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Abstract. Among the most impressive recent applications of neural de-
coding is the visual representation decoding, where the category of an
object that a subject either sees or imagines is inferred by observing
his/her brain activity. Even though there is an increasing interest in the
aforementioned visual representation decoding task, there is no exten-
sive study of the effect of using different machine learning models on
the decoding accuracy. In this paper we provide an extensive evaluation
of several machine learning models, along with different similarity met-
rics, for the aforementioned task, drawing many interesting conclusions.
That way, this paper a) paves the way for developing more advanced and
accurate methods and b) provides an extensive and easily reproducible
baseline for the aforementioned decoding task.
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1 Introduction

Neural decoding is the process of deciphering human brain activity of subjects
performing a specific task. In order to record a subject’s brain activity, several
functional neuroimaging techniques are available. The term “functional” refers to
the temporal aspect that allows these methods to capture the changes of brain
activity over time. Such methods are Electroencephalography (EEG) [1] and
functional Magnetic Resonance Imaging (fMRI) [2], which have been extensively
employed in the literature to study human brain activity during various tasks,
such as sleep [3, 4], walking [5, 6], and dancing [7, 8].

Among the most impressive applications of fMRI is the visual representation
decoding [9]. Visual representation decoding refers to the prediction of what a
subject sees or imagines by observing only his/her neural activity. More specifi-
cally, the subject encodes the stimulus as an internal neural representation and
the goal is to design a model that can recover that representation by partially
observing the brain state (e.g., by observing EEG or fMRI signals) in order to
understand or even reconstruct the stimulus that evoked it [9-12].

However, it is not possible to infer the actual internal neural representations
of a subject and use them to train models that can perform the aforementioned
decoding task. To overcome this limitation, the representation must be supplied
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from an external source. In [9] it has been shown that the features extracted
from various levels of a deep Convolutional Neural Network (CNN) are tightly
correlated with the brain activity observed from various brain regions. Therefore,
usually the features extracted from a CNN are employed as the intermediate
neural representation that can be used to decode what a subject actually sees
or imagines [9,12]. Then, the visual representation can be decoded from the
observed brain signals using machine learning models [13]. Even though there
is an increasing interest in the aforementioned visual representation decoding
task, there is no extensive study of the effect of using different machine learning
models, as well as of the effect of various hyper-parameters employed during this
process, on the decoding accuracy.

The main contribution of this paper is the extensive evaluation of differ-
ent machine learning models, along with different similarity metrics, for the
recently proposed task of decoding visual representations from human brain
activity signals. That way, this paper a) paves the way for developing more ad-
vanced and accurate decoding methods and b) provides an extensive and easily
reproducible baseline for the aforementioned task. To this end, all the experi-
ments performed in this paper can be readily reproduced using the code avail-
able on-line at https://github.com/angpapadi/Visual-Representation-Decoding-
from-Human-Brain-Activity.

Several interesting conclusions are drawn from the results presented in this
paper. Even though different models seem to behave differently for the various
decoding tasks, using a Multilayer Perceptron (MLP) seems to provide the best
decoding accuracy. The choice of the similarity measure for the decoding process
can also be of crucial importance for some tasks. Furthermore, several conclusions
regarding the actual way that the brain works can be also drawn from the results,
e.g., in imagery tasks brain regions that belong to the higher visual cortex seem
to exhibit higher predictive power, while lower visual cortex regions seem to
encode lower level features that require the use of non-linear models for the
decoding, etc.

The rest of this paper is structured as follows. The used decoding method,
along with the evaluated machine learning models and similarity metrics are
described in Section 2, while the experimental protocol and evaluation results
are provided in Section 3. Finally, conclusions are drawn and future research
directions are discussed in Section 4.

2 Machine Learning for Visual Representations Decoding

The method used in this paper builds upon the generic brain activity decoding
pipeline proposed in [9]. Fig. 1 provides an overview of the employed decoding
pipeline. First, a subject either views an image or is instructed to imagine a con-
cept (related to a category of images viewed before), while his/her brain activity
is monitored using fMRI. Also, a CNN is used to extract a feature representation
from the corresponding images (as they are presented to the subject). The use
of a CNN layer for this task is not arbitrary. As discussed in [9], the features
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Fig. 1. Pipeline for decoding generic visual representations from human brain activity

extracted from various layers of a CNN are tightly associated with the activity
of various part of the human visual cortex. This allows for using these represen-
tations as an intermediate step for decoding the human brain activity for specific
visual tasks, i.e., recognizing the class of an image shown to or imagined by a
subject. To this end, a regression model is trained to predict the representation
of the viewed image directly using the measured fMRI signals. Then, the class
of the image can be inferred by measuring the similarity between the predicted
representation to a set of prototype class representations, where each class is
represented by the average feature vector extracted by feeding a set of images
that belong to a specific class to the used CNN. Note that by regressing the
image representation, instead of merely classifying the brain signals into a set
of predetermined classes, allows for using the aforementioned pipeline for im-
age categories that were never presented to the subject and/or regression model
during the training.

The decoding pipeline can be more formally defined as follows. Let x; €
RP denote a D-dimensional feature vector appropriately extracted from the

measured fMRI signals when the i-th experiment is performed [9]. Also, let y,ft) €
R’ be the representation extracted from a layer of a CNN, when the image used
for the i-th experiment is fed to the network, and L denote the dimensionality
of the extracted feature representation. The prototype class representation for

the k-th class is defined as: y](;zvg) = ‘Rilkl ZyeRk y, where Ry, is the set of CNN
representations extracted from the images that belong to class k and |Ry| is the
cardinality of this set. Then, a machine learning model fvw (x) is used to regress
the aforementioned image representation, where W denotes the parameters of

the employed model. The output of this model is denoted by ym = fw(x;) € RE

K3
and can be used to infer the class of the corresponding image by measuring the
similarity of ygr) with each of the class representations y,(cavg). Therefore, the

predicted class k* of the object the subject sees or imagines is calculated as:
k* = arg max S(yzm, y,(;wg)) (1)

where S(a,b) is an appropriately defined similarity metric between two vectors
a € RV and b € RL. Note that the CNN representation ygr) is only needed during
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the training process of the regression model, as also shown in Fig. 1. Then, the
class of the object that a subject sees or imagines can be inferred (during the
test) without having access to the corresponding image representation, since only
the (precomputed) class representation vectors are needed.

As already stated in Section 1, the main contribution of this paper is the
extensive evaluation of various machine learning models for the task of decoding
generic visual representations from human brain activity. To this end, four dif-
ferent regression models are evaluated in this paper. The used models are briefly
described bellow:

1. k-Nearest Neighbor Regression (kINN): In k-Nearest Neighbor Regres-
sion the k nearest neighbors of a data sample are used to regress its target by
averaging the (known) target feature vectors of its k neighbors [14]. The con-
tribution of each neighbor is appropriately weighted according to its distance
to the current test sample.

2. Linear Regression (LR): In Linear Regression the output of the model is
calculated as fw(x) = Wy,.x+ by, [15], where Wy, € REXP is a matrix that
contains the regression parameters and by, € R is the independent term in
the linear model. The model is trained to minimize the mean squared error
between its output and the target representation given by:

_ 1 ()2
£mse - ﬁ Z ||fW(X1) -Y; H2a (2)

where ||x||2 denotes the [? norm of a vector x and N is the number of
data samples used to fit the regression model. The model can be regularized
to avoid overfitting, e.g., using the I2 norm of the regression coefficients as
regularizer leads to Ridge Regression (RR) [16].

3. Kernel Regression (KR): Kernel Regression is a non-linear variant of LR,
where the data are first (non-linearly) projected into a higher-dimensional
space, where they can be better separated [17]. KR employs the so-called
kernel trick to allow for efficiently fitting the regression model, even when
the data are projected into an infinite dimensional space.

4. Multilayer Perceptrons (MLP): Multilayer Perceptrons are powerful
neural network-based methods that can model complex relationships be-
tween the input data and their targets through multiple non-linear lay-
ers [18]. Several methods have been proposed for training and designing
MLP networks. In this work, the networks are trained to minimize the loss
function given in (2) using the Adam optimizer [19]. MLPs are often prone
to overfitting the data, especially when a small number of training samples
is used. To overcome this issue, regularization methods, such as Dropout [20]
(also abbreviated as “drop.”), can be used.

The selected hyper-parameters for the evaluated models, e.g., number of hidden
units in the MLP, regularizer weight, etc., are presented in Section 3. Both the
input vectors x;, as well as the extracted representations ygt), are normalized

to have zero mean and unit variance (z-score normalization). The output of
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the regression model is then appropriately “denormalized”, using the mean and
standard deviation computed on the train set, in order to compute the similarity
with the prototype class representation vectors y,(;wg ),

Apart from the model used for the regression process, the accuracy of the
proposed decoding pipeline critically relies on employed similarity metric. Three

different similarity metrics S(a,b) are evaluated in this paper:

1. Euclidean similarity: The Euclidean similarity is computed as the inverse
of Euclidean distance: Seyclidean(a, b) = m.
2. Cosine similarity: The cosine similarity is defined as the angle between

_ a’b
" meosm llall21[bll2" )
3. Pearson similarity: The Pearson similarity (correlation) between two vec-
' . — (a—pa)" (b—pa)
tors is computed as: Speqrson(a, b) = TacraTorells? where p, and py are

the average of the values in vectors a and b respectively.

two vectors: Seosine(a, b)

3 Experimental Evaluation

In this paper the dataset provided by the authors of [9] is used, while we also
closely follow the experimental setup and evaluation metrics described in their
work. More specifically, the dataset contains fMRI data from 5 subjects, where
each subject was presented with 1,200 images from 150 object categories to form
the train set and 50 additional images from 50 different categories were presented
to them to form the test set. It should be stressed that different image categories
are contained in the train set and test set, prohibiting the use of traditional clas-
sification algorithms for the task of neural decoding. Also, two different types
of experiments were conducted: a) image presentation experiments, where the
aforementioned images were presented to the subjects, and b) imagery exper-
iments, where the subjects were instructed to imagine one image that belongs
to one of the 50 categories of the test set. The dataset contains a total of 1,750
test samples for the image presentation experiments and 500 test samples per
subject for the imagery experiments. The interested reader is referred to [9] for
more details regarding the data collection protocol and experimental setups. Fur-
thermore, for all the conducted experiments, the preprocessed fMRI and CNN
feature vectors provided by the authors of [9] were used. Regarding the CNN
architecture, an AlexNet with 5 convolutional (CNN1-CNN5) and 3 fully con-
nected layers (FC1-FC3), trained on the Imagenet dataset was used [21]. From
each layer 1,000 random units were sampled and used as the extracted feature
representation (before applying the activation function). The feature vectors pro-
vided by [9] are used, to allow for easily reproducing the conducted experiments.

The hyper-parameters selected for the evaluated models are briefly described
bellow. For the k-Nearest Neighbor model the £ = 5 nearest neighbors were used.
For the Ridge Regression the weight of the regularizer was set to 1, while for the
Kernel Regression several different kernels were evaluated. The best results were
obtained when a 2nd degree polynomial kernel was used and the regression model
was regularized (Kernel Ridge Regression) [22]. The weight of the regularizer
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was set to 0.005, while the constant term of the kernel was set to 10. Finally,
an MLP with one hidden layer with 300 neurons with sigmoid activations was
chosen, after experimenting with many different MLP architectures/activation
functions and evaluating their regression accuracy. The MLP was also combined
with the Dropout method (dropout probability 30% for the input layer). All the
MLP models were trained for 100 epochs (batch size 128) with a learning rate
of 0.001 (the default hyper-parameters for the Adam algorithm were used). The
LR, KR and kNN models were implemented using the scikit-learn library [23],
while the MLP models were implemented using the keras library [24].

The evaluation results for the image presentation experiments are reported
in Table 1. The models were trained to regress the features vectors extracted
from the last (CNN5) convolutional layer of the CNN, since this layer has been
shown to provide the best neural decoding accuracy [9]. The features extracted
from the CNN are decoded using different regions selected from the fMRI data:
the lower visual cortex areas (V1-V4) and higher visual cortex areas, namely the
lateral occipital complex (LOC), fusiform face area (FFA) and parahippocampal
place area (PPA). Voxels from regions V1-V3 are combined to form the lower
visual cortex (LVC) region and voxels from LOC, FFA and PPA form the higher
visual cortex (HVC). The whole visual cortex is denoted by “VC”. The Pearson
similarity is used in the conducted experiments. All the extracted voxels from the
corresponding brain regions were used in the conducted experiments, i.e., we did
not select only the voxels with the highest correlation, as in [9]. This allows for
retaining as much information as possible. The decoding accuracy is measured
as proposed in [9]: every possible combination of the correct class against all
the classes is considered and the mean decoding accuracy is reported. Note that
a random classifier will achieve a decoding accuracy of 50% under this binary
evaluation setup.

Several interesting conclusions can be drawn from the results reported in
Table 1. First, the non-linear models (KR, MLP) achieve significantly higher
decoding accuracy for the lower visual cortex regions (V1-V4, LVC), as well as
for the LOC and FFA regions. For example the decoding accuracy from the V2
region increases from 76.29% to 84.68%, when an MLP is used instead of a LR
model. This possibly suggests that complex non-linear relationships between the
extracted voxels and the corresponding deep features indeed exist for these (indi-
vidual) regions. On the other hand, when voxels from the whole visual cortex are
used as input (VC), then all the evaluated models (except for the kNN) achieve
almost the same decoding accuracy, ranging from 93.16% to 93.95%. Also, the
differences between the predictive power of the LVC and HVC regions are small.
For example, the MLP achieves 89.74% decoding accuracy when using the fea-
tures extracted from the LVC region and 90.14% decoding accuracy when using
the features extracted from the HVC region, demonstrating that can reliably de-
code the image representations regardless the used region. Using regularization
seems to slightly improve the decoding accuracy of linear regression. However,
this is not true for the MLP, which achieves the best decoding accuracy without
any form of regularization (the differences are small though). Using a non-linear
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regressor (KR) seems to significantly improve the results over the plain linear
regression in most of the cases. However, the kNN model seems to be unable
to reliably decode the features. This can be possibly attributed to the highly
non-linear nature of the model that mostly relies on the local properties of the
input space that prohibits the effective generalization for samples that do not
follow the original distribution. Finally, note that the MLP achieves the best
decoding accuracy, significantly outperforming the rest of the models.

Table 1. Image Presentation Evaluation: Decoding accuracy for different machine
learning models

Model Vi V2 V3 V4 |LVC |LOC FFA PPA |HVC| VC
LR 77.49 76.29 83.51 88.55|86.47|83.25 81.93 84.01|88.67|93.16
RR 79.05 78.92 84.47 88.85|86.81|83.82 82.52 84.03|88.83|93.17
kNN 74.58 73.97 72.94 75.82|75.12|75.17 75.33 74.66|76.29|77.70
KR 80.64 83.32 87.14 89.06 |89.63|85.33 84.77 82.71|89.81|93.45
MLP 81.95 84.68 87.73 90.68|89.74/86.47 86.13 84.29(90.14(|93.95
MLP (drop.)(82.10 83.56 86.54 88.90|88.73|85.73 85.10 82.92|90.01|93.75

The corresponding results for the imagery experiments are reported in Ta-
ble 2. For the imagery experiments it seems that the HVC region provides signif-
icantly better decoding accuracy than the LCV region. For example, the MLP
using dropout achieves 71.04% decoding accuracy when using the HVC features
as input, while the accuracy drops to 63.63% when using the LVC as input.
This can be possibly attributed to the lack of physical stimulus for the imagery
evaluation, and can possibly hint that the imagery tasks are mostly related to
the areas of the higher visual cortex. Even though for the imagery tasks the
MLP is the second best performing model, the kNN achieves the best decoding
accuracy for almost every brain region. This highlights the importance of using
a machine learning model that fits the problem at hand, i.e., the imagery-based
decoding is significantly harder than the image presentation-based decoding, re-
quiring significantly more powerful and non-linear models. Nonetheless, it should
be stressed that MLPs (when combined with the appropriate regularizer) seem
to be able to handle this task especially well, compared to the rest of the models.

In the previous experiments, the Pearson correlation was used as similarity
metric. The effect of three different similarity metrics on the accuracy of the best
model for the image presentation (MLP) and imagery experiments (knn) is eval-
uated in Table 3. For the image presentation experiments (denoted by “(IP)”)
the differences are quite small, even though the Pearson similarity achieves the
best accuracy in most of the cases. On the other hand, the Euclidean similar-
ity seems to perform significantly better than the other two similarity measures
for the imagery task (denoted by “(I)”). Again, this highlights the importance
of using the appropriate model, along with an appropriately selected similarity
metric, for tasks with different characteristics.
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Table 2. Imagery Evaluation: Decoding accuracy for different machine learning models

Model Vi V2 V3 V4 |LVC |LOC FFA PPA | HVC | VC
LR 59.45 57.36 62.91 64.94| 60.2 |61.87 61.41 68.21| 62.87 |65.19
RR 59.32 58.4 63.15 65.32]60.64|62.12 61.81 68.26| 63.27 | 65.18
kNN 67.87 66.68 67.49 70.18(67.51|70.66 69.62 69.32| 70.63 [69.99
KR 57.29 59.2 65.1 68.28]61.37|65.06 63.27 66.63| 65.32 | 65.00
MLP 60.20 63.98 66.07 68.93|63.45|69.24 68.33 70.39| 67.89 |65.73
MLP (drop.)|62.50 62.05 66.74 70.00|63.63|70.38 69.26 69.79|71.04 |68.14

Table 3. Evaluating the effect of different similarity metrics on the decoding accuracy

Model V1l V2 V3 V4 |LVC|LOC FFA PPA|HVC| VC
MLP+Eucl.(IP)[81.86 83.78 86.17 88.30|88.13|84.79 84.42 82.87|88.11|92.47
MLP~+Cos.(IP) |84.39 83.98 82.58 87.66 |81.25|83.48 85.94 88.05|87.81|92.36
MLP~+Pear.(IP)| 81.95 84.68 87.73 90.68|89.74|86.47 86.13 84.29 |90.14|93.95
knn+Eucl.(I) |71.38 70.57 70.98 72.85[71.01[73.11 72.56 72.38[73.17]72.75
knn+Cos.(I)  [70.66 69.81 70.20 72.01[70.39(72.39 71.67 71.54|72.32|71.88
knn+Pear.(I)  |67.87 66.68 67.49 70.18|67.51|70.66 69.62 69.32|70.63|69.99

4 Conclusions

In this paper an extensive evaluation of different machine learning models and
similarity measures for the task of decoding deep visual representations from
human brain activity signals was presented and several interesting conclusions
were drawn. For example, different models seem to behave differently for the
various decoding tasks, while using a Multilayer Perceptron (MLP) seems to
provide the best decoding accuracy for most of the tasks. Furthermore, the choice
of an appropriate similarity measure was shown to be of crucial importance for
some tasks. Finally, observations regarding how the brain actually works can
also be possibly deduced from the results reported in this paper.

There are many interesting future research directions. Metric learning meth-
ods can be used to learn the optimal similarity measure, further increasing the
decoding accuracy. Convolutional Neural Networks can be used to better model
the spatial relationships between voxels [21], while Recurrent Neural Networks
can be used to model the temporal behavior of brain activity [25]. Finally, trans-
fer learning [26] and cross-modal knowledge transfer methods [27] can be em-
ployed to appropriately transfer the knowledge that can be shared among differ-
ent subjects, leading to the development of effective subject-agnostic decoding
models.
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