

approach in forecasting ‘presence’ of objects in future frames. Specifically, we decide

whether the objects will exist (in the future frame) or not, regardless their locations.

Similar to our object location forecast experiment, we obtained PR-curves and calcu-

lated AP of each object category. We trained our model to predict presence of objects

in 5-second-future frames. This experiment makes it possible to directly compare our

approach with the results of [17]’s AlexNet based architecture, following the same stan-

dard setting used in their experiments.

Table 3 compares different versions of our proposed approach with the baselines.

We observe that that our approaches significantly outperform the results reported in [17]

while following the same setting. Our two-stream K=10 version obtained the mean AP

of 40.8%, which is higher than the previous state-of-the-art by the margin of 30%. In

addition, our one-stream K=1 version that only uses one single RGB frame as an input

obtained higher accuracy than the SSD baseline and [17] while using the same input.

Their performances were 35.9 vs. 10.9 vs. 10.7. We also confirmed that our two-stream

K=1 version performs better than the two-stream version of SSD.

Table 4 shows additional experimental results on Cityscapes dataset, measured for

both the location and presence forecast tasks. In this dataset, frames are annotated with
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Table 4: Future object forecast evaluation using the Cityscapes dataset. Per-class AP varies a

lot depending on what object class the CNN model decides to fire more frequently (i.e., learned

prior/bias), but the mean AP results show more consistent trend.

(a): Future object location

Method bike sign light rider bus car person mAP

1.8 sec

SSD (two-stream) 3.6 2.3 0.0 0.2 0.2 14.8 12.8 4.9

Ours (one-stream K=1) 4.5 3.5 0.6 1.9 0.0 13.0 15.4 5.6

Ours (two-stream K=1) 7.8 2.6 0.3 7.2 0.0 11.6 15.1 6.4

5.4 sec

SSD (two-stream) 2.3 1.4 0.1 0.3 0.3 15.2 7.4 3.9

Ours (one-stream K=1) 3.2 2.1 0.1 0.5 0.4 15.4 14.2 5.1

Ours (two-stream K=1) 7.2 2.3 0.9 5.1 1.0 11.3 10.0 5.4

(b): Future object presence

Method bike sign light rider bus car person mAP

1.8 sec

SSD (two-stream) 77.3 95.9 39.1 28.8 15.2 22.9 83.9 51.9

Ours (one-stream K=1) 74.7 94.2 55.4 45.6 7.8 20.6 88.0 55.2

Ours (two-stream K=1) 75.6 92.1 54.0 64.8 6.8 14.9 84.0 56.1

5.4 sec

SSD (two-stream) 79.1 95.6 26.8 24.2 9.7 22.9 76.3 47.8

Ours (one-stream K=1) 73.8 93.4 45.5 60.3 9.6 15.0 77.8 53.6

Ours (two-stream K=1) 77.7 91.6 34.4 32.7 13.5 31.4 75.5 51.0

1.8 second gaps; the annotation frame rate is low. We thus only trained K=1 versions of

our methods in this experiment. We compare our methods (both the one-stream version

and the two-stream version) with the SSD two-stream baseline. We observe that our

future regression models perform superior to the baseline two-stream SSD, by benefit-

ing from their explicit future representation regression capability. This is consistent in

both 1.8s and 5.4s forecast tasks, and in both the future location and presence prediction

tasks.

Fig. 4: Examples of street scene object forecast. Left column shows current frames, while right

column shows frames after 1.8 seconds.
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5 Conclusion

We presented a new approach to explicitly forecast human hands and objects using a

fully convolutional future representation regression network. The key idea was to fore-

cast scene configurations of the near future by predicting (i.e., regressing) intermediate

CNN representations of the future scene. We presented a new two-stream model to rep-

resent scene information of the given image frame, and experimentally confirmed that

we can learn a function (i.e., a network) to model how such intermediate scene repre-

sentation changes over time. The experimental results confirmed that our object forecast

approach significantly outperforms the previous work on the public ADL dataset.
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