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Fig. 1. Our method takes as input a drawing of any resolution and estimates a plausible

normal map suitable for creating shading effects. From left to right: Input drawing and

flat colors, normal estimation and two renderings with different lighting configurations.

Abstract. We present a new fully automatic pipeline for generating
shading effects on hand-drawn characters. Our method takes as input
a single digitized sketch of any resolution and outputs a dense normal
map estimation suitable for rendering without requiring any human in-
put. At the heart of our method lies a deep residual, encoder-decoder
convolutional network. The input sketch is first sampled using several
equally sized 3-channel windows, with each window capturing a local
area of interest at 3 different scales. Each window is then passed through
the previously trained network for normal estimation. Finally, network
outputs are arranged together to form a full-size normal map of the in-
put sketch. We also present an efficient and effective way to generate a
rich set of training data. Resulting renders offer a rich quality without
any effort from the 2D artist. We show both quantitative and qualitative
results demonstrating the effectiveness and quality of our network and
method.

Keywords: Cartoons, non-photorealistic rendering, Normal estimation,
deep learning

1 Introduction

Despite the proliferation of 3D animations and artworks, 2D drawings and hand-
drawn animations are still important art communication media. This is mainly



2 Matis Hudon, Mairéad Grogan, Rafael Pagés and Aljoša Smolić

because drawing in 2D is not tied to any constraining tools and brings the high-
est freedom of expression to artists. Artists usually work in three steps: firstly,
they create the raw animation or drawing which includes finding the right scene
composition, character posture, and expression. Secondly, they refine the art-
work, digitalise it and clean the line-art. Finally, they add color or decorative
textures, lights and shades. When working on numerous drawings some of these
steps can become quite tedious. To help with these time-consuming and repeti-
tive tasks, scientists have tried to automate parts of the pipeline, for example, by
cleaning the line-art [36, 37], scanning [24], coloring [42, 52], and by developing
image registration and inbetweening techniques [41, 50, 49].

In this paper, we consider the shading task. Besides bringing appeal and style
to animations, shades and shadows provide important visual cues about depth,
shape, movement and lighting [29, 48, 19]. Manual shading can be challenging as
it requires not only a strong comprehension of the physics behind the shades but
also, in the case of an animation, spatial and temporal consistency within and
between the different frames. The two basic components required to calculate
the correct illumination at a certain point are the light position with respect to
the point and the surface normal. These normals are unknown in hand-drawn
artwork. Several state-of-the-art approaches have tried to reconstruct normals
and/or depth information directly from line-drawing [29, 17, 40, 43, 9, 12, 26, 14],
however, most of these works seem to be under-constrained or require too many
user inputs to really be usable in a real-world artistic pipeline.

We propose a method to estimate high-quality and high-resolution normal
maps suitable for adding plausible and consistent shading effects to sketches and
animations. Unlike state-of-the-art methods, our technique does not rely on ge-
ometric assumptions or additional user inputs but works directly, without any
user interaction, on input line-drawings. To achieve this, we have built a rich
dataset containing a large number of training pairs. This dataset includes dif-
ferent styles of characters varying from cartoon ones to anime/manga. To avoid
tedious and labor intensive manual labelling we also propose a pipeline for ef-
ficiently creating a rich training database. We introduce a deep Convolutional
Neural Network (CNN) inspired by Lun et al. [26] and borrow ideas from re-
cent advances such as symmetric skipping networks [32]. The system is able to
efficiently predict accurate normal maps from any resolution input line drawing.
To validate the effectiveness of our system, we show qualitative results on a rich
variety of challenging cases borrowed from real world artists. We also compare
our results with recent state-of-the-art and present quantitative validations. Our
contributions can be summarized as follows:

– We propose a novel CNN pipeline tailored for predicting high-resolution
normal maps from line-drawings.

– We propose a novel tiled and multi-scale representation of input data for
efficient and qualitative predictions.

– We propose a sampling strategy to generate high-quality and high resolution
normal maps and compare to recent CNNs including a fully convolutional
network.
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2 Related Work

Before introducing our work, we first review existing methods on shape from
sketches. They can be classified into two categories: geometry-based methods
and learning-based methods.

2.1 Inferring 3D reconstruction from line drawings

Works like Teddy [15] provide interactive tools for building 3D models from 2D
data by “inflating” a drawing into a 3D model. Petrovic’s work [29] applies this
idea to create shades and shadows for cel animation. While this work reduces the
labor of creating the shadow mattes compared to traditional manual drawing,
it also demonstrates that a simple approximation of the 3D model is sufficient
for generating appealing shades and shadows for cel animation. However, it still
requires an extensive manual interaction to obtain the desired results. Instead
of reconstructing a 3D model, Lumo [17] assumes that normals at the drawing
outline are coplanar with the drawing plane and estimates surface normals by
interpolating from the line boundaries to render convincing illumination. Olsen
et al. [27] presented a very interesting survey for the reconstruction of 3D shapes
from drawings representing smooth surfaces. Later, further improvements were
made such as handling T-junctions and cups [18], also using user drawn hatch-
ing/wrinkle strokes [16, 6] or cross section curves [35, 46] to guide the reconstruc-
tion process. Recent works exploit geometric constraints present in specific types
of line drawings [34, 51, 28], however, these sketches are too specific to be gener-
alized to 2D hand-drawn animation. In TexToons [40], depth layering is used to
enhance textured images with ambient occlusion, shading, and texture rounding
effects. Recently, Sykora et al. [43] apply user annotation to recover a bas-relief
with approximate depth from a single sketch, which they use to illuminate 2D
drawings. This method clearly produces the best results, though it is still not
fully automatic and still requires some user input. While these state-of-the-art
methods are very interesting, we feel that the bas-relief ambiguity has not yet
been solved. High-quality reconstructions require considerable user effort and
time, whereas efficient methods rely on too many assumptions to be general-
ized to our problem. Although the human brain is still able to infer depth and
shapes from drawings [5, 7, 21], this ability still seems unmatched in computer
graphics/vision using geometry-based methods.

2.2 Learning based methods

As pure geometric methods fail to reconstruct high-quality 3D from sketches or
images without a large number of constraints or additional user input, we are
not the first to think that shape synthesis is fundamentally a learning problem.
Recent works approach the shape synthesis problem by trying to predict sur-
face depth and normals from real pictures using CNNs [47, 8, 31]. While these
works show very promising results, their inputs provide much more information
about the scene than drawn sketches, such as textures, natural shades and colors.
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Another considerable line of work employs parametric models (such as existing
or deformed cars, bikes, containers, jewellery, trees, etc.) to guide shape recon-
struction through CNNs [30, 13, 3]. Recently, Han et al. [11] presented a deep
learning based sketching system relying on labor efficient user inputs to easily
model 3D faces and caricatures. The work of Lun et al. [26], inspired by that
of Tatarchenko et al. [44], is the closest to our work. They were the first to use
CNNs to predict shape from line-drawings. While our method and network were
inspired by their work, it differs in several ways: their approach makes use of
multi-view input line-drawings whereas ours operates on a single input drawing,
which allows our method to also be used for hand-drawn animations. Moreover,
we present a way of predicting high-resolution normal maps directly, while they
only show results for predicting 256 × 256 sized depth and normal maps and
then fusing them into a 3D model. They provide a detailed comparison between
view-based and voxel-based reconstruction. More recently Su et al. [39] proposed
an interactive system for generating normal maps with the help of deep learning.
Their method produces relatively high quality normal maps from sketch input
combining a Generative Adversarial Network framework together with user in-
puts. However, the reconstructed models are still low resolution and lack details.
The high-quality and high-resolution of our results allow us to qualitatively com-
pete with recent work, including animation and sketch inflation, for high quality
shading (see Sec. 2.1).

CNN

3D Models Blender + Freestyle

Drawings and Normal 

ground truth

42 views/ 3D model

Generated Training Data

Input Drawing Normal Estimation  Illumination Effect

Fig. 2. System Overview.

3 Proposed technique

Fig. 2 illustrates our proposed pipeline. The input to our system is a single
arbitrary digital sketch in the form of a line drawing of a character. The output is
an estimated normal map suitable for rendering effects, with the same resolution
as the input sketch. The normals are represented as 3D vectors with values in
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the range [−1, 1]. The normal estimation relies on a CNN model trained only
once offline.

The high resolution input image is split into smaller tiles/patches of size
256 × 256 × 3, which are then passed through the CNN normal prediction and
finally combined into a full resolution normal map. The training phase of the
CNN requires a large dataset of input drawings and corresponding ground truth
normal maps. As normal maps are not readily available for 2D sketches or an-
imations, such a dataset cannot be obtained manually, and we therefore make
use of 3D models and sketch-like renderings (Freestyle plugin in Blender c©) to
generate the training dataset.

3.1 Input preparation

Input Representation (256x256x3)

256x256

512x512

1024*1024

Fig. 3. Structure of the input data. Here the target normal reconstruction scale is the
blue channel. The two other channels provide additional multi-scale representation of
the local area

One key factor that can improve the success of a CNN-based method is
the preparation of input data. To take advantage of this, we propose a new data
representation to feed to our network. Instead of simply feeding tiles of our input
line drawing to the encoder, we feed in many multi-scale tile representations to
the CNN, with each tile capturing a local area of interest of the sketch. This
multi-scale representation prevents our network from missing important higher
scale details. A multi-scale tile example is shown in Fig. 3. Each channel of the
tile is used to represent the lines of the sketch in a local area at one of 3 different
scales. In each channel, pixels on a line are represented by a value of 1. The first
channel in each tile (blue channel in Fig 3) represents the scale at which the
normal vectors will be estimated.
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Fig. 4. Overall structure of the proposed network.

3.2 CNN model

Our main requirements for the CNN is that the output has to be of the same size
as the input and that extracted normals have to be aligned pixel-wise with the
input line drawing. This is why a U-net based CNN is an appropriate choice. A
typical pixel-wise CNN model is composed of two parts: an encoding branch and
a decoding branch. Our proposed network is represented in Fig. 4, the top branch
being the encoding network and the bottom branch the decoding network.

Encoder The encoder, inspired by Lun et al. [26], compresses the input data into
feature vectors which are then passed to the decoder. In the proposed network,
this feature extraction is composed of a series of 2D convolutions, down-scaling
and activation layers. The size of every filter is shown in Fig. 4. Rather than using
max-pooling for down-scaling, we make use of convolution layers with a stride of
2 as presented by Springenberg et al. [38]. As our aim is to predict the normals,
which take values in the range [−1, 1], our activation functions also need to let
negative values pass through the network. Therefore, each group of operations
(convolution/down-scale), is followed by leaky ReLUs (slope 0.3), avoiding the
dying ReLUs issue when training.

Decoder The decoder is used to up-sample the feature vector so that it has
the original input resolution. Except for the last block, the decoder network is
composed of a series of block operations composed of up-sampling layers (factor
of 2), 2D convolutions (stride 1, kernel 4) and activation layers (Leaky ReLUs
with slope = 0.3). Similarly to U-Net [32] we make use of symmetric skipping
between layers of the same scale (between the encoder and the decoder) to
reduce the information loss caused by successive dimension reduction. To do
so, each level of the decoder is merged (channel-wise) with the block of the
corresponding encoder level. Input details can then be preserved in the up-scaling
blocks. The last block of operations only receives the first channel (Blue channel
in Fig. 3) for merging as the other two channels would be irrelevant at this final
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level of reconstruction. Our output layer uses a sigmoidal hyperbolic tangent
activation function since normals lie in the range [−1, 1]. The last layer is an L2

normalization to ensure unit length of each normal.

3.3 Learning

Training data Training a CNN requires a very considerable dataset. In our
case, our network requires a dataset of line drawing sketches with corresponding
normal maps. Asking human subjects to provide 2D line drawings from a 3D
model would be too labour-intensive and time consuming. Instead we apply an
approach similar to Lun et al. [26], automatically generating line drawings from
3D models using different properties such as silhouette, border, contour, ridge
and valley or material boundary. We use the Freestyle software implemented
for Blender c©[10] for this process. Using Blender c©scripts we were able to auto-
matically create high-resolution drawings from 3D models (42 viewpoints per 3D
model), along with their corresponding normal maps. As we generate our normal
maps from 3D models alone, all background pixels have the same background
normal value of [−1, 0, 0]. This will be used in the loss function computation (see
Sec. 3.3). Tiling the input full resolution image into 256x256 tiles also provides
a tremendous data augmentation. We extract 200 randomly chosen tiles from
every drawing, making sure that every chosen tile contains sufficient drawing in-
formation. Therefore our relatively small dataset of 420 images (extracted from
ten 3D models) is augmented to an 84000 elements training dataset.

Loss function During the training, as we are only interested in measuring the
similarity of the foreground pixels, we use a specific loss function:

L =
∑

p

(1−Ne(p) ·Nt(p))× δp, (1)

where Ne(p) and Nt(p) are the estimated and ground truth normals at pixel p
respectively, and δp ensures that only foreground pixels are taken into account
in the loss computation, being 0 whenever p is a background pixel (i.e. whenever
Nt = [−1, 0, 0]) and 1 otherwise.

We train our model with the ADAM solver [20] (learning rate = 0.001) against
our defined loss function. Finally, the learning process ends when the loss func-
tion converges.

3.4 Tile reconstruction

As the network is designed to manage 256 × 256 × 3 input elements, high-
resolution drawings have to be sampled into 256× 256× 3 tiles. These tiles are
then passed through the network and outputs have to be combined together to
form the expected high-resolution normal map. However, the deep reconstruction
of normal maps is not always consistent across tile borders, and may be inaccu-
rate when a tile misses important local strokes, as can be seen in Fig. 5(b). Direct
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(a) (b) (c)

Last grid positionFirst grid position

(d) (e)

Fig. 5. Normal map reconstruction of the input sketch (a) using a direct naive sampling
(b) and our multi-grid diagonal sampling (c). Sampling grids used in direct naive
sampling (d) and multi-grid diagonal sampling (e).

naive tile reconstructions can therefore lead to inconsistent, blocky normal maps,
which are not suitable for adding high-quality shading effects to sketches.

In order to overcome this issue, we propose a multi-grid diagonal sampling
strategy as shown in Fig. 5(e). Rather than processing only one grid of tiles,
we process multiple overlapping grids, as shown in Fig. 5(e). Each new grid
is created by shifting the original grid (Fig. 5(d)) diagonally, each time by a
different offset. Then at every pixel location, the predicted normals are averaged
together to form the final normal map, as shown in Fig. 5(c). The use of diagonal
shifting is an appropriate way to wipe away the blocky (mainly horizontal and
vertical) sampling artifacts seen in Fig. 5(b) when computing the final normal
map. Increasing the number of grids also improves the accuracy of the normal
estimation, however, the computational cost also increases with the number of
grids. We therefore measured the root mean squared error (RMSE) of the output
normal map versus ground truth depending on the number of grids and found
that using 10 grids is a good compromise between quality of estimation and
efficiency (<1sec for a 1K × 2K px input image).

3.5 Texturing and rendering

Since only the normal maps are predicted, and the viewing angle remains the
same, properties from the input image such as flat-colors or textures can be di-
rectly used for rendering. Once textured or colorized, any image based rendering
can be applied to the sketch, as in Fig. 6(c), such as diffuse lighting, specular
lighting or Fresnel effect (as presented in [33]). For a more stylized effect one can
also apply a toon shader, as in Fig. 6(b).

4 Results and Discussion

In this section, we evaluate the full system using both qualitative and quantita-
tive analysis. All the experiments are performed using line-drawings that are not
included in our training database. Furthermore, as the training database only
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(a) (b) (c)

Fig. 6.Different types of shading: One can also employ a stylized toon shader such as [2,
4, 23, 45], or classic non-photorealistic technique imitating global illumination such as
diffuse and/or specular, Fresnel effect etc.

0%

100%SketchGround Truth Estimation Error Map

RMSE 0.116

Fig. 7. Comparison of our normal estimation versus ground truth normal of a 3D
model. From left to right: the ground truth normal map, the estimated sketch from the
3D model, our estimated normal map and finally the error map. This 3D model was
not part of the training database.

contains drawings with a line thickness of one pixel, we pre-process our input
drawings using the thinning method proposed by Kwot [22].

We have implemented our deep normal estimation network using Python and
Tensorflow [1]. The whole process takes less than 2.5 seconds for a 1220× 2048
image running on an Intel Core i7 with 32GB RAM and an Nvidia TITAN Xp.
See Table 1 for a timing breakdown of each individual stage.

Table 1. Timings

Pre-Processing 0.114 sec
Single Grid Creation 0.012 sec
Single Grid Prediction 0.054 sec

Assembling Grids <0.1 sec

Total Time 1220× 2048 - 10 Grids 2.328 sec
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4.1 Quantitative evaluation

Table 2. Tests Results: Average error with L1, L2 and Angular metrics using our
test database of 126 1Kx2K images, (FullyConv) Fully convolutional networks, (S2N)
sketch to normals [39] with no user input on 256x256 images, (OursNoMS) our method
without multi-scale input, (OursMS) our method.

Metric FullyConv S2N(256x256) OursNoMS OursMS

L1 0.244 0.227 0.208 0.199

L2 0.282 0.266 0.241 0.231

Angular 28.770 27.236 24.40 23.468

We measure the accuracy of our method using a test database composed of
126 1Kx2K images, created with 3D models which are converted into sketches
with the same non-photorealistic rendering technique we used to create our train-
ing database (see Sec. 3.3). This way, we can compare the result of our technique
with the original normal ground truth of the 3D model which, of course, was not
included in the training database.

Tab. 2 shows the numerical results of our different quantitative tests including
our network with (OursMS) and without (OursNOMS) the multi-scale input, a
fully convolutional network (FullyConv) trained on our database with patch-wise
training [25]. We also trained the network from [39] with our database, however
with the code provided we were only able to process images at low resolution.
The results shown in Table 2 for this method (S2N) are for 256x256 images, hence
input images and ground truth normal maps had to be re-sized beforehand. For
every metric, our method (with multi-scale input) was the most accurate. Also
note that using our network in a fully convolutional way to process images of
high resolution is not as accurate as using our tiling technique.

Fig. 7 shows a test sketch along with the ground truth normal map, our
reconstructed normal map with 10 grids and a visual colored error map. While
the overall root mean square error measured on the normal map is relatively
low, the main inaccuracies are located on the feet and details of the face and
the bag (which might be because there are no similar objects to the bag in our
database). Also, as the reconstruction depends highly on the sketch strokes, mi-
nor variations and/or artistic choices in the input drawings can lead to different
levels of accuracy. For example, artists commonly draw very simplified face de-
tails with very few strokes rather than realistic ones, which is especially visible
in the nose, ears and eyes. In fact, the non-photorealistic method used to gener-
ate the sketches is already an estimation of what a sketch based on a 3D model
could look like. We see this effect, for example, looking at the difference between
the ground truth and predicted normals at the bottom of the jacket in Fig. 7, as
some lines are missing on the sketch estimation; an artist might make different
drawing choices.
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4.2 Visual results

Fig. 8. Shading effects with different light configurations.

To show the versatility of our method we test it with a set of sketches with
very different styles. Fig.12 presents results for four of these sketches: column
(a) shows the original sketch, (b) the estimated normal map, (c) the flat-shaded
sketch, and (d) shows the sketch after applying shading effects. As shown in
column (b), normal maps present extremely fine details, which are correctly pre-
dicted in difficult areas such as fingers, cloth folds or faces; even the wrench,
in the third row, is highly detailed. Column (d) shows the quality of shading
that can be obtained using our system: final renders produce believable illumi-
nation and shading despite the absence of depth information. Once the normals
are predicted, the user is able to render plausible shading effects consistently
from any direction. This can be seen in Fig. 8, where we show several shading
results using the same input drawing, by moving a virtual light around the cat.
Moreover, our method can be applied to single drawings as well as animations,
without the need of any additional tools, as our method can directly and au-
tomatically generate normal maps for each individual frame of an animation.
Our normal prediction remains consistent across all frames without the need to
explicitly address temporal consistency or add any spatiotemporal filters. Fig. 9
shows how shading is consistent and convincing along the animated sequence.
As our normal vectors are estimated using training data, errors can occur in
areas of sketches that are not similar to any object found in the database, such
as the folded manual in the third row of Fig. 12. Such artifacts can be minimised
by increasing the variety of objects captured by the training data. Furthermore,
when boundary conditions are only suggested rather than drawn in the input
drawing, it can result in unwanted smooth surface linking elements. An example
of this effect can be seen between the cat’s head and neck (Fig. 12, third row).
The Ink-and-Ray approach presented in [43] handles such C0 and C1 bound-
ary conditions (sparse depth inequalities, grafting, etc.) at the cost of additional
user input. Finally, while most strokes in the sketch enhance the normal vector
estimation, such as those around cloth folds, others only represent texture, and
texture copying artifacts may appear when these are considered for normal es-
timation. However, an artist using our tool could easily avoid such unnecessary
texture copying artifacts by drawing texture on a separate layer. In Fig. 10, we
compare our method to other state-of-the-art geometry based approaches: Lumo
[17], TexToons [40] and the Ink-and-Ray pipeline [43]. We created shading effects
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Fig. 9. Normals obtained with our method (top) and possible shading (bottom).

(d) (e) (f) (g)(a) (b) (c)

Fig. 10. Comparison with state-of-the-art methods. Input drawing (a), normals from
the 3D reconstruction by [43] (b), our predicted normals (c), normal map based shading
using Lumo [17] (d), 3D-like shading used in TexToons [40] (e), 3D reconstruction with
global illumination effects [43] (e), Our approach (f). (3D model, line drawing and
shading results from [43] kindly provided by the authors. Source drawing c©Anifilm.
All rights reserved.)

using our own image-based render engine and tried to match our result as closely
as possible to the lighting from [43] for an accurate qualitative comparison. While
both Lumo [17] and our technique create 2D normal maps to generate shades,
Lumo requires significant user interaction to generate their results. As neither
our technique nor Lumo create a full 3D model, neither can add effects such
as self-shadowing or inter-reflections. TexToons and Ink-and-Ray are capable of
producing such complex lighting effects, however, again at the cost of significant
user interaction. Relative depth ordering added in TexToons via user input, al-
lows for the simulation of ambient occlusion, while Ink-and-Ray requires a lot
of user input to reconstruct a sufficient 3D model to allow for the addition of
global illumination effects. However, in Fig. 10 we can observe that even without
a 3D model, our technique can create high quality shading results without any
user interaction, while also being very fast. Furthermore, also shown in Fig. 10,
the normal map estimated by Ink-and-Ray is missing many of the finer details
of the sketch. Our normal estimation in comparison is more accurate in areas
such as folds, facial features, fingers, and hair.

The tiling method used to train the CNN has the effect that we learn normals
of primitives rather than of full character shapes. Therefore we can also estimate
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Fig. 11. Line-drawing of the Utah teapot (left), normal obtained with our method
(middle), shading effect (right).

normals for more generalised input data. Examples of this are shown in Fig. 12
(third row, wrench) and in Fig. 11: even though these objects are not represented
in the training database, normals are correctly estimated, allowing us to render
high-quality shading effects.

5 Conclusion and Future Work

In this paper we presented a CNN-based method for predicting high-quality and
high-resolution normal maps from single line drawing images of characters. We
demonstrated the effectiveness of our method for creating plausible shading ef-
fects for hand-drawn characters and animations with different types of rendering
techniques. As opposed to recent state-of-the-art works, our method does not
require any user annotation or interaction, which drastically reduces the labor
that is drawing shades by hand. Our tool could be easily incorporated into the
animation pipelines used nowadays, to increase efficiency of high quality pro-
duction. We also showed that using a network in a fully convolutional way does
not necessarily produce the most accurate results even when using patch-wise
training. We believe and have proven that CNNs further push the boundaries
of 3D reconstruction, and remove the need for laborious human interaction in
the reconstruction process. While this work only focuses on reconstructing high
fidelity normal maps, the CNN could be further extended to also reconstruct
depth as in [26] and therefore full 3D models as in [43]. While we created a
substantial training database we strongly believe that the predictions could be
further improved and applicability extended by simply extending the training
database. Other types of drawings could be added to the database such as ev-
eryday life objects. Dedicated CNNs could be pre-trained and made available
for different types of objects (such as characters in our example here) if better
customization is required.
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(a) (b) (c) (d)

Fig. 12. Our algorithm takes as input the artist line-art (a) and estimates a high-
resolution and quality normal map (b). Flat colours (c) can now be augmented with
shading effects (d).
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42. Sỳkora, D., Dingliana, J., Collins, S.: Lazybrush: Flexible painting tool for hand-
drawn cartoons. In: Computer Graphics Forum. vol. 28, pp. 599–608. Wiley Online
Library (2009)
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