
Temporally Consistent Depth Estimation in

Videos with Recurrent Architectures

Denis Tananaev1,2

Huizhong Zhou1 Benjamin Ummenhofer1 Thomas Brox1

1University of Freiburg 2Robert Bosch GmbH
Denis.Tananaev@de.bosch.com

{zhouh, ummenhof, brox}@cs.uni-freiburg.de

Abstract. Convolutional networks trained on large RGB-D datasets
have enabled depth estimation from a single image. Many works on auto-
motive applications rely on such approaches. However, all existing meth-
ods work on a frame-by-frame manner when applied to videos, which
leads to inconsistent depth estimates over time. In this paper, we in-
troduce for the first time an approach that yields temporally consistent
depth estimates over multiple frames of a video. This is done by a ded-
icated architecture based on convolutional LSTM units and layer nor-
malization. Our approach achieves superior performance on several error
metrics when compared to independent frame processing. This also shows
in an improved quality of the reconstructed multi-view point clouds.

Keywords: convolutional LSTM, recurrent networks, depth estimation,
video processing

1 Introduction

Triggered by the seminal work of Eigen et al. [6] the estimation of depth maps
from just a single image has become a popular tool in computer vision. Depth
estimation in a single image is well known to be highly ambiguous and only
works due to strong conditional priors learned from previously seen data. The
work from Eigen et al. [6] demonstrated the superiority of deep networks over
previous attempts with hand-crafted features [23]. The priors learned by a deep
network yield an unprecedented accuracy and generality compared to all previous
approaches on single-view depth estimation. Of course, the accuracy is far from
being competitive with multi-view reconstruction, which becomes evident when
visualizing the depth maps in the form of a point cloud. Nevertheless, estimating
the depth from single images is no longer a toy problem but is used in places,
where dense multi-view reconstruction is not directly applicable, for instance to
initialize a monocular SLAM method [26] or for rough but dense depth estimates
in autonomous driving [28].

Often in these applications, an image sequence rather than a single image
is available, yet these additional images are typically not exploited. There are
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two sources of information that are inherent to a sequence of images: (1) the
motion parallax by a moving camera; (2) the temporal consistency of successive
frames. Exploiting the motion parallax has been approached in Ummenhofer et
al. [29] for two frames. The motion parallax was used also in Zhou et al. [33] for
unsupervised learning of depth from single image. However, there is no approach
yet, that exploits the temporal consistency of successive frames.

In this work, we propose a network architecture based on convolutional
LSTMs to capture temporal information from previous frames and to enforce
temporally consistent depth estimates in a video. We show that such a network
improves over independent frame processing, both relative to a single-frame base-
line and relative to the state of the art. While it is well-known that temporal
consistency has only relatively small effects on standard performance metrics
based on average statistics, the qualitative improvement is much higher due to
more stable estimates that do not flicker; see the supplemental video. The tem-
poral consistency is also advantageous when combining multiple depth maps to
a joint point cloud. As the depth estimates of successive frames agree more, the
resulting point cloud is more consistent, too.

2 Related Work

End-to-end depth estimation from a single image with convolutional neural net-
works was introduced by Eigen [6, 5]. These works were introduced before the to-
day most common convolutional encoder-decoder architectures, such as FCN [19]
and U-Net [22] were available. They use a multi-scale architecture for depth
estimation at different spatial resolutions. Joint depth and normal prediction
improved the depth estimation results.

Liu et al. [18] combined convolutional networks with superpixel-based condi-
tional random fields. Chackrabarti et al. [3] generate a midlevel representation
of the depth with a deep network to find the best matches for the depth values
in a post processing step. At the present, Laina et al. [16] yields the best results
on benchmarks. This was achieved by replacing the standard convolutional en-
coder by a ResNet-50 architecture [11] and by a set of computationally efficient
up-sampling blocks.

The methods above process each frame independently, even when processing
a video. We propose the use of LSTM units [12, 9] to relate the intermediate
representation in the network across frames in order to obtain temporally con-
sistent outputs. In particular, we use a convolutional LSTM architecture [32].
The convolutional version of LSTMs captures the spatial context of the input
tensor and keeps the number of parameters limited.

3 Network architecture

The architecture in Figure 1 integrates a typical convolutional encoder-decoder
structure with convolutional LSTM layers (in brown) to analyze the image at var-
ious levels of abstraction, where for each level, the state representation from the
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Fig. 1. Overview of the multi-resolution recurrent network architecture. The architec-
ture consists of three encoder-decoder networks that predict the depth at different reso-
lution levels. The low-resolution prediction is fed as input to the next, higher-resolution
stream. The first two streams also estimate the normals in addition to the depth. The
convolutional LSTM layers carry the state from the previous frame. There are residual
connections within each encoder-decoder stream and also between the streams.

previous frame is carried over to the present frame. This combination with the
previous state enforces the temporal consistency of the states and, consequently,
also of the output. Like all common encoder-decoder networks, the architecture
has residual connections to directly propagate high-resolution features from the
encoder to the respective layer in the decoder. The spatial resolution of all con-
volutional filters is 3× 3. The filters for the up-convolution have size 4× 4 and
for the LSTM filters we use 5× 5 filters.

In addition to the multi-scale analysis due to the encoder-decoder architec-
ture, the architecture includes a coarse-to-fine refinement strategy, which first
produces the output depth map at a lower resolution (with a loss applied during
training). The low-resolution result is successively refined by the next encoder-
decoder stream of the multi-resolution architecture until the resolution of the
input image is obtained at the output. This coarse-to-fine strategy efficiently
implements the network stacking idea, which has been successful for optical flow
estimation [13] and depth from two views [29]. We also added recurrent connec-
tions between the layers of the different streams. For the intermediate resolutions,
the network also computes the surface normals (with a loss applied during train-
ing), which is helpful to learn the depth representation for the surfaces in the
scene.

3.1 Convolutional LSTM with leaky ReLU

Recurrent neural network architectures have shown to be able to leverage tem-
poral data for tasks such as language processing [4] and video captioning [2]. We
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build upon the Long Short Term Memory (LSTM) unit [12] to enable temporally
consistent video depth prediction.

In convolutional LSTMs the input tensor hl−1
t is concatenated with the hid-

den state tensor hl
t−1 before the convolution operation is applied. The leaky

ReLU has shown improved performance compared to the tanh activation func-
tion in many previous works. Thus, we use it also for the present work. However,
our experiments showed that the convolutional LSTM with leaky ReLU is less
stable than the LSTM with tanh activation and numerically explodes when pro-
cessing longer sequences during testing; see Figure 2. The problem of stability
is solved by adding a layer normalization [1] on the cell state clt. Moreover, the
normalization layer also allows for faster convergence.
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Fig. 2. Network stability at test time with different activation functions used in the
LSTM unit. The leaky ReLU activation yields better results than the tanh activation.
However, the network becomes unstable over time. Adding layer normalization yields
the good performance of the leaky ReLU while being as stable as the tanh activation.

Formally, the convolutional LSTM with leaky ReLU and layer normalization
reads:
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hl
t = o · leakyReLU(ĉlt), (4)

where i, f , o, g are the input, forget, output gates and new input, respectively;
clt and clt−1 are the cell states for the current and previous time steps; γ and β
are the learned parameters of the layer normalization [1], and µ and var are the
mean and variance of the argument over each single data sample.
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4 Training Procedure

We train the recurrent network with a batch size of 2 and a sequence length of
7 by unrolling the network. For each frame the network generates a depth map;
we apply a loss on each of the outputs.

4.1 Datasets

We train and evaluate our recurrent network on static and dynamic indoor
sequences. For the static sequences we use the NYUv2 [24] and SUN3D [31]
datasets. Both datasets feature indoor video sequences of offices, living rooms,
etc. filmed with a structured light sensor. We use the raw depth from the sensor
for NYUv2 and the TSDF fused depth provided by SUN3D. The NYUv2 dataset
has 249 training video sequences and 215 test sequences. We use the SUN3D
dataset split proposed by Ummenhofer et al. [29] which has 253 sequences for
training and 16 for testing.

For dynamic scene experiments we use the Princeton Tracking Benchmark
[25]. The dataset consists of indoor scenes with dynamic objects captured with
the Kinect sensor. We use 96 sequences for training and four sequences for test.

4.2 Initialization and training strategy

We initialize the network weights using Xavier initialization [8] with modifica-
tions proposed by [10] for ReLU functions. We normalize the input image values
to the range [-0.5, 0.5] and use inverse depth values ξ = 1/z for parameterizing
the depth values. Inverse depth emphasizes distances to close objects, yielding
more precise predictions for those objects and allows us to represent points at
infinity.

For training we use nearest neighbour sampling to resize the ground truth
depth maps to 256 × 192. On NYUv2 we first crop images to 561 × 427 before
downsampling. The output depth has the same resolution as input.

We use ADAM [15] with restarts. The restart technique was proposed for
SGD optimization and allows to achieve faster convergence of the network com-
pared to the fixed learning rate schedules [20]. The starting learning rate for
each restart is 10−4 and it drops to 10−6 at the end of each period. The first
restart interval is 10000 iterations and it increases by factor 1.5 at each restart.

To avoid overfitting to very long sequences in the training set, we iterate
in random order over the set of sequences and sample from each sequence a
random segment with 7 frames. This allows the network to see an equal number
of training samples from each sequence. Further, we augment the segments by
randomly skipping frames with a probability of 0.5.
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4.3 Loss functions

On the depth output, we combine two loss functions. First, we use L1 loss for
the inverse depth

Ldepth =
∑

i,j

|ξ(i, j)− ξ̂(i, j)|, (5)

where ξ̂(i, j) is the ground truth inverse depth. Second, we compute the scale-
invariant gradient loss [29] for the inverse depth

Lgrad =
∑

h∈1,2,4,8,16

∑

i,j

||gh[ξ](i, j)− gh[ξ̂](i, j)||2 (6)

where gh[ξ](i, j) is the discrete scale invariant gradient:

gh[f ](i, j) =
(

f(i+h,j)−f(i,j)
|f(i+h,j)|+|f(i,j)| ,

f(i,j+h)−f(i,j)
|f(i,j+h)|+|f(i,j)|

)

. (7)

In (6) we sum the gradient for five different discretization widths h to cover gra-
dients with different slopes. The gradient loss significantly improves the smooth-
ness of the depth values while preserving sharp depth edges.

The loss on the normals is the non-squared L2 norm

Lnormal =
∑

i,j ||n(i, j)− n̂(i, j)||2, (8)

where n(i, j) is the normal predicted by the network and n̂(i, j) is the ground
truth normal, which we derive from the ground truth depth maps.

To balance the importance of the loss functions we use different weights. We
assign the weight 300 for the L1 depth loss and 1500 for the scale invariant gra-
dient loss and 100 for the loss on the normals. The weights were set empirically.

For the first 10000 iterations we set the weight for the gradient loss to zero,
because the scale invariance of Lgrad can cause instabilities directly after weight
initialization. During training and evaluation, we do not consider pixels with
invalid depth values.

4.4 Error metrics

To quantify the quality of the predicted depth maps we compute several common
error metrics:

L1 inverse error: L1 − inv(z, ẑ) = 1
N

∑

i

∣

∣

∣

1
zi

− 1
ẑi

∣

∣

∣ ,

The mean root squared error (RMS): RMS(z, ẑ) =
√

1
N

∑

i(zi − ẑi)2

Average log10 error (log10): log10(z, ẑ) = 1
N

∑

i | log zi − log ẑi|

Percentage of pixels below a ratio treshold θ: max
(

ẑi
zi
, zi
ẑi

)

= δ(z, ẑ) < θ.

Here zi is the depth prediction, ẑi is the ground truth depth, and N is the
number of valid pixels in a depth map.
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5 Experiments

5.1 Choice of the activation function

To quantify the behaviour of the LSTM with different activation functions and
normalization strategies we first ran experiments with a simplified network ar-
chitecture, which consists of only one encoder with 10 layers and one decoder
with 13 layers. We also compared the recurrent network with the LSTM layers
removed, i.e., that network does not take information from previous frames into
account. Results on SUN3D dataset for a sequence length of 6 are shown in Ta-
ble 1. The recurrent architecture improves over the single-frame baseline on all
metrics, and the leaky ReLU activation unit always outperforms tanh activation.
Thus, for the following experiments, we always used leaky ReLU activation with
normalization.

Metrics L1-inv log10 RMS δ < 1.25 δ < 1.252 δ < 1.253

Single frame 0.0763 0.170 0.577 73.1% 90.8% 98.2%
LSTM tanh 0.0637 0.156 0.474 80.0% 92.8% 99.1%
LSTM leaky ReLU+norm 0.0518 0.140 0.398 80.1% 94.3% 99.6%

Table 1. Comparison of the recurrent architecture to its non-recurrent baseline for two
different activation functions in the LSTM unit on the SUN3D dataset. The recurrent
architectures improve over the single-frame baseline on all metrics. The leaky ReLU
activation unit always outperforms tanh activation.

5.2 Comparison to the state of the art

In Table 2, we compare the full network architecture to the state of the art in
depth estimation from single image. We trained the network for the first six
restarts on the SUN3D dataset and then fine-tuned it for the last restart on the
NYUv2 training data. For the evaluation, we randomly sampled 50 sequences
from the NYUv2 test set and evaluated on the first 50 frames of each sequence.
We evaluated only in the regions with valid depth values.

The use of temporal consistency with LSTM yields state-of-the-art results
in several metrics. Moreover, the version with temporal consistency outperforms
the baseline without LSTM units on all metrics. This clearly shows the benefit
of taking previous frames into account.

A qualitative comparison is shown in Figure 3. Our results have sharper
boundaries than the single-frame methods, and there is no flickering in the depth
maps estimated over time, as can be seen in the supplemental video.
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Metrics L1-inv log10 RMS δ < 1.25 δ < 1.252 δ < 1.253 fps

Liu [18] 0.155 0.133 0.995 56.1% 81.1% 88.7% 0.07
Eigen [5] 0.130 0.108 0.885 69.0% 86.9% 91.6% 0.33
Chakrabarti [3] 0.116 0.095 0.808 77.1% 88.3% 91.2% 0.04
Laina [16] 0.114 0.093 0.823 77.9% 88.4% 91.7% 8.25
Our single-frame 0.119 0.101 0.878 75.4% 87.7% 91.2% 8.33

Our LSTM 0.111 0.092 0.824 79.6% 88.9% 91.4% 4.54

Table 2. Comparison to the state of the art on 50 sequences from the NYUv2 dataset
with a length of 50 frames each. The use of temporal consistency with LSTM yields
state-of-the-art results on most metrics. The runtime performance of the methods
(frames per second) was estimated on the NVidia Geforce Titan X (Maxwell archi-
tecture).

Input GT Chakrabarti Laina Our 

Fig. 3. Qualitative comparison of our LSTM based network to the independent frame
processing of Chakrabarti et al. [3] and Laina et al. [16]. The result of the last im-
age in each 50-frame sequence is shown. The proposed architecture with multi-frame
processing yields sharper edges and captures more details.
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5.3 Temporal consistency

We show that our LSTM network learns to predict temporally consistent depth
maps. We validate this by comparing depth predictions of our LSTM-based
architecture with state of the art single-frame depth estimation networks. In
Figure 4 we show the depth trajectory of a point on a 50 frames sequence from
the NYUv2 dataset. And in Figure 5 we further show the temporal consistency
comparison with the average depth change over all pixels.
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Fig. 4. We track the depth of a single point over time. We use the KLT tracker [21,
27] to track the point in the image sequence and plot the depth over time. Our LSTM-
based architecture is not only more accurate but also more temporally consistent and
therefore suited for processing video streams.
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Fig. 5. Comparison of the temporal consistency with single frame Liu et al. [17], our
LSTM network, and ground truth. The bars represent the average depth change of
corresponding points between consecutive depth frames of a sequence of size 10. In
order to compute point correspondences we use Farneback optical flow [7]. Since optical
flow estimation introduces additional errors we also show the ground truth results.

Temporal consistency is clearly advantageous in static images. In case of
dynamic scenes, temporal consistency, which effectively induces smoothing over
time, could have negative effects. It is worth noting, though, that the proposed
approach does not smooth the resulting depth map, but the intermediate state
representation, i.e., the network can learn to smooth along the point trajectories
and consider motion boundaries and occlusion areas. To verify the performance
of the recurrent architecture in dynamic scenes we compare it to the single-frame
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baseline on the Princeton tracking benchmark, which comprises dynamic scenes.
We evaluated on four sequences with 50 frames each.

The results in Table 3 show that there is still a small advantage for the
LSTM-based architecture, yet it is smaller than in static cases. This indicates
that the network cannot learn all of the effects mentioned above, but at least it
alleviates most of the negative effects.

Metrics L1-inv log10 RMS δ < 1.25 δ < 1.252 δ < 1.253

Our single-frame 0.150 0.126 1.698 79.9% 81.8% 82.9%
Our LSTM 0.150 0.126 1.672 80.0% 82.0% 83.2%

Table 3. Depth prediction on the dynamic scenes of the Princeton tracking benchmark.
The results do not suffer from temporal consistency despite the motion of objects. In
the contrary, the results with temporal consistency are even a little better.

A qualitative result is shown in Figure 6. The single-frame baseline has prob-
lems with the shape of the moving object, while the recurrent network can exploit
the additional information from previous frames. The effect is strongest when
the object gets occluded and is partially not visible in the single frame.
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Fig. 6. Dynamic scene from the Princeton tracking benchmark. The temporally con-
sistency due to the LSTM helps to reconstruct the precise depth near boundaries of a
moving object.
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Fig. 7. The result of the RGB-D structure from motion [30] with depth from the
neural network of Eigen and Fergus [5], Laina [16] and our recurrent network. For each
reconstruction we use a sequence of 25 frames. We use Poisson surface reconstruction
to generate the meshes [14]. Inconsistent depth estimates for Eigen and Laina lead
to reconstruction artifacts in the surface mesh. The reconstructions from our depth
predictions show less artifacts and have more details.

5.4 3D reconstruction

We compared the quality of the predicted depth maps also in a full scene re-
construction context, where the depth maps were used as depth channel in an
RGB-D SLAM approach [30] to reconstruct a 3D scene from a video sequence.
Figure 7 shows the 3D reconstructions.

The temporally consistent depth maps help improve the reconstructed 3D
scene, since the variation of the same surface points over time is much reduced.
Thus, the point cloud is less noisy which leads to better 3D reconstruction. Also
there are less severe misalignments in the scan, since the temporally consistent
depth maps are easier to register for the SLAM method.

6 Conclusions

In this work, we have introduced the first depth estimation network that opti-
mizes the temporal consistency of the estimated depth map over multiple frames
in a video. We have shown that the LSTM with leaky ReLU yields better results
than the traditional convolutional LSTM with tanh activation. In this context,
we have also shown the importance of layer normalization for the stability of
the recurrent network. The experimental results with the proposed multi-frame
processing consistently outperformed those with frame-independent processing
both in static and dynamic scenes.
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