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Abstract. In this work, we present a method to predict an entire ‘action tube’

(a set of temporally linked bounding boxes) in a trimmed video just by observ-

ing a smaller subset of it. Predicting where an action is going to take place in

the near future is essential to many computer vision based applications such as

autonomous driving or surgical robotics. Importantly, it has to be done in real-

time and in an online fashion. We propose a Tube Prediction network (TPnet)

which jointly predicts the past, present and future bounding boxes along with

their action classification scores. At test time TPnet is used in a (temporal) slid-

ing window setting, and its predictions are put into a tube estimation framework

to construct/predict the video long action tubes not only for the observed part of

the video but also for the unobserved part. Additionally, the proposed action tube

predictor helps in completing action tubes for unobserved segments of the video.

We quantitatively demonstrate the latter ability, and the fact that TPnet improves

state-of-the-art detection performance, on one of the standard action detection

benchmarks - J-HMDB-21 dataset.

1 Introduction
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Fig. 1. An Illustration of the action tube prediction problem using an example in which a

“pickup” action is being performed on a sidewalk. As an ideal case, we want the system to predict

an action tube as shown in (c) (i.e. when 100% of the video has been processed) just by observing

25% of the entire clip (a). We want the tube predictor to predict the action class label (shown in

red) alongside predicting the spatial location of the tube. The red shaded bounding boxes denote

the detected tube in the observed portion of the input video, whereas, the blue coloured bounding

boxes represent the future predicted action tube for the unobserved part of the clip.
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Imagine a pedestrian on the sidewalk, and an autonomous car cruising on the nearby

road. If the pedestrian stays on the sidewalk and continues walking, they are of no

concern for the self-driving car. What, instead, if they start approaching the road, in a

possible attempt to cross it? Any future prediction about the pedestrian’s action and their

possible position on/off the road would crucially help the autonomous car avoid any

potential incident. It would suffice to foresee the pedestrian’s action label and position

half a second early to avoid a major accident. As a result, awareness about surrounding

human actions is essential for the robot-car.

We can formalise the problem as follows. We seek to predict both the class label and

the future spatial location(s) of an action instance as early as possible, as shown in Fig-

ure 1. Basically, it translates into early spatiotemporal action detection [31], achieved

by completing action instance(s) for the unobserved part of the video. As commonly

accepted, action instances are here described by ‘tubes’ formed by linking bounding

box detections in time.

In an existing relevant work by Singh et al. [31], early label prediction and on-

line action detection are performed jointly. The action class label for an input video is

predicted early on just by observing a smaller portion (a few frames) of it, whilst the

system incrementally builds action tubes in an online fashion. In contrast, the proposed

approach can predict both the class label of an action and its future location(s) (i.e., the

future shape of an action tube). In this work, by ‘prediction’ we refer to the estimation

of both an action’s label and location in future, unobserved video segments. We term

‘detection’ the estimation of action labels/locations in the observed segment of video

up to any given time, i.e., for present and past video frames.

The computer vision community is witnessing a rising interest in problems such as

early action label prediction [31, 24, 9, 2, 32, 39, 40, 16, 42, 28, 20], online temporal ac-

tion detection [23, 39, 6, 33], online spatio-temporal action detection [31, 32, 38], fu-

ture representation prediction [34, 16] or trajectory prediction [1, 15, 21]. Although, all

these problems are interesting, and definitely encompass a broad scope of applications,

they do not entirely capture the complexity involved by many critical scenarios includ-

ing, e.g., surgical robotics or autonomous driving. In opposition to [31, 32], which can

only perform early label prediction and online action detection, in this work we propose

to predict both future action location and action label. A number of challenges make

this problem particularly hard, e.g., the temporal structure of an action is obviously not

completely observed; locating human actions is itself a difficult task; the observed part

can only provide clues about the future locations. In addition, camera movement can

make it even harder to extrapolate an entire tube. We propose to solve these problems

by regressing the future locations from the present tube.

The ability to predict action micro-tubes (sets of temporally connected bounding

boxes spanning k video frames) from pairs of frames [29] or sets of k frames [13, 10]

provides a powerful tool to extend the single frame-based online approach by Singh et

al. [31] in order to cope with action location prediction, while retaining its incremental

nature. Combining the basic philosophies of [31] and [29] has thus the potential to

provide an interesting and scalable approach to action prediction.

Briefly, the action micro-tubes network (AMTnet, [29]), divides the action tube de-

tection problem into a set of smaller sub-problems. Action ‘micro-tubes’ are produced
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Fig. 2. Workflow illustrating the application of TPnet to a test video at a time instant t. The

network takes frames ft and ft+∆ as input and generates classification scores, the micro-tube

(in red) for frames ft and ft+∆, and prediction bounding boxes (in blue) for frames ft−∆p ,

ft+∆f
up to ft+n∆f

. All bounding boxes are considered to be linked to the micro-tube. Note that

predictions also span the past: a setting called smoothing in the estimation literature. ∆p, ∆f

and n are network parameters that we cross-validate during training.

by a convolutional neural network (a 3D region proposal network) processing two input

frames that are ∆ apart. Each micro-tube consists of two bounding boxes belonging to

the two frames. When the network is applied to consecutive pairs of frames, it produces

a set of consecutive micro-tubes which can be finally linked [31] to form complete ac-

tion tubes. The detections forming a micro-tube can be considered as implicitly linked,

hence reducing the number of linking subproblems. Whereas AMTnet was originally

designed to generate micro-tubes using only appearance (RGB) inputs, here we aug-

ment it by introducing the feature-level fusion of flow and appearance cues, drastically

improving its performance and, as a result, that of TPnet.

Concept: We propose to extend the action micro-tube detection architecture by Saha et

al. [29] to produce, at any time t, past (τ < t), present, and future (τ > t) detection

bounding boxes, so that each (extended) micro-tube contains bounding boxes for both

observed and not yet observed frames. All bounding boxes, spanning presently observed

frames as well as past and future ones (in which case we call them predicted bounding

boxes), are considered to be linked, as shown in blue in Figure 2.

We call this new deep network ‘TPnet’.

Once bounding boxes are regressed, the online tube construction method of Singh et
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al. [31] can be incrementally applied to the observed part of the video to generate one

or more ‘detected’ action tubes at any time instant t.

Further, in virtue of TPnet and online tube construction, the temporally linked micro-

tubes forming each currently detected action tube (spanning the observed segment of

the video) also contain past and future estimated bounding boxes. As these predicted

boxes are implicitly linked to the micro-tubes which compose the presently detected

tube, the problem of linking to the latter the future bounding boxes, leading to a whole

action tube, is automatically addressed.

The proposed approach provides two main benefits: i) future bounding box predic-

tions are implicitly linked to the present action tubes; ii) as the method relies only on

two consecutive frames separated by a constant distance ∆, it is efficient enough to be

applicable to real-time scenarios.

Contributions: In Summary we present a Tube Predictor network (TPnet) which:

– given a partially observed video, can (early) predict video long action tubes in terms

of both their classes and the constituting bounding boxes;

– demonstrates that training a network to make predictions also helps in improving

action detection performance;

– demonstrates that feature-based fusion works better than late fusion in the context

of spatiotemporal action detection.

2 Related work

Early label prediction. Early, online action label prediction has been studied using

dynamic bag of words [28], structured SVMs [9], hierarchical representations [20],

LSTMs[39] and Fisher vectors [6]. Recently, Yeung et al. [39, 40] have proposed a

variant of long short-term memory (LSTM) deep networks for modelling these tempo-

ral relations via multiple input and output connections. Kong et al. [16], instead, make

use of variational auto-encoders to predict a representation for the whole video and use

it to determine the action category for the whole video as early as possible. Probabilis-

tic approaches based on Bayesian networks [24], Conditional Random Fields [17] or

Gaussian processes [12] may help in activity anticipation. However, inference in such

generative approaches is often expensive. None of these methods address the full online

label and spatiotemporal location prediction setting considered here.

Online Action Detection. Soomro et al. [32] have recently proposed an online method

which can predict an action’s label and detect its location by observing a relatively

smaller portion of the entire video sequence. They use segmentation to perform on-

line detection via SVM models trained on fixed length segments of the training videos.

Similarly, Singh et al. [31] have extended online action detection to untrimmed videos

with help of an online tube construction algorithm built on the top of frame-level action

bounding box detections. Similiarly, Behl et al. [3] solve online detection with help of

tracking formulation. However, these approaches [32, 31, 3] only perform action local-

isation for the observed part of the video and adopt the label predicted for the currently

detected tube as the label for the whole video.

To the best of our knowledge, no existing method generates predictions concerning

both labels and action tube geometry. Interestingly, Yang et al.[38] use features from
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current, frame t proposals to ‘anticipate’ region proposal locations in t + ∆ and to

generate detections at time t+∆, thus failing to take full advantage of the anticipation

trick to predict the future spatiotemporal extent of the action tubes.

Advances in action recognition are always going to be helpful in action prediction

from a general representation learning point of view. For instance, Gu et al.[8] have

recently improved on [25, 13] by plugging in the inflated 3D network proposed by [5]

as a base network on multiple frames. Although they use a very strong base network

pre-trained on the large “Kinetics” [14] dataset, they do not handle the linking process

within the network as the AVA [8] dataset’s annotations are not temporally linked. Anal-

ogously, learning to predict future representation [34] can be useful in general action

prediction (cfr. e.g. [16]).

Recently, inspired by the record-breaking performance of CNN-based object detec-

tors [26, 27, 22], a number of scholars [31, 30, 7, 25, 35, 37, 41, 3] have tried to extend

frame-level object detectors to videos for spatio-temporal action localisation. These ap-

proaches, however, fail to tackle spatial and temporal reasoning jointly at the network

level, as spatial detection and temporal association are treated as two disjoint problems.

More recent works have attempted to address this problem by reducing the amount of

linking required with the help of ‘micro-tubes’ [29] or ‘tubelets’ [13, 10] for small sets

of frames taken together, where micro-tube boxes from different frames are considered

to be linked together. AMTnet [29] by Saha et al. is particularly interesting, because of

its compact (GPU memory-wise) and flexible nature, as it can exploit pairs of succes-

sive frames ∆ sampling intervals apart, that it can also leverage sparse annotations [36]

as well. For these reasons in this work we build on AMTnet as base network, improving

its feature representation by feature-level fusion of motion and appearance cues.

3 Methodology

In this section, we describe our tube prediction framework for the problem formu-

lation described in § 3.1. Our approach has four main components. Firstly, we tie the

future action tube prediction problem (§ 3.1) with action micro-tube [29] detection. Sec-

ondly, we devise our tube prediction network (TPnet) to predict future bounding boxes

along with current micro-tubes, and describe its training procedure in § 3.3. Thirdly, we

use TPnet in a sliding window fashion (§ 3.4) in the temporal direction while generating

micro-tubes and corresponding future predictions. These, eventually, are fed to a tube

prediction framework (§ 3.4) to generate the future of any current action tube being

built using micro-tubes.

3.1 Problem Statement

We define an action tube as a connected sequence of detection boxes in time without

interruptions and associated with a same action class c, starting at first frame f1 and

ending last frame fT , in trimmed video: Tc = {b1, ...bt, ...bT }. Tubes are constrained

to span the entire video duration, like in [7]. At any time point t, a tube is divided into

two parts, one needs to be detected T d
c = {b1, ...bt} up to ft and another part needs to
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Fig. 3. Overview of the action micro-tube detection network (AMTnet). As it only predicts micro-

tubes and their scores, here we modify it to predict the future locations associated with the given

micro-tubes, as shown in Figure 2.

be predicted/estimated T p
c = {bt+1, ...bT } from frame ft+1 to fT along with its class

c. The observed part of the video is responsible for generating T d
c (red in Fig 1), while

we need to estimate the future section of the tube T p
c (blue in Fig 1) for the unobserved

segment of the video. The first sub-problem, the online detection of T d
c , is explained in

§ 3.2. The second sub-problem (the estimation of the future tube segment T p
c ) is tackled

by a tube prediction network (TPnet, § 3.3) in a novel tube prediction framework (§ 3.4).

3.2 From micro-tubes to full action tubes

Saha et al. [29] introduced micro-tubes in their action micro-tube network (AMTnet)

proposal, shown in Figure 3. AMTnet decomposes the problem of detecting Tc into a

set of smaller problems, detecting micro-tubes mt = {bt, bt+∆} at time t along with

their classification scores for C+1 classes, using two successive frames ft and ft+∆ as

an input (Fig. 3(a)). Subsequently, the detection micro-tubes {m1...mt−∆} are linked

up in time to form action tube T d
c . Similar to [22], one background class is added to the

class list which takes the number classes to C + 1.

AMTnet employs two parallel CNN streams (Fig. 3(b)), one for each frame, which

produce two feature maps (Fig. 3(c)). These feature maps are stacked together into

one (Fig 3(d)). Finally, convolutional heads are applied in a sliding window (spatial)

fashion over predefined 3 × 3 anchor regions [22], which correspond to P prior [22]

or anchor [27] boxes. Convolutional heads produce a P × 8 output per micro-tube

(Fig. 3(f)) and P × (C + 1) corresponding classification scores (Fig 3(g)). Each micro

tube has 8 coordinate, 4 for the bounding box bt in frame ft and 4 for bounding box

bt+∆ in frame ft+∆. As shown in Figure 3(f), the pair of boxes can be considered as

implicitly linked together, hence the name micro-tube.

Originally, Saha et al. [29] employed FasterRCNN [27] as base detection architec-

ture. Here, however, we switch to Single Shot Detector (SSD) [22] as a base detector

for efficiency reasons. Singh et al. [31] used SSD to propose an online and real-time

action tube generation algorithm, while Kalogeiton et al. [13] adapted SSD to detect

micro-tubes (or, in their terminology, ‘tubelets’) k frames long.

More importantly, we make two essential changes to AMTnet. Firstly, we enhance its
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feature representation power by fusing appearance features (based on RGB frames) and

flow features (based on optical flow) at the feature level (see the fusion step shown in

Fig 4), unlike the late fusion approach of [13] and [31]. Note that the original AMTnet

framework does not make use of optical flow at all. We will show that feature-level

fusion dramatically improves its performance. Secondly, the AMTnet-based tube de-

tection framework proposed in [29] is offline, as micro-tube linking is done recursively

in an offline fashion [7]. Similar to Kalogeiton et al. [13], we adapt the online linking

method of [31] to link micro-tubes in to a tube T d
c .

Micro-tube linking details: Let Bt be the set of detection bounding boxes from frame

ft, and Bt+1 the corresponding set from ft+1, generated by a frame-level detector.

Singh et al. [31] associate boxes in Bt to boxes in Bt+1, whereas, in our case, we need

to link micro-tubes mt ∈ Mt
.
= B1

t ×B2
t+∆ from a pair of frames {ft, ft+∆} to micro-

tubes mt+∆ ∈ Mt+∆
.
= B1

t+∆ × B2
t+2∆ from the next set of frames {ft+∆, ft+2∆}.

This happens by associating elements of B2
t+∆, coming from Mt, with elements of

B1
t+∆, coming from Mt+∆. Interestingly, the latter is a relatively easier sub-problem,

as all such detections are generated based on the same frame, unlike the across frame

association problem considered in [31]. The association is achieved based on Intersec-

tion over Union (IoU) and class score, as the tubes are built separately for each class in

a multi-label scenario. For more details, we refer the reader to [31].

Since we adopt the online linking framework of Singh et al. [31], we follow most

of the linking setting used by them, e.g.: linking is done for every class separately; the

non-maximal threshold is set to 0.45. As shown in Figure 5(a) to 5(b), the last box of

the first micro-tube (red) is linked to the first box of next micro-tube (red). So, the first

set of micro-tubes is produced at f1, the following one at f∆ the one after that at f2∆,

and so on. As a result, the last micro-tube is generated at ft−∆ to cover the observable

video duration up to time t. Finally, we solve for the association problem as described

above.

3.3 Training the tube prediction network (TPnet)

AMTnet allow us to detect current tubes T d
c by generating a set of successive micro-

tubes {m1...mt−∆}, where mt−∆ = {bt−∆, bt}. However, our aim is to predict the

future section T p
c of the tube using the latter linked micro-tubes, up to time t.

To address this problem, we propose a tube prediction framework aimed at simulta-

neously estimating a micro-tube mt, a set zt = {bt−∆p
, bt+∆f

, ...bt+n∆f
} of past and

future detections, and the classification scores for the C + 1 classes. ∆p measures how

far in the past we are looking into, whereas ∆f is a future step size, and n is the number

of future steps. This is performed by a new Tube Prediction network (TPnet).

The underlying architecture of TPnet is shown in Figure 4. TPnet takes two succes-

sive frames from time t and t+∆ as input. The two input frames are fed to two parallel

CNN streams, one for appearance and one for optical flow. The resulting feature maps

are fused together, either by concatenating or by element-wise summing the given fea-

ture maps. Finally, three types of convolutional output heads are used for P prior boxes

as shown in Figure 4. The first one produces the P × (C +1) classification outputs; the

second one regresses the P × 8 coordinates of the micro-tubes, as in AMTnet; the last

one regresses P × (4(1+n)) coordinates, where 4 coordinates correspond to the frame
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Fig. 4. Overview of the tube prediction network (TPnet) architecture at training time.

at t − ∆p, and the remaining 4n are associated with the n future steps. The training

procedure of the new architecture is illustrated below.

Multi-task learning TPnet is designed to strive for three objectives, for each prior box

p. The first task (i) is to classify the P prior boxes; the second task (ii) is to regress the

coordinates of the micro-tubes; the last (iii) is to regress the coordinates of the past and

future detections associated with each micro-tube.

Given a set of P anchor boxes and the respective outputs we compute a loss fol-

lowing the training objective of SSD [22]. Let xc
i,j = {0, 1} be the indicator for match-

ing the i-th prior box to the j-th ground truth box of category c. We use the bipar-

tite matching procedure described in [22] for matching the ground truth micro-tubes

G = {gt, gt+∆} to the prior boxes, where gt is a ground truth box at time t. The over-

lap is computed between a prior box p and micro-tube G as the mean IoU between p

and the ground truth boxes in G. A match is defined as positive (xc
i,j = 1) if the overlap

is more than or equal to 0.5.

The overall loss function L is the following weighted sum of classification loss

(Lcls), micro-tube regression loss (Lreg) and prediction loss (Lpred):

L(x, c,m,G, z, Y ) =
1

N

(

Lcls(x, c) + αLreg(x,m,G) + βLpred(x, z, Y )
)

, (1)

where N is the number of matches, c is the ground truth class, m is the predicted micro-

tube, G is the ground truth micro-tube, z assembles the predictions for the future and

the past, and Y is the ground truth of future and past bounding boxes associated with

the ground truth micro-tube G. The values of α and β are both set to 1 in all of our

experiments: different values might result in better performance.
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Fig. 5. Overview of future tube (T p
c ) prediction using the predictions that are linked to micro-

tubes. The first row (a) shows two output micro-tubes in light red and red and their corresponding

predictions in future in light blue and blue. In row (b) two micro-tubes are linked together, after

which they are shown in the same colour (red). By induction on the previous step, in row (c)

we show that the predictions associated with two micro-tubes are linked together as well, hence

forming one single tube. The observed segment is shown in red, while the predicted segment for

the part of the video yet to observe is shown in blue.

The classification loss Lcls is a softmax cross-entropy loss; a hard negative mining

strategy is also employed, as proposed in [22]. The micro-tube loss Lreg is a Smooth

L1 loss [27] between the predicted (m) and the ground truth (G) micro-tube. Similarly,

the prediction loss Lpred is also a Smooth L1 loss between the predicted boxes (z) and

the ground truth boxes (Y ). As in [22, 27], we regress the offsets with respect to the

coordinates of matched prior box p matched to G for both m and z. We use the same

offset encoding scheme as used in [22].

3.4 Tube prediction framework

TPnet is shown in Figure 2 at test time. As in the training setting, it observes only two

frames that are ∆ apart at any time point t. The outputs of TPnet at any time t are

linked to a micro-tube, each micro-tube containing a set of bounding boxes {mt =
{bt, bt+∆}; zt = {bt−∆p

, bt+∆f
, ..., bt+∆f

}}, which are considered as linked together.

As explained in § 3.2, given a set of micro-tubes {m1...mt−∆} we can construct T d
c

by online linking [31] of the micro-tubes. As a result, we can use predictions for t+∆f

up to t + n∆f to generate the future of T d
c , thus extending it further into the future as

shown in Figure 5. More specifically, as it is indicated in Figure 5(a), a micro tube at

t−2∆ is composed by n+2 bounding boxes ({bt−2∆, bt−∆, bt−2∆+∆f
, ...bt−∆+n∆f

})

linked together. The last micro-tube is generated from t − ∆. In the same fashion,

putting together the predictions associated with all the past micro-tubes ({m1...mt−∆})
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yields a set of linked future bounding boxes ({bt+1, ..., bt+∆+∆f
, ..., bt−∆+n∆f

}) for

the current action tube T d
c , thus outputting a part of the desired future T p

c .

Now, we can generate future tube T p
c from the set of linked future bounding boxes

({bt+1, ...bt−∆+∆f
, ...bt−∆+n∆f

}) from t+1 to t−∆+n∆f and simple linear extrap-

olation of bounding boxes from t −∆ + n∆f to T . Linear extrapolation is performed

based on the average velocity of the each coordinates from last 5 frames, predictions

outside the image coordinate are trimmed to the image edges.

4 Experiments

We test our action tube prediction framework (§ 3) on four challenging problems: i) ac-

tion localisation (§ 4.1), ii) early action prediction (§ 4.2), iii) online action localisation

(§ 4.2), iv) future action tube prediction (§ 4.3) Finally, evidence of real time capability

is quantitatively demonstrated in (§ 4.4).

J-HMDB-21. We evaluate our model on the J-HMDB-21 [11] benchmark. J-HMDB-

21 [11] is a subset of the HMDB-51 dataset [19] with 21 action categories and 928

videos, each containing a single action instance and trimmed to the action’s duration.

It contains atomic action which are 20-40 frames long. Although, videos are of short

duration (max 40 frames), we consider this dataset because tubes belong to the same

class and we think it is a good dataset to start with for action prediction task.

Evaluation metrics. Now, we define the evaluation metrics used in this paper. i)

We use a standard mean-average precision metric to evaluate the detection performance

when the whole video is observed. ii) Early label prediction task is evaluated by video

classification accuracy [32, 31] as early as when only 10% of the video frames are ob-

served.

iii) Online action localisation (§ 4.2) is set up based on the experimental setup of [31],

and use mAP (mean average precision) as metric for online action detection i.e. it eval-

uates present tube (T d
c ) built in online fashion.

iv) The future tube prediction is a new task; we propose to evaluate its performance in

two ways. Firstly, we evaluate the quality of the whole tube prediction from the start of

the videos to the end as early as when only 10% of the video is observed. The entire tube

predicted (by observing only a small portion (%) of the video) is compared against the

ground truth tube for the whole video. Based on the detection threshold we can compute

mean-average-precision for the complete tubes, we call this metric completion-mAP (c-

mAP). Secondly, we measure how well the future predicted part of the tube localises.

In this measure, we compare the predicted (T p
c ) tube with the corresponding ground

truth future tube segment. Given the ground truth and the predicted future tubes, we

can compute the mean-average precision for the predicted tubes, we call this metric

prediction-mAP (p-mAP).

We report the performance of previous three tasks (i.e. task ii to iv) as a function of

Video Observation Percentage, i.e., the portion (%) of the entire video observed.

Baseline. We modified AMTnet to fuse flow and appearance features 3.2. We treat it

as a baseline for all of our tasks. Firstly, we show how feature fusion helps AMTnet

in Section 4.1, and compare it with other action detection methods along with our TP-

net. Secondly in Section 4.3, we linearly extrapolate the detection from AMTnet to
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Table 1. Action localisation results on JHMDB dataset. The table is divided into four parts. The

first part lists approaches which takes a single frame as input; the second part presents approaches

which takes multiple frames as input; the third part contemplates different fusion strategies of our

feature-level fusion (based on AMTnet); lastly, we report the detection performance of our TPnet

by ignoring the future and past predictions and only use the detected micro-tubes to produce the

final action tubes.

Methods δ = 0.2 δ = 0.5 δ = 0.75 δ = .5:.95 Acc %

MR-TS Peng et al. [25] 74.1 73.1 – – –

FasterRCNN Saha et al. [30] 72.2 71.5 43.5 40.0 –

OJLA Behl et al. [3]∗ – 67.3 – 36.1 –

SSD Singh et al. [31]∗ 73.8 72.0 44.5 41.6 –

AMTnet Saha et al. [29] rgb-only 57.7 55.3 – – –

ACT kalogeiton et al. [13]∗ 74.2 73.7 52.1 44.8 61.7

T-CNN (offline) Hou et al. [10] 78.4 76.9 – – 67.2

MR-TS [25] + I3D [5] Gu et al. [8] – 78.6 – – –

AMTnet-LateFusion∗ 71.7 71.2 49.7 42.5 65.8

AMTnet-FeatFusion-Concat∗ 73.1 72.6 59.8 48.3 68.4

AMTnet-FeatFusion-Sum∗ 73.5 72.8 59.7 48.1 69.6

Ours TPnet053
∗ 72.6 72.1 58.0 46.7 67.5

Ours TPnet453
∗ 73.8 73.0 59.1 47.3 68.2

Ours TPnet051
∗ 74.6 73.1 60.5 49.0 69.8

Ours TPnet451
∗ 74.8 74.1 61.3 49.1 68.9

TPnetabc represents our TPnet where a = ∆p, b = ∆f and c = n.; ∗ means online methods

construct the future tubes, and use it as a baseline for tube prediction task. Implemen-

tation details. We train all of our networks with the same set of hyper-parameters to

ensure the fair comparison and consistency, including TPnet and AMTnet. We use an

initial learning rate of 0.0005, and the learning rate drops by a factor of 10 after 5K
and 7K iterations. All the networks are trained up to 10K iterations. We implemented

AMTnet using pytorch (https://pytorch.org/). We initialise AMTnet and TPnet models

using the pretrained SSD network on J-HMDB-21 dataset on its respective train splits.

The SSD network training is initialised using image-net trained VGG network. For, op-

tical flow images, we used optical flow algorithm of Brox et al. [4]. Optical flow output

is put into a three channel image, two channels are made of flow vector and the third

channel is the magnitude of the flow vector.

TPnetabc. The training parameters of our TPnet are used to define the name of the

setting in which we use our tube prediction network. The network name TPnetabc rep-

resents our TPnet where a = ∆p, b = ∆f and c = n, if ∆p is set to 0 it means network

doesn’t learn to predict the past bounding boxes. In all of our settings, we use ∆ = 1.

4.1 Action localisation performance

Table 1 shows the traditional action localisation results for the whole action tube detec-

tion in the videos of J-HMBD-21 dataset.

Feature fusion compared to the late fusion scheme in AMTnet shows (Table 1) remark-

able improvement, at detection threshold δ = 0.75 the gain with feature level fusion is
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(a) (b)

Fig. 6. Early label prediction results (video-level label prediction accuracy) on J-HMDB-21

dataset in sub-figure (a). Online action detection results (mAP with detection threshold δ = 0.5)

on J-HMDB-21 dataset are shown in sub-figure (b). TPnetabc represents our TPnet where

a = ∆p, b = ∆f and c = n.

10%, as a result, it is able to surpass the performance of ACT [13], which relies on

set of 6 frames as compared to AMTnet which uses only 2 successive frames as input.

Looking at the average-mAP (δ = 0.5 : 95), we can see that the fused model improves

by almost 8% as compared to single frame SSD model of Singh et al. [31]. We can see

that concatenation and sum fusion perform almost similar for AMTnet. Sum fusion is

little less memory intensive on the GPUs as compared to the concatenation fusion; as a

result, we use sum fusion in our TPnet.

TPnet for detection is shown in the last part of the Table 1, where we only use the

detected micro-tubes by TPnet to construct the action tubes(§ 3.2). We train TPnet to

predict future and past (i.e. when ∆p > 0) as well as present micro-tubes. We think that

predicting bounding boxes for both the past and future video segments acts as a regu-

lariser and helps improving the representation of the whole network. Thus, improving

the detection performance (Table 1 TPNet051 and TPNet451). However, that does not

mean adding extra prediction task always help when a network is asked to learn pre-

diction in far future, as is the case in TPNet053 and TPNet453, we have a drop in the

detection performance. We think there might be two possible reasons for this, i) network

might starts to focus more on prediction task, and ii) videos in J-HMDB-21 are short

and number of training samples decreases drastically (19K for TPNet051 and 10K for

TPNet453), because we can not use edge frames of the video in training samples as we

need a ground truth bounding box which is 15 frames in the future, as ∆f = 5 and

n = 3 for TPNet053. However, in Section 4.3, we show that the TPNet053 model is the

best to predict the future very early.

4.2 Early label prediction and online localisation

Figure 6 (a) & (b) show the early prediction and online detection capabilities of Singh et

al. [31], AMTnet-Feature Fusion-sum and our TPnet.

Soomro et al. [32]’s method also perform early label prediction on J-HMDB-21; how-

ever, their performance is deficient, as a result the plot would become skewed (Fig-

ure 6(a)), so we omit theirs from the figure. For instance, by observing only the initial
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(a) (b)

Fig. 7. Future action tube prediction results (a) (prediction-mAP (p-mAP)) for predicting the tube

in unobserved part of the video. Action tube prediction results (b) (completion-mAP (c-mAP)) for

predicting video long tubes as early as possible on J-HMDB-21 dataset in sub-figure (b). We use

p-mAP (a) and c-mAP (b) with detection threshold δ = 0.5 as evaluation metrics on J-HMDB-21

dataset. TPnetabc represents our TPnet where a = ∆p, b = ∆f and c = n.

10% of the videos in J-HMDB-21, TPnet453 able to achieve a prediction accuracy of

58% as compared to 48% by Singh et al. [31] and 5% by Soomro et al. [32], which

is in fact higher than the 43% accuracy achieved by [32] after observing the entire

video. As more and more video observed, all the methods improve, but TPnet451 show

the most gain, however, TPnet053 observed the least gain from all the TPnet settings

shown. Which is in-line with action localisation performance discussed in the previous

section 4.1. We can observe the similar trends in online action localisation performance

shown in Figure 6(b). To reiterate, TPnet053 doesn’t get to see the training samples from

the end portion of the videos, as it needs a ground truth bounding box from 15 frames

ahead. So, the last frame it sees of any training video is T − 15, which is almost half

the length of the most extended video(40 frames) in J-HMDB-21. This effect magnifies

when online localisation performance measured at δ = 0.75, we provide the evidence

of it in the supplementary material.

4.3 Future action tube prediction

Our main task of the paper is to predict the future of action tubes. We evaluate it using

two newly proposed metrics (p-mAP and c-mAP) as explained earlier at the start of the

experiment section 4. Result are shown in Figure 7 for future tube prediction (Figure 7

(a)) with p-mAP metric and tube completion with c-mAP as metric.

Although, the TPnet053 is the worst setting of TPnet model for early label predic-

tion (Fig. 6(a)), online detection(Fig. 6(b)) and action tube detection (Table 1), but as

it predicts furthest in the future (i.e. 15 frame away from the present time), it is the

best model for early future tube prediction (Fig. 7(a)). However, it does not observe as

much appreciation in performance as other settings as more and more frames are seen,

owing to the reduction in the number of training samples. On the other hand, TPnet451
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observed large improvement as compared to TPnet051 as more and more portion of the

video is observed for tube completion task (Fig.7(b)), which strengthen our arguement

that predicting not only the future but also the past is useful to achieve more regularised

predictions.

Comparision with the baseline. As explained above, we use AMTnet as a baseline,

and its results can be seen in all the plots and the Table. We can observe that our TPnet

performs better than AMTnet in almost all the cases, especially in our desired task of

early future prediction (Fig 7(a)) TPnet043 shows almost 4% improvement in p-mAP

(at 10% video observation) over AMTnet.

Discussion. Predicting further into the future is essential to produce any meaning-

ful predictions (seen in TPnet053), but at the same time, predicting past is helpful to

improve overall tube completion performance. One of the reasons for such behaviour

could be that J-HMDB-21 tubes are short (max 40 frames long). We think training sam-

ples for a combination of TPnet053 and TPnet451, i.e. TPnet453 are chosen uniformly

over the whole video while taking care of absence of ground truth in the loss function

could give us better of both settings. We show the result of TPnet453 in current training

setting in supplementary material. The idea of regularising based on past prediction is

similar to the one used by Ma et al. [23].

4.4 Test Time Detection Speed

Singh et al. [31] showcase their method’s online and real-time capabilities. Here we use

their online tube generation method for our tube prediction framework to inherit those

properties. The only question mark is TPnet’s forward pass speed. We thus measured the

average time taken for a forward pass for a batch size of 1 as compared to 8 by [31]. A

single forward pass takes 46.8 milliseconds to process one text example, showing that

it can be run in almost real-time at 21fps with two streams on a single 1080Ti GPU.

One can improve speed even further by testing TPnet with ∆ equal to 2 or 4 and obtain

a speed improvement of 2× or 2×. However, use of dense optical flow [4], which is

slow, but as in [31], we can always switch to real-time optical [18] with small drop in

performance.

5 Conclusions

We presented TPnet, a deep learning framework for future action tube prediction in

videos which, unlike previous online tube detection methods [31, 32], generates future

of action tubes as early as when 10% of the video is observed. It can cope with the future

uncertainty better than the baseline methods while remaining state-of-the-art in action

detection task. Hence, we provide a scalable platform to push the boundaries of action

tube prediction research; it is implicitly scalable to multiple action tube instances in

the video as future prediction is made for each action tube separately. We plan to scale

TPnet for action prediction in temporally untrimmed videos in the future.
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