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Abstract. The question of representation of 3D geometry is of vital im-
portance when it comes to leveraging the recent advances in the field of
machine learning for geometry processing tasks. For common unstruc-
tured surface meshes state-of-the-art methods rely on patch-based or
mapping-based techniques that introduce resampling operations in order
to encode neighborhood information in a structured and regular manner.
We investigate whether such resampling can be avoided, and propose a
simple and direct encoding approach. It does not only increase processing
efficiency due to its simplicity – its direct nature also avoids any loss in
data fidelity. To evaluate the proposed method, we perform a number of
experiments in the challenging domain of intrinsic, non-rigid shape cor-
respondence estimation. In comparisons to current methods we observe
that our approach is able to achieve highly competitive results.
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1 Introduction

The representation of 3D geometry is a key issue in the context of machine
learning in general and deep learning in particular. A variety of approaches,
from point clouds over voxel sets to range images, have been investigated. When
the input geometry is in the common form of a surface mesh, conversion to such
representations typically comes with losses in fidelity, accuracy, or conciseness.
Hence, techniques have been introduced to more or less directly take such discrete
surface data as input to machine learning methods. Examples are graph-based
[13,4] and patch-based approaches [17,3,18]. While graph-based techniques rely
on fixed mesh connectivity structures, patch-based techniques provide more flex-
ibility. However, they crucially rely on some form of (re)sampling of the input
mesh data, so as to achieve consistent, regular neighborhood encodings, similar
to the regular pixel structures exploited for learning on image data.

In this paper we consider the question whether such resampling can be
avoided, taking the mesh data as input even more directly. The rationale for
our interest is twofold: the avoidance of resampling would increase the efficiency
of inference (and perhaps training) and could possibly increase precision. The
increase in efficiency would be due to not having to perform the (typically non-
trivial) resampling (either as a preprocess or online). One could hypothesize an
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increase in precision based on the fact that resampling is, in general, accompa-
nied by some loss of data fidelity.

We propose a resampling and conversion free input encoding strategy for local
neighborhoods in manifold 3D surface meshes. In contrast to many previous
approaches for learning on surface meshes, we then make use of RNNs and
fully-connected networks instead of CNNs, so as to be able to deal with the
non-uniform, non-regular structure of the input. Though simple, this raw input
encoding is rich enough that our networks could, in theory, learn to emulate
common patch resampling operators based on it. Nevertheless, hand-crafting
such resampling operators and preprocessing the input accordingly, as previously
done, could of course be of benefit in practice. Hence it is important to evaluate
practical performance experimentally.

We apply and benchmark our technique in the context of non-rigid shape cor-

respondence estimation [29]. The computation of such point-to-point (or shape)
correspondences is of interest for a variety of downstream shape analysis and
processing tasks (e.g. shape interpolation, texture transfer, etc.). The inference
of these correspondences, however, is a challenging task and topic of ongoing
investigation. Our experiments in this context reveal that the preprocessing ef-
forts can indeed be cut down significantly by our approach without sacrificing
precision. In certain scenarios, as hypothesized, precision can even be increased
relative to previous resampling-based techniques.

Contribution In this work we propose and investigate a novel form of using
either fully-connected layers or LSTMs (Hochreiter and Schmidhuber [9]) for
point-to-point correspondence learning on manifold 3D meshes. By serializing
the local neighborhood of vertices we are able to encode relevant information in
a straightforward manner and with very little preprocessing. We experimentally
analyze the practical behavior and find that our approach achieves competi-
tive results and outperforms a number of current methods in the task of shape
correspondence prediction.

2 Related Work

Several data- and model-driven approaches for finding correspondences between
shapes have been proposed in previous works.

Functional Maps Ovsjanikov et al. [23] approach the problem of finding point-
to-point correspondences by formulating a function correspondence problem.
They introduce functional maps as a compact representation that can be used
for point-to-point maps. Various (model- and data-driven) improvements have
been suggested [14,24,10,5,6,25,22,21,8]. Most closely related to our approach,
Litany et al. [15] use deep metric learning to optimize input descriptors for
the functional maps framework. However, point-to-point correspondence infer-
ence in all cases requires the computation of a functional map for each pair of
shapes. This possibly costly computation can be avoided with our approach.
Once trained, our model can be applied directly for inference.
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Generalized CNNs for 3D Meshes Several data-driven methods that do
not rely on functional maps were proposed in recent years. Masci et al. [17]
generalize convolution operations in modern deep learning architectures to non-
Euclidean domains. To this end they define geodesic disks (patches) around each
vertex. Based on a local polar coordinate system the patches can be resampled
with a fixed number and fixed pattern of samples (cf. Figure 1a). This predefined
sampling pattern allows to construct a convolution operation on these patches by
computing weighted sums of features at sample positions. In order to transfer the
information (i.e. descriptors) available discretely at the vertices to the continuous
setting of the geodesic disks for the purpose of resampling, they are blended
by means of appropriate kernels. Boscaini et al. [3] propose to use anisotropic
kernels in this context, while aligning the local coordinate systems with the
principal curvature directions. Monti et al. [18] generalize the construction of
these blending kernels to Gaussian Mixture Models, which avoids the hand-
crafting of kernels in favor of learning them.

Ezuz et al. [7] and Maron et al. [16] both propose forms of global (instead of
local patch-wise) structured resampling of the surface, which can then be used
as input to well-known CNN architectures used in computer vision.

Similar in spirit to our work is the method introduced by Kostrikov et al. [13].
They apply Graph Neural Networks (cf. [27,4,20]) in the domain of 3D meshes.
A key difference is that their network’s layers see neighborhood information in
reduced blended form (via Laplace or Dirac operators) rather than natively like
our approach.

In comparison to these approaches we require very little preprocessing, no
heavy online computation, and no resampling. Per-vertex descriptors are ex-
ploited directly rather than taking blended versions of them as input.

3 Resampling-free Neighborhood Encoding

We assume that the input domain is represented as a manifold triangle mesh
M. Some form of input data (e.g. positions, normals, or geometry descriptors)
is specified or can be computed at the vertices of M. We denote the information
(feature) at a vertex v by f(v). As in previous work [17,3,18], for the task of
correspondence estimation, we would like to collect this information f from a
local neighborhood around a vertex a. As mentioned above, we intend to encode
this relevant information in a very direct manner, essentially by a notion of
serialization of the per-vertex features f in local neighborhoods, without any
alterations.

3.1 Spiral Operator

To this end we make the observation that, given a center vertex, the surrounding
vertices can quite naturally be enumerated by intuitively following a spiral, as
illustrated in Figure 1b. The only degrees of freedom are the orientation (clock-
wise or counter-clockwise) and the choice of 1-ring vertex marking the spiral’s
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Fig. 1. The black graph represents a patch of a triangle mesh. (a) For generalized CNNs
on 3D meshes [17,3,18], we would have to compute a blended f(r, θ) for each node of
the magenta polar grid in order to provide a fixed number and pattern of samples for
a convolution kernel. (b) Instead, we enumerate the neighborhood vertices of a center
vertex a by following a spiral pattern (magenta). For a given feature f(·) we encode
the local neighborhood information feeding [f(a), f(b), f(c), f(d), f(e), f(f), f(g), . . .] into
a LSTM Cell.

starting direction. We fix the orientation to clockwise here. The choice of starting
direction is arbitrary, and a different sequence of vertices will be produced by the
spiral operator depending on this choice. This rotational ambiguity is a common
issue in this context, and has been dealt with, for instance, by max-pooling over
multiple choices [17], or by making the choice based on additional, e.g. extrin-
sic, information [3]. We avoid this by instead making a random choice in each
iteration during training, enabling the network to learn to be robust against this
ambiguity, assuming a sufficient number of parameters in the network.

Given a starting direction (i.e. a chosen 1-ring vertex), the spiral operator pro-
duces a sequence enumerating the center vertex, followed by the 1-ring vertices,
followed by the 2-ring vertices, and so forth. Thus, for a given k, it is possible
to trace the spiral until we have enumerated all vertices up to and including the
k-ring. In Figure 1b this is illustrated for the case k = 2, where the sequence
reads [a, b, c, d, e, f, g, . . .]. Alternatively, for a given N , we can of course trace
until we have enumerated exactly N vertices, thereby producing fixed length
sequences – in contrast to the variable length sequences up to ring k.

While the definition and practical enumeration of a spiral’s vertices is really
simple locally, some care must be taken to support the general setting, in par-
ticular with large k or large N (when k-rings are not necessarily simple loops
anymore) or on meshes with boundary (where k-rings can be partial, maybe
consisting of multiple components). The following concise definition of the spiral
operator handles also such cases.
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Let k-ring and k-disk be defined as follows:

0-ring(v) = {v},

(k+1)-ring(v) = N(k-ring(v)) \ k-disk(v),

k-disk(v) = ∪i=0...k i-ring(v),

where N(V ) is the set of all vertices adjacent to any vertex in set V .
The spiral(v, k) is defined simply as the concatenation of the ordered rings:

spiral(v, k) = (0-ring(v) . . . k-ring(v)).

The fixed-length spiral(v,N) is obtained by truncation to a total of N vertices.
The required order < on the vertices of a k-ring is defined as follows: The 1-

ring vertices are ordered clockwise, starting at a random position. The ordering
of the (k+1)-ring vertices is induced by their k-ring neighbors in the sense that
vertices v1 and v2 in the (k+1)-ring being adjacent to a common vertex v∗ in
the k-ring are ordered clockwise around v∗, while vertices v1 and v2 having no
common k-ring neighbor are sorted in the same order as (any of) their k-ring
neighbors.

3.2 Learning

With the (either variable length or fixed length) vertex sequence [a, b, c, d, e, f,
g, . . . ] produced for a given center vertex, one easily serializes the neighborhood
features as the sequence [f(a), f(b), f(c), f(d), f(e), f(f), f(g), ...].

For the purpose of correspondence estimation our goal is to learn a compact
high-level representation of these sequences. This can be done in a straightfor-
ward and intuitive way using recurrent neural networks. More specifically, we
feed our vertex sequences into an LSTM cell as proposed by Hochreiter and
Schmidhuber [9] and use the last cell output as representation. This representa-
tion is thus computed using the following equations:

ft = σ(Wf · [xt, ht−1] + bf ),

it = σ(Wi · [xt, ht−1] + bi),

ot = σ(Wo · [xt, ht−1] + bo),

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · [xt, ht−1] + bc),

ht = ot ⊙ tanh(ct),

where the learnable parameters are the matrices Wf ,Wi,Wo,Wc with their re-
spective biases bf , bi, bo, bc. [xt, ht−1] is the concatenation of the input xt (e.g.
f(a)) and the previous hidden state ht−1, while ct and ht are the current cell-
and hidden-state respectively. We denote the Hadamard product as ⊙.

This generation of a representation of the local neighborhood of a vertex via
a LSTM cell is, in an abstract sense, comparable to the generalized convolu-
tion operation of previous patch-based approaches. However, the resampling of
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neighborhoods and computation of blended features f(r, θ) for each sample (r, θ)
(see Figure 1a) is avoided by our approach. Here r and θ are geodesic polar
coordinates of some local coordinate system located at each center vertex. f(r, θ)
is then computed based on a weighted combination of f at nearby vertices (e.g.
f(r, θ) = wcf(c)+wdf(d)+ · · · ). Depending on the nature of f this linear blending
can be lossy.

For the case of a fixed length serialization, the use of an RNN supporting
variable length input is not necessary. A fully-connected layer (combined with
some non-linearity) can be used instead. Naturally, we apply these neighborhood
encoding operations repeatedly in multiple layers in a neural network to facilitate
the mapping of input features to a higher level feature representation. This is
detailed in the following section.

Tessellation Dependence Our simple method of encoding the neighborhood
obviously is not independent of the tessellation of the input. By augmenting the
features f with metric information (i.e. by appending length and angle informa-
tion), we can mitigate this and essentially enable the network to possibly learn

to be independent. In Section 4.1 we investigate the effects of this.

Concretely, we concatenate to the input feature f(c) the distance of the cur-
rent vertex c to the center vertex a as well as the angle at a between the previous
vertex b and c.

3.3 Architecture Details

To evaluate and compare our proposed methods (with variable or fixed length
sequences) in the context of shape correspondence estimation, we construct our
network architectures in a manner similar to the GCNN3 model proposed by
Masci et al. [17]. We replace the convolution layers in GCNN3 by the ones
presented above, as detailed below. For the sake of comparability, we use the
SHOT descriptor proposed by Salti et al. [26] with 544 dimensions and default
parameter settings computed at each vertex as input, following [3,18].

The original GCNN3 [17] network is constructed as FC16 + GC32 + GC64
+ GC128 + FC256 + FC6890. FCx refers to a fully connected layer with output
size x, which is applied to each vertex separately. GCx is the geodesic con-
volution operation followed by angular max-pooling, producing x-dimensional
feature vectors for every vertex.

LSTM-NET Our network (LSTM-NET) for sequences with varying length
replaces the GC layers and is constructed as FC16 + LSTM150 + LSTM200
+ LSTM250 + FC256 + FC6890. LSTMx is the application of a LSTM cell to
a sequence consisting of the input vertex and its neighborhood. In this manner
we compute a new feature vector with dimensionality x (encoding neighborhood
information) for every vertex, similar to a convolution operation.
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Table 1. Number of parameters used in the different network architectures. FCS-NET
(20) refers to FCS-NET applied to sequences with length 20, while GCNN3 is our
implementation of GCNN3 [17] with the SHOT descriptor

Network Number of Parameters

GCNN3 (SHOT) 2,672,634
LSTM-NET 2,675,706

FCS-NET (20) 2,763,356

FCS-NET For fixed-length sequences we make use of a network (FCS-NET)
constructed as FC16 + FCS100 + FCS150 + FCS200 + FC256 + FC6890.
FCSx refers to a fully-connected layer, which takes the concatenated features
of a sequence as input and produces a x-dimensional output for every vertex,
analogously to the LSTMx operation above.

We apply ReLU [19] to all layer outputs except for the output of the final
layer to which we apply softmax. As regularization we apply dropout [28] with
p = 0.3 after FC16 and FC256. For fair comparison, the layers of our LSTM-NET
and FCS-NET were chosen such that the total number of learnable parameters
is roughly equal to that of GCNN3 (cf. Table 1). Our networks are implemented
with TensorFlow [1].

4 Experiments

For our experiments we used the FAUST dataset (consisting of 100 shapes) [2].
This allows for comparisons to related previous methods, which have commonly
been evaluated on this dataset. Following common procedure, for training we
used the first 80 shapes (10 of which were used for validation). All experiment
results were computed on the last 20 shapes (our test set). We optimized all
networks with Adam [12] (lr = 0.001, β1 = 0.9, β2 = 0.999), where each batch
consisted of the vertices of one mesh.

In order to evaluate the performance of our LSTM-NET we restrict ourself
to sequences of fixed length as input (even though it would be capable of dealing
with variable length input). This is because the mesh connectivity is the same
over all meshes of the dataset. For varying length sequences (e.g. the 1- and
2-ring of each vertex) the network would potentially be able to learn the valence
distribution and use connectivity information as an (unfair) prediction help.

Following Kim et al. [11] we compute point-to-point correspondences and plot
the percentage of correct correspondences found within given geodesic radii. For
the evaluation no symmetry information is taken into account. We compare to
the results from [17,3,18]. In addition we also implemented GCNN3 (using the
SHOT instead of the GEOVEC descriptor as input) after Masci et al. [17] and
evaluated the method in our setting. We used the parameters and loss proposed
in the original paper. As shown in Figure 2 (a) our method outperforms current
patch-based approaches with both LSTM-NET and FCS-NET for a sequence
length of 30. Note that, by contrast, the average number of interpolated vertices
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in a patch for GCNN3 is 80. Furthermore, we do not perform any post-processing
or refinement on the network predictions. An evaluation of the effect of differ-
ent sequence lengths is visualized in Figure 3 (a-b). Even with shorter sequence
lengths (15) our method achieves competitive results. Qualitative results are
visualized in Figure 6. We show the geodesic distance to the ground truth tar-
get vertices on four shapes from the test set. Correspondence errors of relative
geodesic distance > 0.2 are clamped for an informative color coding.

4.1 Tessellation Dependence

An important, but often overlooked detail is the fact that the shapes in the
FAUST dataset are meshed compatibly, i.e. the mesh connectivity is identical
across shapes, and identical vertices are at corresponding points. Unless a cor-
respondence estimation method is truly tessellation-oblivious, this naturally has
the potential to incur a beneficial bias in this artifical benchmark, as in any realis-
tic correspondence estimation application scenario, the tessellation will of course
be incompatible. We thus repeat our experiments with a remeshed version of the
FAUST dataset (see Figure 4), where each shape was remeshed individually and
incompatibly.

Quantitative results are shown in Figure 2 (b). Here (++) denotes the addi-
tional relative information that we concatenate to the SHOT descriptor vectors.
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Fig. 2. Here the percentage of correct point-to-point correspondence predictions in-
cluded in varying geodesic radii is shown. (a) shows a comparison of our approaches
(FCS-NET, LSTM-NET) on sequences of length N=30 to current approaches. Dashed
lines refer to results reported in previous work. For GCNN3 [17] we compare against
the original version that uses the GEOVEC descriptor (dashed) as well as our im-
plementation of GCNN3 (black), which takes the more advanced SHOT descriptor as
input. ACNN [3] shows the results after a correspondence map refinement step. For the
sake of fair comparison we show the raw (w/o refinement) performance of MoNet [18],
as we do not perform any refinement for the output of FCS- and LSTM-NET either.
(b) visualizes the results on the remeshed FAUST dataset (cf. Sec. 4.1). As expected,
the addition of relative angles and distances (++) is beneficial.
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Fig. 3. Here the percentage of correct point-to-point correspondence predictions in-
cluded in varying geodesic radii is shown. (a-b) show the effect of different sequence
lengths (N=15,20,30) for the FAUST dataset. Even with relatively short sequences
(15) we achieve competitive results. (c-d) visualize the results on the remeshed FAUST
dataset. For comparison we also show the performance of the GCNN3 [17] network
with the SHOT descriptor. (++) denotes the usage of additional metric information.

On this more challenging dataset we likewise achieve competitive results. Es-
pecially the additional information (++) enables our networks to encode less
tessellation-dependent representations of neighborhoods for better performance.
The effect of different sequence lengths is shown for this dataset in Figure 3 (c-
d). For the sake of comparison to the performance of FCS-NET we also restrict
LSTM-NET to sequences of fixed length. See Figure 7 for qualitative results.

Furthermore, we test the robustness of our network predictions to random
starting points after the center vertex in our sequences (random rotations of
the spiral). To this end we perform 100 predictions with different random rota-
tions on the remeshed FAUST dataset with both FCS-NET and LSTM-NET. As
shown in Figure 5 our networks are highly robust to these random orientations,
such that the curves of separate predictions are not discernible.
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Fig. 4. Left: triangulation of a shape from the original FAUST dataset. Right: inde-
pendently remeshed version.
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Fig. 5. (a-b) show the robustness of our approach to random rotations of the spi-
rals. We perform 100 inference runs on the test set of the remeshed FAUST dataset
with varying random rotations. The 100 different resulting curves plotted here are not
distinguishable due to the robustness of our trained networks.

5 Conclusion

In this paper we presented a simple resampling free input encoding strategy for
local neighborhoods in 3D surface meshes. Previous approaches rely on forms of
resampling of input features in neighborhood patches, which incurs additional
computational and implementational costs and can have negative effects on input
data fidelity. Our experiments show that our approach, despite its simple and
efficient nature, is able to achieve competitive results for the challenging task of
shape correspondence estimation.

Limitations and Future Work Although the introduction of metric infor-
mation aims to make our method less sensitive to tessellation, it is nevertheless
affected by it; this, however, is true to some extent in any practical setting
for previous patch-based approaches as well. The design of truly tessellation-
oblivious encoding strategies is a relevant challenge for future work, as it would
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0.0 0.2
FCS-NET (30) LSTM-NET (30)

FCS-NET (15) LSTM-NET (15)

GCNN3 (GEOVEC) GCNN3 (SHOT)

Fig. 6. Geodesic error for 4 shapes from the test set of the FAUST dataset.

relieve the training process from having to learn tessellation independence, as
required for optimal performance.

Furthermore, high resolution meshes require longer sequences to encode rel-
evant neighborhood information. In the case of FCS-NET this also means an
increase in the number of parameters required to learn, which can lead to mem-
ory issues. An interesting avenue for future work thus is the investigation of
sub-sampled (but not resampled) serialization.

A related issue is that the training of RNNs tends to be slower than that
of CNNs. A possible solution to this problem could be the application of 1D
convolutions instead of LSTM cells or fully connected layers. An investigation
into feature learning, given only raw input data (e.g. lengths, angles, or positions
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0.0 0.2
LSTM-NET (30++) LSTM-NET (30)

LSTM-NET (15++) LSTM-NET (15)

GCNN3 (SHOT) FCS-NET (30++)

Fig. 7. Geodesic error for 4 shapes from the test set of the remeshed FAUST dataset.

of mesh elements) instead of preprocessed information like the SHOT descriptor
will also be of interest.
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