

000 001 Detecting parallel-moving objects 002 in the monocular case 003 employing CNN depth maps 004 005

006 Nolang Fanani¹, Matthias Ochs¹, and Rudolf Mester^{1,2}
007

008 ¹ Visual Sensorics & Information Processing Lab, Goethe University Frankfurt,
009 Germany
010

011 ² Computer Vision Laboratory, ISY, Linköping University, Sweden
012

013 **Abstract.** This paper presents a method for detecting independently
014 moving objects (IMOs) from a monocular camera mounted on a moving
015 car. We use an existing state of the art monocular sparse visual odome-
016 try/SLAM framework, and specifically attack the notorious problem of
017 identifying those IMOs which move parallel to the ego-car motion, that
018 is, in an 'epipolar-conformant' way. IMO candidate patches are obtained
019 from an existing CNN-based car instance detector. While crossing IMOs
020 can be identified as such by epipolar consistency checks, IMOs that move
021 parallel to the camera motion are much harder to detect as their epipo-
022 lar conformity allows to misinterpret them as static objects in a wrong
023 distance. We employ a CNN to provide an appearance-based depth es-
024 timate, and the ambiguity problem can be solved through depth veri-
025 fication. The obtained motion labels (IMO/static) are then propagated
026 over time using the combination of motion cues and appearance-based
027 information of the IMO candidate patches. We evaluate the performance
028 of our method on the KITTI dataset.

029 1 Introduction 030

031 Identifying moving objects is one of the main challenges in the context of au-
032 tonomous driving. While the advancement of deep learning has shown convincing
033 results to generate semantic segmentation of objects associated with moving ob-
034 jects (e.g. cars, bicycles, pedestrians, etc.), it is still a challenging task to verify
035 whether such object is independently moving or in a static mode. We summarize
036 such moving objects under the term *independently moving objects (IMOs)*.
037

038 We propose to combine the deep learning method and the classical geometry
039 approach to identify IMOs using monocular camera. It is well known that the
040 frame-to-frame egomotion induces the *epipolar constraint* which all correspond-
041 ing points in two images have to obey to. Points or areas which do not move
042 conformant to the epipolar geometry are obviously candidates for belonging to
043 independently moving objects. However, IMOs can also be *epipolar-conformant*,
044 when they move parallel to the camera motion (for an illustration and a formal
definition, see figure 2 and section 4.1).

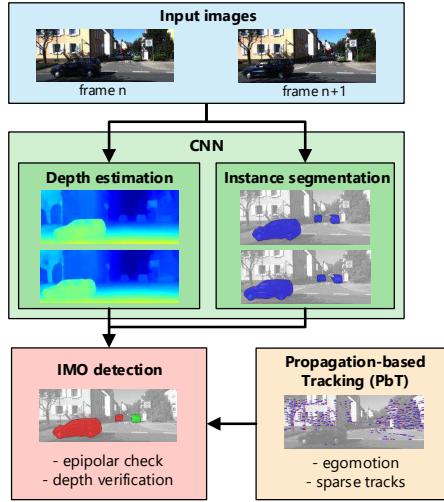


Fig. 1. The scheme of the our novel proposed method to identify IMOs. The *IMO detection* and *depth estimation* blocks are the new contributions.

How to detect IMO which do not move parallel to the camera motion using monocular camera has been discussed in many papers ([1],[2],[3]). The present paper focuses on the more challenging problem of detecting epipolar-conformant IMO. The proposed method is built on top of the *propagation-based tracking* (*PbT*) framework [4], a recently proposed sparse monocular odometry scheme, made available to us by its authors. PbT is one of the leading published monocular visual odometry methods in the KITTI visual odometry benchmark.

The main contribution of our approach is to solve the inherently hard problem for the sparse monocular visual odometry: detecting moving objects which move parallel (or anti-parallel) to the camera motion, such as cars in the same or adjacent lanes, including oncoming traffic. As illustrated in see figure 2, due to its epipolar consistency, a parallel-moving point visually appears exactly as an static point, but in a different (pseudo)distance.

The approach presented here is to employ two CNNs: one that provides a car instance segmentation [5], also used in [4], and a new one designed for and described in this paper that provides depth estimates for single monocular images. In the decoder part of this residual encoder-decoder network, we introduce the new upsampling block. The depth map from the CNN allows us to compare distances obtained from geometric triangulation with such obtained from appearance, and thus supports the detection of epipolar-conformant IMO also for the monocular case.

We emphasise that the system component presented here, a module that discriminates real moving objects from objects that could be moving ones but are actually standing still currently, is built upon an existing and properly work-

ing visual odometry system (PbT/PMO, [4]). This visual odometry (VO) system could be replaced by any other one that works properly and which is (like PMO/PbT) not disturbed by moving objects. In other words, the component we focus on in this paper is independent of the choice of the visual odometry platform it is attached to, as long as this platform fullfils certain functional requirements.

2 Related work

As we focus on the detection of moving cars from a moving ego-vehicle, the scenario is very different to others such as handheld cameras or general robot vision [1, 2], because the motion is strongly constrained by the car dynamics. In the area of advanced driver assistance systems (ADAS), many approaches work with additional information such as using a stereo system [6–9] to identify IMOs. In contrast to these approaches, we want to show that it is possible to reliably detect IMOs from a monocular camera only.

Previously published monocular algorithms on moving vehicle detection can be differentiated into two categories: appearance-based approaches (e.g. [1],[10]) and motion-based approaches (e.g. [11],[12]). We aim at providing an approach that combines both approaches, in a way similar to [13], using the following cues to determine the presence of an independently moving object and to track it: a) the appearance of a car (in terms of a CNN-based car instance detector) as well as b) motion cues from sparse optical flow, considering the epipolar geometry. Our approach shares some similarities with [14] who use two separate CNNs to determine visual odometry and object localization and fuse their results to obtain object localizations. Our method is also related to [15] where CNNs are used to obtain a rigidity score for each object and this is combined with motion cues from optical flow. Bai et al. [16] estimate the dense optical flow fields from each IMO candidate using an approach similar to ours, by employing a CNN to provide the car region candidates. However, they focus only on obtaining the optical flow and do not identify whether the car patches are moving in 3D or not.

Crossing IMOs can be identified because the crossing motions induce inconsistency w.r.t. the epipolar geometry, as discussed in [9]. However, parallel-moving IMOs are epipolar conformant. Klappstein et al. [17] proposed a positive height and depth constraint, but IMOs moving in opposite direction to the ego-car were only detected using a heuristic approach. Wong et al. [18] utilized the size and contours of cars to detect parallel-moving IMOs.

Appearance based dense depth estimate from a single monocular image is one of the key components of our proposed monocular framework, similar to the work by Ranftl et al [19]. We use an encoder-decoder architecture for our CNN. The encoder of our network consists of the ResNet-50 architecture, which was proposed by He et. al [20]. To retrieve the origin size of the input image from last layer of the encoder, we use a decoder, which follows the ideas of the fully convolutional networks [21]. A quite similar encoder-decoder architecture

135 for dense depth map estimation has recently been proposed by Laina et al. [22],
 136 but they do not add long skip connections to refine the output.

137 Those networks can be trained in an unsupervised or supervised way [23] or
 138 by a combination of both. The drawback of supervised learning is always the
 139 lack of much good labeled training data. To avoid the downside of supervised
 140 learning, the authors of [24–26] introduced an (semi-)unsupervised approach for
 141 estimating monocular depth maps, where they use stereo images during training
 142 to learn the disparity between both images.

143 Our depth estimation approach belongs to the category of supervised learning-
 144 ing. During the training phase (only), we use LIDAR measurements and fuse
 145 them to with depth maps, which are computed by SGM [27]. Combining this
 146 training idea and our new decoder architecture, we are capable to generate state-
 147 of-the-art appearance based depth maps from a single image, which we need to
 148 identify for IMO candidates to fully solve the task of detection of parallel moving
 149 objects detection through depth verification.

150 151 152 3 Framework overview

153 The proposed IMO detection scheme builds on a monocular visual odometry
 154 framework, the *propagation based tracking* (*PbT*) scheme [4], which was made
 155 available to us by its authors. An important principle of PbT is that each new
 156 relative camera pose for a new frame $n + 1$ is *predicted* using the car ego-
 157 dynamics. This prediction is used for a soft epipolar tracking (excluding gross
 158 deviations from the epipolar structure). Subsequently, a *refined* relative pose is
 159 computed only on the basis of keypoints that have been tracked at least twice,
 160 this means: keypoints which already passed a stringent test of belonging to the
 161 epipolar-conformant environment. All keypoints, including the new ones gener-
 162 ated in sparsely covered areas of a new frame, are tracked in an epipolar-guided
 163 manner as discussed in more detailed way in section 3.1. All IMO candidate
 164 patches in image n are to be classified in one of the three states: **static**, IMO,
 165 or **undetermined**.

166 We tackle the problem of IMO detection by classifying the IMOs into two
 167 categories: epipolar-conformant IMOs and non-epipolar-conformant IMOs. The
 168 keypoints on non-epipolar-conformant IMOs cannot be tracked by the PbT
 169 framework, because PbT restricts the matches to be along the epipolar lines.
 170 Not finding a photometric consistent match on or close to the epipolar line is
 171 thus the basis of labeling keypoints as '*cannot belong to static background*'. This
 172 fact serves as the basis of our strategy to detect non-epipolar-conformant IMOs.
 173 Failure to track a majority or even all keypoints on an IMO candidate indicates
 174 that the IMO candidate is highly likely an IMO.

175 Detecting epipolar-conformant IMOs, i.e. parallel-moving IMOs, is much
 176 more challenging. Monocular camera has an inherent limitation to identify ob-
 177 jects moving parallel to the camera. Both static keypoints and parallel-moving
 178 keypoints can be tracked using epipolar-style PbT and they look exactly the
 179 same by the monocular camera as illustrated in figure 2. This means, a keypoint

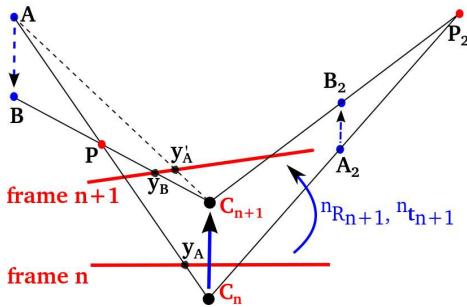


Fig. 2. Bird-eye view. A camera moves from C_n to C_{n+1} . A keypoint which moves parallel to the camera, from A to B, is visually identical to a static point P for the camera. This parallel-moving keypoint is epipolar-conformant. See text for details.

correspondence from a parallel-moving IMO could lead also to an ambiguous static point.

We employ a CNN to provide depth map estimates. With the depth map in hand, we can now detect epipolar-conformant IMOs using a depth verification scheme, consisting of the following two steps:

- Comparison of the depth information between triangulated depth by PbT and CNN depth map on the tracked keypoints observed on IMO candidates.
- Comparison of the relative depth difference extracted from two time-consecutive CNN depth maps of IMO candidates and the egomotion estimates from PbT.

3.1 PbT framework

The principle of keypoint tracking from PbT is used also during IMO detection, thus we give some details in the following. The egomotion of the ego-car is estimated using keypoints which have been confirmed to be static (= belonging to the static environment). These keypoints are the union of keypoints which are not in a CNN-detected car patch, and keypoints from car patches that have been classified as static. In addition, PbT with its epipolar constraint is able to propagate the static label of a car patch on subsequent frames as long as the keypoints inside that car patch are successfully tracked.

As the matching and tracking processes used in the present paper are guided by the epipolar geometry, patches which have a local structure with only one dominant orientation (e.g. lines and straight edges) can be matched as long as the dominant orientation is sufficiently well inclined relative to the epipolar line under consideration. In order to track the keypoint on subsequent frames, we employ an iterative differential matching which minimizes the photometric error between the patch correspondences. A keypoint is finally accepted and used for pose estimation when it has been tracked on at least three consecutive frames which reflects its 3D consistency.

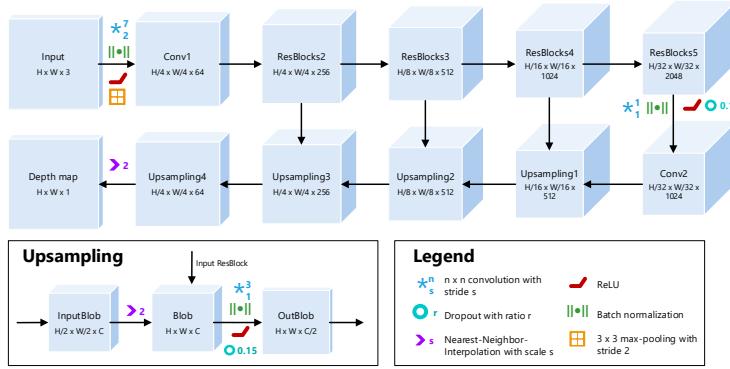


Fig. 3. The proposed network architecture for the depth map estimation. The decoder part is built upon a ResNet-50. We have replaced the fully connected and the global average pooling layer from the original ResNet-50 with our new upsampling block, which takes long skip connection into account. The output of our network has the same size as the input.

3.2 CNN-based IMO candidate patches

IMO candidate patches are obtained by a instance-level segmentation CNN which detects vehicles. We employ the *deep contours* approach, proposed in [5]. The CNN has been trained to label individual vehicles using the Cityscapes dataset [28]. The output of this CNN are 5 channels: one for the semantic label of vehicles and four channels representing the left, right, top, and bottom contours of each vehicle. Based on these information the instances of the vehicles are separated as independent patches, which we use as IMO candidate patches in our proposed framework.

3.3 Propagation of label information

We track the IMO labels over frames by using a dynamic motion model and simple image patch descriptors. Each IMO patch is represented by a feature vector consisting of its center of mass, its size (pixel count), its mean gray value and the gray value standard deviation. We predict the position of the car patch at the next frame using the information of the three last positions based on the assumption of constant 2D acceleration.

The association between the 'old' patches in the image n and a new patch in the image $n+1$ is performed in a looping greedy manner (forward and backward), whenever car patches are observed in both image n and image $n+1$, subjecting each potential association between a patch in image n and a patch in image $n+1$. An association match between two car patches is accepted only when the pair of car patches reciprocally chooses each other as the best match.

270 3.4 CNN-based depth image

271 For generating the appearance based dense depth maps, a second CNN takes as
 272 an RGB image and estimates the inverse depth $\rho(\mathbf{x}) = d(\mathbf{x})^{-1} \in [0, 1]$ for
 273 each pixel location $\mathbf{x} \in \Omega$. Thus, the output size of the encoder-decoder network
 274 must be the same as for the input. The architecture of the depth estimation
 275 network is depicted in figure 3.

276 The structure of the encoder part from our network is adopted from the
 277 ResNet-50, which was proposed by He et al.[20]. The original ResNets were
 278 designed to classify images into different object categories. Hence, their last
 279 layers consist of a global average pooling and a fully connected layer to predict
 280 the class labels. We replace these layers with our novel upsampling blocks, which
 281 act as the decoder. Following the remarks of Odena et al. [29], we do not use
 282 unpooling or strided convolution operations to increase the size of the feature
 283 maps. Instead, we use nearest-neighbor interpolation to magnify the feature
 284 maps. If we increased only the size of the feature maps in this way, the predicted
 285 depth maps could not resolve fine structured elements of the image. To solve
 286 this problem, we add the output of some residual blocks of the encoder network
 287 via long skip connections to the interpolated feature maps. In this way, we allow
 288 the network to estimate the depth for fine details in the image. Afterwards, we
 289 apply a convolution layer with a kernel size of 3×3 and striding of 1, followed
 290 by batch normalization, ReLU and a dropout layer with a dropout ratio of 0.15.
 291 The structure of such a upsampling block is shown in the bottom of figure 3.

292 Our supervised loss function \mathcal{L} is only based on the absolute difference of
 293 the estimated inverse depth $\rho_{CNN}(\mathbf{x})$ and a measured one $\rho_{GT}(\mathbf{x})$, which acts
 294 as ground truth. We evaluate the loss only on pixel positions $\mathbf{x} \in \Omega_{GT}$, where
 295 $\rho_{GT}(\mathbf{x})$ is available by a valid measurement. The number of valid measurements
 296 is denoted as N .

$$297 \mathcal{L} = \frac{1}{N} \sum_{\mathbf{x} \in \Omega_{GT}} |\rho_{CNN}(\mathbf{x}) - \rho_{GT}(\mathbf{x})| \quad (1)$$

299 As training data, we use the raw KITTI data from [30]. We take the KITTI split
 300 of [25], which separates the data into a training, validation and testing set. The
 301 training set consists of 29000 images. For the ground truth inverse depth map,
 302 we fuse for each image the sparse LIDAR measurements from KITTI with the
 303 inverse depth map, which is computed with corresponding stereo image by SGM
 304 [27]. This allows us to evaluate the loss on many more positions than by only
 305 using the sparse LIDAR data. Furthermore, SGM builds a coherency between
 306 the image and the depth map, which is crucial for training a CNN. The LIDAR
 307 data do not cover this issue, because they are not necessarily synchronized with
 308 the camera and the center of the sensors do not coincide, which can lead to
 309 unwanted ambiguities.

310 The encoder part of the network is initialized with pretrained weights from
 311 ImageNet. The weights of the decoder part are randomly initialized with the
 312 proposed method of [20]. To avoid overfitting, we include dropout layers into the
 313 decoder network. We trained our network with a mini-batch size of 4 and use
 314 the ADAM optimizer. The network converged after 90 epochs.

315 4 Detection of epipolar-conformant IMOs

316
317 In the monocular case, assuming rigidity for the complete set of points, epipolar-
318 conformant point sets on moving objects will be assigned wrong distance values.
319 Therefore, if we have some information about the depth of a candidate point set,
320 we can design a test on conformity to the static background. The depth map
321 which is needed as side information for this purpose is provided by the described
322 CNN. We detect an epipolar-conformant IMO by showing that the depth of the
323 IMO candidate car, as provided by the depth map, would not fit to the predicted
324 depth calculated with the assumption that the car is static.

325 The triangulated depth of the target car, with the assumption that the car is
326 static, can be provided by the PbT framework as long as there are some keypoint
327 correspondences on the target car patch. However on some occasions, such as
328 in a fast highway scene where long displacement occurs, no matched keypoint is
329 available on the target car patch. Without tracked keypoints, no triangulation
330 can be done, hence there is no depth prediction.

331 In order to handle the case when there are no tracked keypoints on a car
332 patch, the predicted depth of the car is obtained from the depth information on
333 the previous frame, and then shifted by the estimated egomotion of the ego-car.
334 We name the above two approaches as keypoint-based and keypoint-free depth
335 verifications.

336 In this section, first we will prove that parallel-moving objects are
337 consistent to the epipolar constraint. Second, we show that the speed ratio of a
338 parallel-moving point w.r.t. the ego-car speed directly determines the depth of
339 the triangulated ambiguous static point. Then we explain the keypoint-based
340 and keypoint-free depth verifications to detect parallel-moving IMOs.

341 We assume that the egomotion estimates, more precisely: the relative pose
342 between frames n and $n + 1$, are already provided by PbT. We denote \mathbf{R} and \mathbf{t}
343 as the relative rotation and relative translation to transform a fixed point \mathbf{z} in
344 the world of the camera coordinate system at frame n (CCS_n) to frame $n + 1$
(CCS_{n+1}),

$$346 \quad z_{n+1} = ({}^n\mathbf{R}_{n+1} \quad {}^n\mathbf{t}_{n+1}) \cdot \begin{pmatrix} z_n \\ 1 \end{pmatrix} = {}^n\mathbf{R}_{n+1} \cdot z_n + {}^n\mathbf{t}_{n+1} \quad (2)$$

349 4.1 Proof that a parallel-moving keypoint is epipolar-conformant

351 We refer to figure 2. Let $\mathbf{z}_{A(n)}$ be the 3D coordinate of a position A in CCS_n .
352 The corresponding 3D coordinate in CCS_{n+1} is denoted by $\mathbf{z}_{A(n+1)}$ and is given
353 by

$$354 \quad \mathbf{z}_{A(n+1)} = {}^n\mathbf{R}_{n+1} \cdot \mathbf{z}_{A(n)} + {}^n\mathbf{t}_{n+1}. \quad (3)$$

356 Let \mathbf{y}_A and \mathbf{y}'_A be respectively the normalized image coordinate of $\mathbf{z}_{A(n)}$ and
357 $\mathbf{z}_{A(n+1)}$ such that,

$$358 \quad \mathbf{z}_{A(n)} = d_{A(n)} \cdot \mathbf{y}_A \quad (4)$$

$$359 \quad \mathbf{z}_{A(n+1)} = d_{A(n+1)} \cdot \mathbf{y}'_A \quad (5)$$

360 where d_A is the depth of position A from the camera center. If \mathbf{E} is the essential
 361 matrix between the two frames, the epipolar relation can be written as,
 362

$$363 \quad \mathbf{y}_A'^T \cdot \mathbf{E} \cdot \mathbf{y}_A = 0 \quad (6)$$

364 where the essential matrix is given by
 365

$$366 \quad \mathbf{E} = [{}^n\mathbf{t}_{n+1}]_x \cdot {}^n\mathbf{R}_{n+1}. \quad (7)$$

368 In general, equation (6) applies to every static point. In other words, every static
 369 point is epipolar-conformant.

370 Now, let us consider a moving point which starts at position A at frame n to
 371 position B at frame $n+1$. It is important to note that the movement is parallel
 372 to the camera motion from frame n to frame $n+1$, as shown in figure 2. The
 373 new position at position B after the parallel motion, denoted as $\mathbf{z}_{B(n+1)}$, can be
 374 expressed as the old position at A plus a shift along the translation direction

$$376 \quad \mathbf{z}_{B(n+1)} = \mathbf{z}_{A(n+1)} - v \cdot {}^n\mathbf{t}_{n+1}, \quad (8)$$

378 where v is a scale parameter describing the speed ratio of the point w.r.t. the
 379 ego-car speed. As the relative translation ${}^n\mathbf{t}_{n+1}$ defined in equation (2) actually
 380 describes how the world relatively moves w.r.t. the camera, we need the minus
 381 sign in front of v .

382 Let \mathbf{y}_B be the normalized image coordinate of $\mathbf{z}_{B(n+1)}$ and d_B is the depth
 383 of position B such that the following applies

$$384 \quad \mathbf{z}_{B(n+1)} = d_B \cdot \mathbf{y}_B. \quad (9)$$

386 Now, we can check the epipolar conformity of the moving point
 387

$$388 \quad \mathbf{y}_B^T \cdot \mathbf{E} \cdot \mathbf{y}_A \\ 389 \quad = \frac{(d_{A(n+1)} \cdot \mathbf{y}_A' - v \cdot {}^n\mathbf{t}_{n+1})^T}{d_B} \cdot \mathbf{E} \cdot \mathbf{y}_A \\ 390 \quad = \frac{d_{A(n+1)}}{d_B} \underbrace{\mathbf{y}_A'^T \cdot \mathbf{E} \cdot \mathbf{y}_A}_0 - \frac{v}{d_B} \underbrace{\mathbf{t}_{n+1}^T \cdot \mathbf{E} \cdot \mathbf{y}_A}_0 = 0. \quad (10)$$

395 We show in equation (10) that a parallel-moving keypoint also satisfies the epipo-
 396 lar constraint from frame n to frame $n+1$. That means, we have shown that a
 397 point moving parallel to the camera motion is epipolar-conformant.

399 4.2 Depth relation between parallel-moving points and ambiguous 400 static points

402 As illustrated by figure 2, a keypoint correspondence \mathbf{y}_A in frame n and \mathbf{y}_B in
 403 frame $n+1$ can represent both a moving point from A to B, and an ambiguous
 404 triangulated static point P. Let \mathbf{z}_P be the 3D coordinate at position P. We

405 investigate the relation between the motion of the parallel-moving point (see
 406 equation (8)) and the position of the ambiguous triangulated static point \mathbf{z}_P .
 407

408 We compute the intersection of two rays, one from the camera center at
 409 CCS_n crossing \mathbf{z}_A and another one from the camera center at CCS_{n+1} crossing
 410 \mathbf{z}_B . We transform all coordinates into CCS_{n+1} , thus having the following two
 411 equations representing the rays:
 412

$$\mathbf{z}_P^{(1)} = \mathbf{0} + \alpha \cdot (\mathbf{z}_{B(n+1)} - \mathbf{0}) = \alpha \cdot \mathbf{z}_{B(n+1)} = \alpha(1-v) \cdot {}^n\mathbf{t}_{n+1} + \alpha \cdot ({}^n\mathbf{R}_{n+1} \cdot \mathbf{z}_{A(n)}) \quad (11)$$

$$\mathbf{z}_P^{(2)} = {}^n\mathbf{t}_{n+1} + \beta \cdot (\mathbf{z}_{A(n+1)} - {}^n\mathbf{t}_{n+1}) = {}^n\mathbf{t}_{n+1} + \beta \cdot ({}^n\mathbf{R}_{n+1} \cdot \mathbf{z}_{A(n)}). \quad (12)$$

413 By comparing equation (11) and (12), as long as ${}^n\mathbf{R}_{n+1} \cdot \mathbf{z}_{A(n)}$ is not a multiple
 414 of ${}^n\mathbf{t}_{n+1}$, we come to the conclusion that
 415

$$\alpha(1-v) = 1 \rightarrow \alpha = \frac{1}{1-v} \quad (13)$$

416 applies. It is important to note that α is also the depth ratio between positions
 417 B and P (see equation (11)), denoted as d_B and d_P .
 418

$$\frac{d_P}{d_B} = \frac{1}{1-v} \rightarrow (1-v)d_P = d_B \quad (14)$$

419 Hence, we can identify several cases of parallel-moving points based on the
 420 analysis of v :
 421

- 422 – If the point moves on the opposite direction w.r.t. camera motion ($v < 0$),
 423 then the ambiguous static point is nearer than the moving point ($d_P < d_B$).
- 424 – If the point moves at the same direction w.r.t. camera motion with lower
 425 speed ($0 < v < 1$), then the ambiguous static point is farther than the
 426 moving point ($d_P > d_B$).
- 427 – If the point moves at the same direction w.r.t. camera motion with the same
 428 speed ($v = 1$), then the ambiguous static point is at infinity ($d_P \rightarrow \infty$).
- 429 – If the point moves at the same direction w.r.t. camera motion with higher
 430 speed ($v > 1$), then the ambiguous static point \mathbf{z}_P is found behind the
 431 camera.

441 4.3 Keypoint-based depth verification

442 Let $Q(n)$ and $Q(n+1)$ be two associated car patches corresponding to the same
 443 car from two consecutive frames n and $n+1$. We employ epipolar matching
 444 within $Q(n)$ and $Q(n+1)$ to obtain keypoint correspondences $\mathbf{x}_i(n)$ and
 445 $\mathbf{x}_i(n+1)$, for $i = 1, 2, \dots, m$. This approach is considered only when the number of
 446 correspondences is at least τ_{mc} . Then, we triangulate the correspondences to
 447 obtain the 3D coordinates \mathbf{z}_{Pi} .
 448

We compute the relative difference Δd_i between the triangulated depth d_{Pi} and the depth information from the CNN depth map d_{Bi} :

$$\Delta d_i = \frac{|d_{Bi} - d_{Pi}|}{d_{Pi}} = \frac{|(1-v)d_{Pi} - d_{Pi}|}{d_{Pi}} = |v|. \quad (15)$$

The keypoint x_i on the car patch Q is recognized as a moving point, if the relative depth difference exceeds τ_v . Hence, τ_v also describes the maximum speed ratio w.r.t. the ego-car speed that can be detected as a moving point.

$$\Delta d_i > \tau_v \rightarrow \text{moving point} \quad (16)$$

Let m_i be the number of moving points found in patch Q . The car patch Q is identified as an IMO, if the ratio of moving keypoints exceeds τ_{rm} :

$$\frac{m_i}{m} > \tau_{rm} \rightarrow \text{IMO.} \quad (17)$$

4.4 Keypoint-free depth verification

For keypoint-free depth comparison, we look into the car patches $Q(n)$ and $Q(n+1)$. Combining the 2D pixel position of the patches and the depth information from the CNN, each car patch can be represented by a single 3D point derived from the 2D center of mass of the patch and the median of the depth values.

The 2D center of masses of the patches $Q(n)$ and $Q(n+1)$ are given by $\mathbf{c}(n)$ and $\mathbf{c}(n+1)$, respectively. The median depth of patches $Q(n)$ and $Q(n+1)$ are denoted as $d(n)$ and $d(n+1)$. Hence, each patch can be represented by a 3D point \mathbf{z} whose x and y positions are defined by the center of mass \mathbf{c} and the z position is given by the median depth d .

$$z = d \cdot \mathbf{K}^{-1} \cdot \begin{pmatrix} c \\ 1 \end{pmatrix}, \quad (18)$$

where \mathbf{K} is the intrinsic camera matrix.

Now, the patch $Q(n)$ and $Q(n + 1)$ are represented by the 3D points $\mathbf{z}(n)$ and $\mathbf{z}(n + 1)$. However, both 3D points are measured based on their respective camera coordinate systems (*CCS*). In order to compare them, we transform $\mathbf{z}(n)$ into CCS_{n+1} ,

$$z(n \rightarrow n+1) = {}^n\mathbf{R}_{n+1} \cdot z(n) + {}^n\mathbf{t}_{n+1}. \quad (19)$$

Now, we can calculate the absolute distance between the 3D points representing patches $Q(n)$ and $Q(n + 1)$:

$$\Delta z = |z(n+1) - z(n \rightarrow n+1)|. \quad (20)$$

If both 3D points $z(n \rightarrow n + 1)$ and $z(n + 1)$ are similar, it indicates that the patch Q corresponds to a static car. However, if they significantly differ, we identify the car as an IMO.

As we deal with parallel-moving cars, the relative position of these cars change only in one axis corresponding to the depth value (z -axis in our setup).

495 hence the depth consistency is the focus to analyze. The x and y components
 496 of $\mathbf{z}(n \rightarrow n+1)$ and $\mathbf{z}(n+1)$ are almost always the same. We set τ_{xy} as the
 497 maximum value for both x and y components of Δz to be classified as a static
 498 car.

499 Let $d_m(n)$ and $d_m(n+1)$ be the depth (z) components of $\mathbf{z}(n \rightarrow n+1)$ and
 500 $\mathbf{z}(n+1)$. We compute the relative depth difference r_{dm} by

$$501 \quad r_{dm} = \frac{|d_m(n) - d_m(n+1)|}{\min(d_m(n), d_m(n+1))}. \quad (21)$$

502 The car patch is categorized as an IMO, if the relative depth difference is more
 503 than $\tau_{dm, IMO}$ and as a static car, if it is less than $\tau_{dm, static}$.

507 5 Experiments

508 We tested our method on the KITTI dataset [30]. Since KITTI does not provide
 509 IMO labels for the KITTI odometry dataset, we have created our own dataset
 510 to evaluate our approach. We also used KITTI MoSeg dataset [31] to compare
 511 our results with competing method.

514 5.1 IMO candidates dataset

515 For our new dataset, we used the 11 training sequences from the KITTI visual
 516 odometry dataset, which consists of 23201 images. The proposed CNN from
 517 van den Brand et al. [5] was utilized to generate candidate labels for the vehicle
 518 instances. In the current state of the dataset, we have limited the detected objects
 519 to vehicles only. This can be further extended to other objects, like pedestrians
 520 or bicycle in future work.

521 Given these segmented candidate labels, we manually assign to each candidate
 522 patch in all images one of the following class labels: 0 - background (non-
 523 vehicles), 1 - independently moving vehicle, 2 - static (non-moving) vehicle, 3 -
 524 far away vehicles (median distance greater than 50m) and 4 - undetermined. We
 525 labeled a candidate as undetermined, if the patch does not show a vehicle or if
 526 the patch is stretched over more than one vehicles, which do not fall into same
 527 category, like static or IMO. Some examples of this dataset are shown in fig 4.

530 5.2 Evaluation of IMO detection

531 In our experiments, we used the following values: $\tau_{mc} = 3$, $\tau_v = 0.3$, $\tau_{rm} = 0.4$,
 532 $\tau_{xy} = 0.1$, $\tau_{dm, IMO} = 0.05$, $\tau_{dm, static} = 0.01$. As the CNN-based IMO candidate
 533 patches can reliably detect IMOs up to a distance of 50 meters, the proposed
 534 IMO detection is also evaluated for the same maximum distance. We combine our
 535 method with a method from [3] which handles detection for non-parallel-moving
 536 objects.

537 The performance of the IMO classification is expressed by recall R , specificity
 538 S , and accuracy A . We also measure the decisiveness of the proposed method

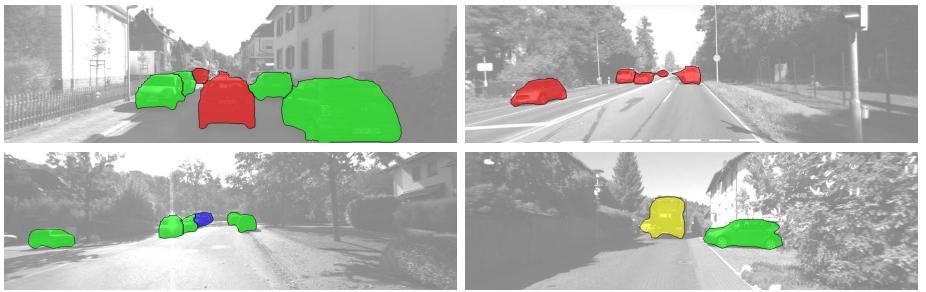


Fig. 4. Examples from our new IMO candidates dataset. The colored overlay encoding is as follows: red \leftrightarrow IMO (class 0), green \leftrightarrow static (class 1), blue \leftrightarrow too far away (class 2) and yellow \leftrightarrow undetermined (class 3).

to give definite output (**IMO/static**) as compared to **undetermined**. We define the decisiveness level D as

$$D = \frac{n_{IMO} + n_{static}}{n_{IMO} + n_{static} + n_{undetermined}} \quad (22)$$

where n_{IMO} , n_{static} , and $n_{undetermined}$ are respectively the number of outputs as **IMO**, **static**, and **undetermined**.

Accuracy on the KITTI MoSeg dataset Table 1 presents the precision of the IMO detection using our method and using MODNet [31]. The precision of our method is better on both identifying static cars and moving cars. The average precision of our method is 0.79 as compared to 0.66 of MODNet. Figure 5 shows the exemplary results of the IMO detection using our method and using MODNet.

Fig. 5. Exemplary results of the car classification into static and IMO labels on KITTI MoSeg dataset: using our method (**left**) and using MODNet (**right**). Red color represents IMO, green color represents static car, and yellow color represents undetermined. The comparison shows that our method correctly identifies a static parked car while MODNet wrongly classifies it as an IMO.

Accuracy on the KITTI odometry dataset The results of the proposed IMO detection on the KITTI odometry dataset are presented in table 2. The

Table 1. Accuracy of IMO detection on the KITTI MoSeg dataset.

Method	P_{static}	P_{moving}	P_{average}
MODNet [31]	0.65	0.67	0.66
Ours	0.74	0.84	0.79

overall decisiveness level is 91%. That means, the undetermined outputs only happen in about 9% of the total car appearances and they mostly occur when the cars are first time observed in the scene. The recall rate, or the true positive rate, has an overall value of 87% which reflects the high accuracy of the IMO detection. The overall specificity rate, or the true negative rate, is 83%, while the overall accuracy is 84%.

Sequence 01 and sequence 04 are notably full of epipolar-conformant IMOs, both parallel and anti-parallel cases. The results in table 2 for both sequences indicate that the proposed IMO detection is able to identify almost all IMOs. Figure 6 (left image) shows the IMO detection for KITTI sequence 09. The parallel-moving cars are correctly detected and marked with red colors. The static cars are also correctly identified in green colors.

The accuracy level is directly influenced by the user-defined threshold τ_v (see equation (16)) that describes the maximum detectable speed ratio of the moving car w.r.t. the ego-car speed. The threshold τ_v should be low enough in order to be able to detect even slow moving objects, while at the same it cannot be too low to anticipate measurement errors. If an IMO moves very slowly below τ_v , the proposed framework cannot identify it as a moving object, as happened in KITTI sequence 10, when a truck moves backward slowly (see the right image of figure 6). Similarly, if the error in determining triangulated 3D position is too high (e.g. from matching error or egomotion error), it could lead to false positive or false negative classifications.

Table 2. Accuracy of IMO detection on KITTI dataset.

Sequence	D	R	S	A
0	0.90	0.41	0.81	0.81
1	0.84	0.97	n.a.	0.97
2	0.90	0.71	0.82	0.82
3	0.89	1.00	0.86	0.91
4	0.96	1.00	1.00	1.00
5	0.90	0.95	0.86	0.86
6	0.86	1.00	0.86	0.86
7	0.93	0.87	0.89	0.89
8	0.93	0.61	0.81	0.81
9	0.92	0.76	0.90	0.90
10	0.95	0.68	0.97	0.92
Overall	0.91	0.87	0.83	0.84

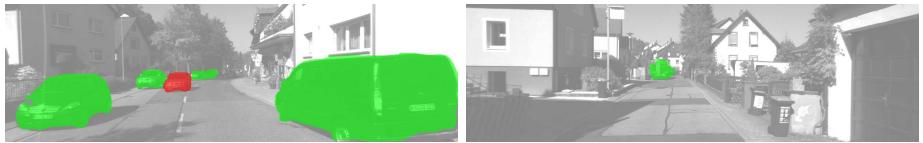


Fig. 6. Exemplary results of the car classification into static and IMO labels on the KITTI odometry dataset sequence 09 (left) and sequence 10 (right). Red color represents IMO while green color represents static car.

6 Conclusion

This paper presents an IMO detection method for the case of a moving monocular camera. The proposed method employs a CNN to provide IMO candidates, and a novel CNN that estimates depth maps from single images. While crossing IMOs can be detected by an epipolar consistency check, we focussed here on the parallel-moving IMOs which are identified through the proposed depth verification scheme. The motion labels (IMO/static) are propagated over time by establishing patch label association between two consecutive frames based on the cue combination of motion and appearance. Experiments on the new KITTI IMO label dataset we created show encouraging performance of the proposed method.

References

1. Jung, B., Sukhatme, G.S.: Detecting moving objects using a single camera on a mobile robot in an outdoor environment. In: International Conference on Intelligent Autonomous Systems. (2004) 980–987
2. Kundu, A., Jawahar, C.V., Krishna, K.M.: Realtime moving object detection from a freely moving monocular camera. In: 2010 IEEE International Conference on Robotics and Biomimetics. (2010) 1635–1640
3. Fanani, N., Ochs, M., Stürck, A., Mester, R.: CNN-based multi-frame IMO detection from a monocular camera. In: Intelligent Vehicles Symposium (IV), IEEE (2017)
4. Fanani, N., Stürck, A., Ochs, M., Bradler, H., Mester, R.: Predictive monocular odometry (PMO): What is possible without RANSAC and multiframe bundle adjustment? Image and Vision Computing (2017)
5. van den Brand, J., Ochs, M., Mester, R.: Instance-level segmentation of vehicles by deep contours. In: Asian Conference on Computer Vision 2016 – Workshops, Springer (2016) 477–492
6. Wedel, A., Meißner, A., Rabe, C., Franke, U., Cremers, D.: Detection and segmentation of independently moving objects from dense scene flow. In: Energy minimization methods in computer vision and pattern recognition, Springer (2009) 14–27
7. Lenz, P., Ziegler, J., Geiger, A., Roser, M.: Sparse scene flow segmentation for moving object detection in urban environments. In: 2011 IEEE Intelligent Vehicles Symposium (IV). (2011) 926–932

675 8. Ošep, A., Mehner, W., Mathias, M., Leibe, B.: Combined image- and world-space
676 tracking in traffic scenes. In: ICRA. (2017) 675

677 9. Zhou, D., Frémont, V., Quost, B., Dai, Y., Li, H.: Moving object detection and
678 segmentation in urban environments from a moving platform. Image and Vision
679 Computing (2017) 677

680 10. López-Rubio, F.J., López-Rubio, E.: Foreground detection for moving cameras
681 with stochastic approximation. Pattern Recognition Letters **68** (2015) 161 – 168 680

682 11. Yamaguchi, K., Kato, T., Ninomiya, Y.: Vehicle ego-motion estimation and moving
683 object detection using a monocular camera. In: 18th International Conference on
684 Pattern Recognition (ICPR'06). Volume 4. (2006) 610–613 683

685 12. Jazayeri, A., Cai, H., Zheng, J.Y., Tuceryan, M.: Vehicle detection and tracking in
686 car video based on motion model. IEEE Transactions on Intelligent Transportation
687 Systems **12**(2) (2011) 583–595 686

688 13. Ramirez, A., Ohn-Bar, E., Trivedi, M.M.: Go with the flow: Improving multi-view
689 vehicle detection with motion cues. In: 2014 22nd International Conference on
690 Pattern Recognition. (2014) 4140–4145 688

691 14. Oliveira, G.L., Radwan, N., Burgard, W., Brox, T.: Topometric localization with
692 deep learning. ArXiv preprint (2017) 690

693 15. Wulff, J., Sevilla-Lara, L., Black, M.J.: Optical flow in mostly rigid scenes. arXiv
694 preprint arXiv:1705.01352 (2017) 691

695 16. Bai, M., Luo, W., Kundu, K., Urtasun, R.: Exploiting semantic information and
696 deep matching for optical flow. In: European Conference on Computer Vision,
697 Springer (2016) 154–170 693

698 17. Klappstein, J., Stein, F., Franke, U.: Monocular motion detection using spatial
699 constraints in a unified manner. In: Intelligent Vehicles Symposium, 2006 IEEE,
700 IEEE (2006) 261–267 695

701 18. Wong, C.C., Siu, W.C., Jennings, P., Barnes, S., Fong, B.: A smart moving vehicle
702 detection system using motion vectors and generic line features. IEEE Transactions
703 on Consumer Electronics **61**(3) (2015) 384–392 698

704 19. Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation
705 in complex dynamic scenes. In: Proceedings of the IEEE Conference on Computer
706 Vision and Pattern Recognition. (2016) 4058–4066 701

707 20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
708 In: Conference on Computer Vision and Pattern Recognition (CVPR). (2016) 770
709 – 778 704

710 21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
711 segmentation. In: Conference on Computer Vision and Pattern Recognition (CVPR).
712 (2015) 3431–3440 707

713 22. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper Depth
714 Prediction with Fully Convolutional Residual Networks. In: International Conference
715 on 3D Vision (3DV). (2016) 239–248 709

716 23. Eigen, D., Puhrsch, C., Fergus, R.: Depth Map Prediction from a Single Image us-
717 ing a Multi-Scale Deep Network. In: Conference on Neural Information Processing
718 Systems (NIPS). (2014) 2366–2374 712

719 24. Garg, R., BG, V.K., Carneiro, G., Reid, I.: Unsupervised CNN for Single View
720 Depth Estimation: Geometry to the Rescue. In: European Conference on Computer
721 Vision (ECCV). (2016) 740–756 715

722 25. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised Monocular Depth Es-
723 timation with Left-Right Consistency. In: Conference on Computer Vision and
724 Pattern Recognition (CVPR). (2017) 716

720 26. Kuznetsov, Y., Stückler, J., Leibe, B.: Semi-Supervised Deep Learning for Monoc-
721 ular Depth Map Prediction. In: Conference on Computer Vision and Pattern
722 721 Recognition (CVPR). (2017)

723 27. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual informa-
724 722 tion. Transactions on Pattern Analysis and Machine Intelligence (PAMI) **30**(2)
725 723 (2008) 328–341

726 28. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
727 726 Franke, U., Roth, S., Schiele, B.: The Cityscapes Dataset for Semantic Urban
728 727 Scene Understanding. In: Conference on Computer Vision and Pattern Recognition
729 728 (CVPR). (2016) 3213–3223

730 29. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts.
731 729 Distill (2016)

732 30. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI
733 732 dataset. The International Journal of Robotics Research **32**(11) (2013) 1231–1237

734 31. Siam, M., Mahgoub, H., Zahran, M., Yogamani, S., Jagersand, M., El-Sallab, A.:
735 733 Modnet: Moving object detection network with motion and appearance for au-
736 734 tonomous driving. arXiv preprint arXiv:1709.04821 (2017)