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Detecting parallel-moving objects

in the monocular case

employing CNN depth maps

Nolang Fanani1, Matthias Ochs1, and Rudolf Mester1,2

1 Visual Sensorics & Information Processing Lab, Goethe University Frankfurt,
Germany

2 Computer Vision Laboratory, ISY, Linköping University, Sweden

Abstract. This paper presents a method for detecting independently
moving objects (IMOs) from a monocular camera mounted on a moving
car. We use an existing state of the art monocular sparse visual odome-
try/SLAM framework, and specifically attack the notorious problem of
identifying those IMOs which move parallel to the ego-car motion, that
is, in an ’epipolar-conformant’ way. IMO candidate patches are obtained
from an existing CNN-based car instance detector. While crossing IMOs
can be identified as such by epipolar consistency checks, IMOs that move
parallel to the camera motion are much harder to detect as their epipo-
lar conformity allows to misinterpret them as static objects in a wrong
distance. We employ a CNN to provide an appearance-based depth es-
timate, and the ambiguity problem can be solved through depth veri-
fication. The obtained motion labels (IMO/static) are then propagated
over time using the combination of motion cues and appearance-based
information of the IMO candidate patches. We evaluate the performance
of our method on the KITTI dataset.

1 Introduction

Identifying moving objects is one of the main challenges in the context of au-
tonomous driving. While the advancement of deep learning has shown convincing
results to generate semantic segmentation of objects associated with moving ob-
jects (e.g. cars, bicycles, pedestrians, etc.), it is still a challenging task to verify
whether such object is independently moving or in a static mode. We summarize
such moving objects under the term independently moving objects (IMOs).

We propose to combine the deep learning method and the classical geometry
approach to identfy IMOs using monocular camera. It is well known that the
frame-to-frame egomotion induces the epipolar constraint which all correspond-
ing points in two images have to obey to. Points or areas which do not move
conformant to the epipolar geometry are obviously candidates for belonging to
independently moving objects. However, IMOs can also be epipolar-conformant,
when they move parallel to the camera motion (for an illustration and a formal
definition, see figure 2 and section 4.1).
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CNN

Propagation-based 
Tracking (PbT)

- egomotion
- sparse tracks

IMO detection

- epipolar check
- depth verification

Depth estimation Instance segmentation

frame n frame n+1

Input images

Fig. 1. The scheme of the our novel proposed method to identify IMOs. The IMO

detection and depth estimation blocks are the new contributions.

How to detect IMOs which do not move parallel to the camera motion using
monocular camera has been discussed in many papers ([1],[2],[3]). The present
paper focuses on the more challenging problem of detecting epipolar-conformant
IMOs. The proposed method is built on top of the propagation-based tracking
(PbT) framework [4], a recently proposed sparse monocular odometry scheme,
made available to us by its authors. PbT is one of the leading published monoc-
ular visual odometry methods in the KITTI visual odometry benchmark.

The main contribution of our approach is to solve the inherently hard problem
for the sparse monocular visual odometry: detecting moving objects which move
parallel (or anti-parallel) to the camera motion, such as cars in the same or
adjacent lanes, including oncoming traffic. As illustrated in see figure 2, due to
its epipolar consistency, a parallel-moving point visually appears exactly as an
static point, but in a different (pseudo)distance.

The approach presented here is to employ two CNNs: one that provides a
car instance segmentation [5], also used in [4], and a new one designed for and
described in this paper that provides depth estimates for single monocular im-
ages. In the decoder part of this residual encoder-decoder network, we introduce
the new upsampling block. The depth map from the CNN allows us to com-
pare distances obtained from geometric triangulation with such obtained from
appearance, and thus supports the detection of epipolar-conformant IMOs also
for the monocular case.

We emphasise that the system component presented here, a module that dis-
criminates real moving objects from objects that could be moving ones but are
actually standing still currently, is built upon an existing and properly work-
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Detecting parallel-moving objects 3

ing visual odometry system (PbT/PMO, [4]). This visual odometry (VO) sys-
tem could be replaced by any other one that works properly and which is (like
PMO/PbT) not disturbed by moving objects. In other words, the component
we focus on in this paper is independent of the choice of the visual odometry
platform it is attached to, as long as this platform fullfils certain functional
requirements.

2 Related work

As we focus on the detection of moving cars from a moving ego-vehicle, the
scenario is very different to others such as handheld cameras or general robot
vision [1, 2], because the motion is strongly constrained by the car dynamics. In
the area of advanced driver assistance systems (ADAS), many approaches work
with additional information such as using a stereo system [6–9] to identify IMOs.
In contrast to these approaches, we want to show that it is possible to reliably
detect IMOs from a monocular camera only.

Previously published monocular algorithms on moving vehicle detection can
be differentiated into two categories: appearance-based approaches (e.g. [1],[10])
and motion-based approaches (e.g. [11],[12]). We aim at providing an approach
that combines both approaches, in a way similar to [13], using the following cues
to determine the presence of an independently moving object and to track it: a)
the appearance of a car (in terms of a CNN-based car instance detector) as well
as b) motion cues from sparse optical flow, considering the epipolar geometry.
Our approach shares some similarities with [14] who use two separate CNNs
to determine visual odometry and object localization and fuse their results to
obtain object localizations. Our method is also related to [15] where CNNs are
used to obtain a rigidity score for each object and this is combined with motion
cues from optical flow. Bai et al. [16] estimate the dense optical flow fields from
each IMO candidate using an approach similar to ours, by employing a CNN
to provide the car region candidates. However, they focus only on obtaining the
optical flow and do not identify whether the car patches are moving in 3D or
not.

Crossing IMOs can be identified because the crossing motions induce inconsis-
tency w.r.t. the epipolar geometry, as discussed in [9]. However, parallel-moving
IMOs are epipolar conformant. Klappstein et al. [17] proposed a positive height
and depth constraint, but IMOs moving in opposite direction to the ego-car were
only detected using a heuristic approach. Wong et al. [18] utilized the size and
contours of cars to detect parallel-moving IMOs.

Appearance based dense depth estimate from a single monocular image is
one of the key components of our proposed monocular framework, similar to
the work by Ranftl et al [19]. We use an encoder-decoder architecture for our
CNN. The encoder of our network consists of the ResNet-50 architecture, which
was proposed by He et. al [20]. To retrieve the origin size of the input image
from last layer of the encoder, we use a decoder, which follows the ideas of the
fully convolutional networks [21]. A quite similar encoder-decoder architecture



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

4 N. Fanani, M. Ochs, R. Mester

for dense depth map estimation has recently been proposed by Laina et al. [22],
but they do not add long skip connections to refine the output.

Those networks can be trained in an unsupervised or supervised way [23] or
by a combination of both. The drawback of supervised learning is always the
lack of much good labeled training data. To avoid the downside of supervised
learning, the authors of [24–26] introduced an (semi-)unsupervised approach for
estimating monocular depth maps, where they use stereo images during training
to learn the disparity between both images.

Our depth estimation approach belongs to the category of supervised learn-
ing. During the training phase (only), we use LIDAR measurements and fuse
them to with depth maps, which are computed by SGM [27]. Combining this
training idea and our new decoder architecture, we are capable to generate state-
of-the-art appearance based depth maps from a single image, which we need to
identify for IMO candidates to fully solve the task of detection of parallel moving
objects detection through depth verification.

3 Framework overview

The proposed IMO detection scheme builds on a monocular visual odometry
framework, the propagation based tracking (PbT) scheme [4], which was made
available to us by its authors. An important principle of PbT is that each new
relative camera pose for a new frame n + 1 is predicted using the car ego-
dynamics. This prediction is used for a soft epipolar tracking (excluding gross
deviations from the epipolar structure). Subsequently, a refined relative pose is
computed only on the basis of keypoints that have been tracked at least twice,
this means: keypoints which already passed a stringent test of belonging to the
epipolar-conformant environment. All keypoints, including the new ones gener-
ated in sparsely covered areas of a new frame, are tracked in an epipolar-guided
manner as discussed in more detailed way in section 3.1. All IMO candidate
patches in image n are to be classified in one of the three states: static, IMO,
or undetermined.

We tackle the problem of IMO detection by classifying the IMOs into two
categories: epipolar-conformant IMOs and non-epipolar-conformant IMOs. The
keypoints on non-epipolar-conformant IMOs cannot be tracked by the PbT
framework, because PbT restricts the matches to be along the epipolar lines.
Not finding a photometric consistent match on or close to the epipolar line is
thus the basis of labeling keypoints as ’cannot belong to static background’. This
fact serves as the basis of our strategy to detect non-epipolar-conformant IMOs.
Failure to track a majority or even all keypoints on an IMO candidate indicates
that the IMO candidate is highly likely an IMO.

Detecting epipolar-conformant IMOs, i.e. parallel-moving IMOs, is much
more challenging. Monocular camera has an inherent limitation to identify ob-
jects moving parallel to the camera. Both static keypoints and parallel-moving
keypoints can be tracked using epipolar-style PbT and they look exactly the
same by the monocular camera as illustrated in figure 2. This means, a keypoint
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Detecting parallel-moving objects 5

Fig. 2. Bird-eye view. A camera moves from Cn to Cn+1. A keypoint which moves
parallel to the camera, from A to B, is visually identical to a static point P for the
camera. This parallel-moving keypoint is epipolar-conformant. See text for details.

correspondence from a parallel-moving IMO could lead also to an ambiguous
static point.

We employ a CNN to provide depth map estimates. With the depth map in
hand, we can now detect epipolar-conformant IMOs using a depth verification
scheme, consisting of the following two steps:

– Comparison of the depth information between triangulated depth by PbT
and CNN depth map on the tracked keypoints observed on IMO candidates.

– Comparison of the relative depth difference extracted from two time-consecutive
CNN depth maps of IMO candidates and the egomotion estimates from PbT.

3.1 PbT framework

The principle of keypoint tracking from PbT is used also during IMO detection,
thus we give some details in the following. The egomotion of the ego-car is
estimated using keypoints which have been confirmed to be static (= belonging
to the static environment). These keypoints are the union of keypoints which
are not in a CNN-detected car patch, and keypoints from car patches that have
been classified as static. In addition, PbT with its epipolar constraint is able to
propagate the static label of a car patch on subsequent frames as long as the
keypoints inside that car patch are successfully tracked.

As the matching and tracking processes used in the present paper are guided
by the epipolar geometry, patches which have a local structure with only one
dominant orientation (e.g. lines and straight edges) can be matched as long as
the dominant orientation is sufficiently well inclined relative to the epipolar line
under consideration. In order to track the keypoint on subsequent frames, we
employ an iterative differential matching which minimizes the photometric error
between the patch correspondences. A keypoint is finally accepted and used for
pose estimation when it has been tracked on at least three consecutive frames
which reflects its 3D consistency.
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Fig. 3. The proposed network architecture for the depth map estimation. The decoder
part is built upon a ResNet-50. We have replaced the fully connected and the global
average pooling layer from the original ResNet-50 with our new upsampling block,
which takes long skip connection into account. The output of our network has the
same size as the input.

3.2 CNN-based IMO candidate patches

IMO candidate patches are obtained by a instance-level segmentation CNN
which detects vehicles. We employ the deep contours approach, proposed in
[5]. The CNN has been trained to label individual vehicles using the Cityscapes
dataset [28]. The output of this CNN are 5 channels: one for the semantic label
of vehicles and four channels representing the left, right, top, and bottom con-
tours of each vehicle. Based on these information the instances of the vehicles
are separated as independent patches, which we use as IMO candidate patches
in our proposed framework.

3.3 Propagation of label information

We track the IMO labels over frames by using a dynamic motion model and
simple image patch descriptors. Each IMO patch is represented by a feature
vector consisting of its center of mass, its size (pixel count), its mean gray value
and the gray value standard deviation. We predict the position of the car patch
at the next frame using the information of the three last positions based on the
assumption of constant 2D acceleration.

The association between the ’old’ patches in the image n and a new patch in
the image n+1 is performed in a looping greedy manner (forward and backward),
whenever car patches are observed in both image n and image n+1, subjecting
each potential association between a patch in image n and a patch in image
n+1. An association match between two car patches is accepted only when the
pair of car patches reciprocally chooses each other as the best match.
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Detecting parallel-moving objects 7

3.4 CNN-based depth image

For generating the appearance based dense depth maps, a second CNN takes as
input an RGB image and estimates the inverse depth ρ(x) = d(x)−1 ∈ [0, 1] for
each pixel location x ∈ Ω. Thus, the output size of the encoder-decoder network
must be the same as for the input. The architecture of the depth estimation
network is depicted in figure 3.

The structure of the encoder part from our network is adopted from the
ResNet-50, which was proposed by He et al.[20]. The original ResNets were
designed to classify images into different object categories. Hence, their last
layers consist of a global average pooling and a fully connected layer to predict
the class labels. We replace these layers with our novel upsampling blocks, which
act as the decoder. Following the remarks of Odena et al. [29], we do not use
unpooling or strided convolution operations to increase the size of the feature
maps. Instead, we use nearest-neighbor interpolation to magnify the feature
maps. If we increased only the size of the feature maps in this way, the predicted
depth maps could not resolve fine structured elements of the image. To solve
this problem, we add the output of some residual blocks of the encoder network
via long skip connections to the interpolated feature maps. In this way, we allow
the network to estimate the depth for fine details in the image. Afterwards, we
apply a convolution layer with a kernel size of 3 × 3 and striding of 1, followed
by batch normalization, ReLU and a dropout layer with a dropout ratio of 0.15.
The structure of such a upsampling block is shown in the bottom of figure 3.

Our supervised loss function L is only based on the absolute difference of
the estimated inverse depth ρCNN (x) and a measured one ρGT (x), which acts
as ground truth. We evaluate the loss only on pixel positions x ∈ ΩGT , where
ρGT (x) is available by a valid measurement. The number of valid measurements
is denoted as N .

L =
1

N

∑

x∈ΩGT

|ρCNN (x)− ρGT (x)| (1)

As training data, we use the raw KITTI data from [30]. We take the KITTI split
of [25], which separates the data into a training, validation and testing set. The
training set consists of 29000 images. For the ground truth inverse depth map,
we fuse for each image the sparse LIDAR measurements from KITTI with the
inverse depth map, which is computed with corresponding stereo image by SGM
[27]. This allows us to evaluate the loss on many more positions than by only
using the sparse LIDAR data. Furthermore, SGM builds a coherency between
the image and the depth map, which is crucial for training a CNN. The LIDAR
data do not cover this issue, because they are not necessarily synchronized with
the camera and the center of the sensors do not coincide, which can lead to
unwanted ambiguities.

The encoder part of the network is initialized with pretrained weights from
ImageNet. The weights of the decoder part are randomly initialized with the
proposed method of [20]. To avoid overfitting, we include dropout layers into the
decoder network. We trained our network with a mini-batch size of 4 and use
the ADAM optimizer. The network converged after 90 epochs.
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4 Detection of epipolar-conformant IMOs

In the monocular case, assuming rigidity for the complete set of points, epipolar-
conformant point sets on moving objects will be assigned wrong distance values.
Therefore, if we have some information about the depth of a candidate point set,
we can design a test on conformity to the static background. The depth map
which is needed as side information for this purpose is provided by the described
CNN. We detect an epipolar-conformant IMO by showing that the depth of the
IMO candidate car, as provided by the depth map, would not fit to the predicted
depth calculated with the assumption that the car is static.

The triangulated depth of the target car, with the assumption that the car is
static, can be provided by the PbT framework as long as there are some keypoint
correspondences on the target car patch. However on some occasions, such as
in a fast highway scene where long displacement occurs, no matched keypoint is
available on the target car patch. Without tracked keypoints, no triangulation
can be done, hence there is no depth prediction.

In order to handle the case when there are no tracked keypoints on a car
patch, the predicted depth of the car is obtained from the depth information on
the previous frame, and then shifted by the estimated egomotion of the ego-car.
We name the above two approaches as keypoint-based and keypoint-free depth
verifications.

In this section, first we will prove that parallel-moving objects are con-
sistent to the epipolar constraint. Second, we show that the speed ratio of a
parallel-moving point w.r.t. the ego-car speed directly determines the depth of
the triangulated ambiguous static point. Then we explain the keypoint-based
and keypoint-free depth verifications to detect parallel-moving IMOs.

We assume that the egomotion estimates, more precisely: the relative pose
between frames n and n+ 1, are already provided by PbT. We denote R and t

as the relative rotation and relative translation to transform a fixed point z in
the world of the camera coordinate system at frame n (CCSn) to frame n + 1
(CCSn+1),

zn+1 =
(

nRn+1
ntn+1

)
·

(
zn

1

)

= nRn+1 · zn + ntn+1 (2)

4.1 Proof that a parallel-moving keypoint is epipolar-conformant

We refer to figure 2. Let zA(n) be the 3D coordinate of a position A in CCSn.
The corresponding 3D coordinate in CCSn+1 is denoted by zA(n+1) and is given
by

zA(n+1) =
nRn+1 · zA(n) +

ntn+1. (3)

Let yA and y ′

A be respectively the normalized image coordinate of zA(n) and
zA(n+1) such that,

zA(n) = dA(n) · yA (4)

zA(n+1) = dA(n+1) · y
′

A (5)



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

Detecting parallel-moving objects 9

where dA is the depth of position A from the camera center. If E is the essential
matrix between the two frames, the epipolar relation can be written as,

y ′T
A ·E · yA = 0 (6)

where the essential matrix is given by

E = [ ntn+1]× · nRn+1. (7)

In general, equation (6) applies to every static point. In other words, every static
point is epipolar-conformant.

Now, let us consider a moving point which starts at position A at frame n to
position B at frame n+ 1. It is important to note that the movement is parallel
to the camera motion from frame n to frame n + 1, as shown in figure 2. The
new position at position B after the parallel motion, denoted as zB(n+1), can be
expressed as the old position at A plus a shift along the translation direction

zB(n+1) = zA(n+1) − v · ntn+1, (8)

where v is a scale parameter describing the speed ratio of the point w.r.t. the
ego-car speed. As the relative translation ntn+1 defined in equation (2) actually
describes how the world relatively moves w.r.t. the camera, we need the minus
sign in front of v.

Let yB be the normalized image coordinate of zB(n+1) and dB is the depth
of position B such that the following applies

zB(n+1) = dB · yB . (9)

Now, we can check the epipolar conformity of the moving point

yT
B ·E · yA

=
(dA(n+1) · y

′

A − v · ntn+1)
T

dB
·E · yA

=
dA(n+1)

dB
·y ′T

A ·E · yA
︸ ︷︷ ︸

0

−
v

dB
· ntTn+1 ·E
︸ ︷︷ ︸

0

·yA = 0.

(10)

We show in equation (10) that a parallel-moving keypoint also satisfies the epipo-
lar constraint from frame n to frame n+ 1. That means, we have shown that a
point moving parallel to the camera motion is epipolar-conformant.

4.2 Depth relation between parallel-moving points and ambiguous

static points

As illustrated by figure 2, a keypoint correspondence yA in frame n and yB in
frame n+ 1 can represent both a moving point from A to B, and an ambiguous
triangulated static point P. Let zP be the 3D coordinate at position P. We
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investigate the relation between the motion of the parallel-moving point (see
equation (8)) and the position of the ambiguous triangulated static point zP .

We compute the intersection of two rays, one from the camera center at
CCSn crossing zA and another one from the camera center at CCSn+1 crossing
zB . We transform all coordinates into CCSn+1, thus having the following two
equations representing the rays:

z
(1)
P = 0+ α · (zB(n+1) − 0) = α · zB(n+1) = α(1− v) · ntn+1 + α · ( nRn+1 · zA(n))

(11)

z
(2)
P = ntn+1 + β · (zA(n+1) −

ntn+1) =
ntn+1 + β · ( nRn+1 · zA(n)). (12)

By comparing equation (11) and (12), as long as nRn+1 ·zA(n) is not a multiple
of ntn+1, we come to the conclusion that

α(1− v) = 1 → α =
1

1− v
(13)

applies. It is important to note that α is also the depth ratio between positions
B and P (see equation (11)), denoted as dB and dP .

dP

dB
=

1

1− v
→ (1− v)dP = dB (14)

Hence, we can identify several cases of parallel-moving points based on the
analysis of v:

– If the point moves on the opposite direction w.r.t. camera motion (v < 0),
then the ambiguous static point is nearer than the moving point (dP < dB).

– If the point moves at the same direction w.r.t. camera motion with lower
speed (0 < v < 1), then the ambiguous static point is farther than the
moving point (dP > dB).

– If the point moves at the same direction w.r.t. camera motion with the same
speed (v = 1), then the ambiguous static point is at infinity (dP → ∞).

– If the point moves at the same direction w.r.t. camera motion with higher
speed (v > 1), then the ambiguous static point zP is found behind the
camera.

4.3 Keypoint-based depth verification

Let Q(n) and Q(n+1) be two associated car patches corresponding to the same
car from two consecutive frames n and n + 1. We employ epipolar matching
within Q(n) and Q(n+1) to obtain keypoint correspondences xi(n) and xi(n+
1), for i = 1, 2, ..,m. This approach is considered only when the number of
correspondences is at least τmc. Then, we triangulate the correspondences to
obtain the 3D coordinates zPi.
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We compute the relative difference ∆di between the triangulated depth dPi

and the depth information from the CNN depth map dBi:

∆di =
|dBi − dPi|

dPi

=
|(1− v)dPi − dPi|

dPi

= |v|. (15)

The keypoint xi on the car patchQ is recognized as a moving point, if the relative
depth difference exceeds τv. Hence, τv also describes the maximum speed ratio
w.r.t. the ego-car speed that can be detected as a moving point.

∆di > τv → moving point (16)

Let mi be the number of moving points found in patch Q. The car patch Q is
identified as an IMO, if the ratio of moving keypoints exceeds τrm:

mi

m
> τrm → IMO. (17)

4.4 Keypoint-free depth verification

For keypoint-free depth comparison, we look into the car patchesQ(n) andQ(n+
1). Combining the 2D pixel position of the patches and the depth information
from the CNN, each car patch can be represented by a single 3D point derived
from the 2D center of mass of the patch and the median of the depth values.

The 2D center of masses of the patches Q(n) and Q(n+1) are given by c(n)
and c(n+ 1), respectively. The median depth of patches Q(n) and Q(n+ 1) are
denoted as d(n) and d(n + 1). Hence, each patch can be represented by a 3D
point z whose x and y positions are defined by the center of mass c and the z

position is given by the median depth d.

z = d ·K−1 ·

(
c

1

)

, (18)

where K is the intrinsic camera matrix.
Now, the patch Q(n) and Q(n + 1) are represented by the 3D points z(n)

and z(n+ 1). However, both 3D points are measured based on their respective
camera coordinate systems (CCS). In order to compare them, we transform z(n)
into CCSn+1,

z(n → n+ 1) = nRn+1 · z(n) +
ntn+1. (19)

Now, we can calculate the absolute distance between the 3D points representing
patches Q(n) and Q(n+ 1):

∆z = |z(n+ 1)− z(n → n+ 1)|. (20)

If both 3D points z(n → n + 1) and z(n + 1) are similar, it indicates that the
patch Q corresponds to a static car. However, if they significantly differ, we
identify the car as an IMO.

As we deal with parallel-moving cars, the relative position of these cars
change only in one axis corresponding to the depth value (z-axis in our setup),
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hence the depth consistency is the focus to analyze. The x and y components
of z(n → n + 1) and z(n + 1) are almost always the same. We set τxy as the
maximum value for both x and y components of ∆z to be classified as a static
car.

Let dm(n) and dm(n+ 1) be the depth (z) components of z(n → n+ 1) and
z(n+ 1). We compute the relative depth difference rdm by

rdm =
|dm(n)− dm(n+ 1)|

min (dm(n), dm(n+ 1))
. (21)

The car patch is categorized as an IMO, if the relative depth difference is more
than τdm,IMO and as a static car, if it is less than τdm,static.

5 Experiments

We tested our method on the KITTI dataset [30]. Since KITTI does not provide
IMO labels for the KITTI odometry dataset, we have created our own dataset
to evaluate our approach. We also used KITTI MoSeg dataset [31] to compare
our results with competing method.

5.1 IMO candidates dataset

For our new dataset, we used the 11 training sequences from the KITTI visual
odometry dataset, which consists of 23201 images. The proposed CNN from
van den Brand et al. [5] was utilized to generate candidate labels for the vehicle
instances. In the current state of the dataset, we have limited the detected objects
to vehicles only. This can be further extended to other objects, like pedestrians
or bicycle in future work.

Given these segmented candidate labels, we manually assign to each candi-
date patch in all images one of the following class labels: 0 - background (non-
vehicles), 1 - independently moving vehicle, 2 - static (non-moving) vehicle, 3 -
far away vehicles (median distance greater than 50m) and 4 - undetermined. We
labeled a candidate as undetermined, if the patch does not show a vehicle or if
the patch is stretched over more than one vehicles, which do not fall into same
category, like static or IMO. Some examples of this dataset are shown in fig 4.

5.2 Evaluation of IMO detection

In our experiments, we used the following values: τmc = 3, τv = 0.3, τrm = 0.4,
τxy = 0.1, τdm,IMO = 0.05, τdm,static = 0.01. As the CNN-based IMO candidate
patches can reliably detect IMOs up to a distance of 50 meters, the proposed
IMO detection is also evaluated for the same maximum distance. We combine our
method with a method from [3] which handles detection for non-parallel-moving
objects.

The performance of the IMO classification is expressed by recall R, specificity
S, and accuracy A. We also measure the decisiveness of the proposed method
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Fig. 4. Examples from our new IMO candidates dataset. The colored overlay encoding
is as follows: red ↔ IMO (class 0), green ↔ static (class 1), blue ↔ too far away (class
2) and yellow ↔ undetermined (class 3).

to give definite output (IMO/static) as compared to undetermined. We define
the decisiveness level D as

D =
nIMO + nstatic

nIMO + nstatic + nundetermined

(22)

where nIMO, nstatic, and nundetermined are respectively the number of outputs
as IMO, static, and undetermined.

Accuracy on the KITTI MoSeg dataset Table 1 presents the precision of
the IMO detection using our method and using MODNet [31]. The precision
of our method is better on both identifying static cars and moving cars. The
average precision of our method is 0.79 as compared to 0.66 of MODNet. Figure
5 shows the exemplary results of the IMO detection using our method and using
MODNet.

Fig. 5. Exemplary results of the car classification into static and IMO labels on KITTI
MoSeg dataset: using our method (left) and using MODNet (right). Red color repre-
sents IMO, green color represents static car, and yellow color represents undetermined.
The comparison shows that our method correctly identifies a static parked car while
MODNet wrongly classifies it as an IMO.

Accuracy on the KITTI odometry dataset The results of the proposed
IMO detection on the KITTI odometry dataset are presented in table 2. The
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Table 1. Accuracy of IMO detection on the KITTI MoSeg dataset.

Method P static P moving P average

MODNet [31] 0.65 0.67 0.66

Ours 0.74 0.84 0.79

overall decisiveness level is 91%. That means, the undetermined outputs only
happen in about 9% of the total car appearances and they mostly occur when
the cars are first time observed in the scene. The recall rate, or the true positive
rate, has an overall value of 87% which reflects the high accuracy of the IMO
detection. The overall specificity rate, or the true negative rate, is 83%, while
the overall accuracy is 84%.

Sequence 01 and sequence 04 are notably full of epipolar-conformant IMOs,
both parallel and anti-parallel cases. The results in table 2 for both sequences
indicate that the proposed IMO detection is able to identify almost all IMOs.
Figure 6 (left image) shows the IMO detection for KITTI sequence 09. The
parallel-moving cars are correctly detected and marked with red colors. The
static cars are also correctly identified in green colors.

The accuracy level is directly influenced by the user-defined threshold τv (see
equation (16)) that describes the maximum detectable speed ratio of the moving
car w.r.t. the ego-car speed. The threshold τv should be low enough in order to
be able to detect even slow moving objects, while at the same it cannot be too
low to anticipate measurement errors. If an IMO moves very slowly below τv,
the proposed framework cannot identify it as a moving object, as happened in
KITTI sequence 10, when a truck moves backward slowly (see the right image
of figure 6). Similarly, if the error in determining triangulated 3D position is too
high (e.g. from matching error or egomotion error), it could lead to false positive
or false negative classifications.

Table 2. Accuracy of IMO detection on KITTI dataset.

Sequence D R S A

0 0.90 0.41 0.81 0.81

1 0.84 0.97 n.a. 0.97

2 0.90 0.71 0.82 0.82

3 0.89 1.00 0.86 0.91

4 0.96 1.00 1.00 1.00

5 0.90 0.95 0.86 0.86

6 0.86 1.00 0.86 0.86

7 0.93 0.87 0.89 0.89

8 0.93 0.61 0.81 0.81

9 0.92 0.76 0.90 0.90

10 0.95 0.68 0.97 0.92

Overall 0.91 0.87 0.83 0.84
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Fig. 6. Exemplary results of the car classification into static and IMO labels on the
KITTI odometry dataset sequence 09 (left) and sequence 10 (right). Red color repre-
sents IMO while green color represents static car.

6 Conclusion

This paper presents an IMO detection method for the case of a moving monoc-
ular camera. The proposed method employs a CNN to provide IMO candidates,
and a novel CNN that estimates depth maps from single images. While cross-
ing IMOs can be detected by an epipolar consistency check, we focussed here
on the parallel-moving IMOs which are identified through the proposed depth
verification scheme. The motion labels (IMO/static) are propagated over time
by establishing patch label association between two consecutive frames based on
the cue combination of motion and appearance. Experiments on the new KITTI
IMO label dataset we created show encouraging performance of the proposed
method.
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