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Abstract. Designing a network on 3D surface for non-rigid shape analysis is a

challenging task. In this work, we propose a novel spectral transform network on

3D surface to learn shape descriptors. The proposed network architecture con-

sists of four stages: raw descriptor extraction, surface second-order pooling, mix-

ture of power function-based spectral transform, and metric learning. The pro-

posed network is simple and shallow. Quantitative experiments on challenging

benchmarks show its effectiveness for non-rigid shape retrieval and classifica-

tion, e.g., it achieved the highest accuracies on SHREC’14, 15 datasets as well as

the “range” subset of SHREC’17 dataset.
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1 Introduction

3D shape analysis has become increasingly important with the advances of shape scan-

ning and processing techniques. Shape retrieval and classification are two fundamental

tasks of 3D shape analysis, with diverse applications in archeology, virtual reality, med-

ical diagnosis, etc. 3D shapes generally include rigid shapes, e.g., CAD models, and

non-rigid shapes such as human surfaces with non-rigid deformations.

A fundamental problem in non-rigid shape analysis is shape representation. Tradi-

tional shape representation methods are mostly based on local artificial descriptors such

as shape context [4], mesh-sift [39, 22], spin images [19], etc., and they have shown ef-

fective performance especially for shape matching and recognition. These descriptors

are further modeled as middle level shape descriptors by Bag-of-Words model [21],

VLAD [18], etc., and then applied to shape classification and retrieval. For shapes with

non-rigid deformations, the model in [11] generalize shape descriptors from Euclidean

metrics to non-Euclidean metrics. The spectral descriptors, which are built on spectral

decomposition of Laplace-Beltrami operator defined on 3D surface, are popular in non-

rigid shape representation. Typical spectral descriptors include diffusion distance [20],

heat kernel signature (HKS) [41], wave kernel signature (WKS) [2] and scale invariant

heat kernel signature (SIHKS) [6]. In [8], spectral descriptors of SIHKS and WKS using

a Large Margin Nearest Neighbor (LMNN) embedding achieved state-of-the-art results

for non-rigid shape retrieval. Spectral descriptors are commonly intrinsic and invariant

to isometric deformations, therefore effective for non-rigid shape analysis.

⋆ Corresponding author.
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Fig. 1. Architecture of our proposed ST-Net. It consists of four stages, i.e., raw descriptor extrac-

tion, surface second-order pooling, SPDM-manifold transform and metric learning.

Recently, a promising trend in non-rigid shape representation is the learning-based

methods on 3D surface for tasks of non-rigid shape retrieval and classification. Many

learning-based methods take low-level shape descriptors as inputs and extract high-

level descriptors by integrating over the entire shape. In the work of [8], they first ex-

tract SIHKS and WKS, and then integrate them to form a global descriptor followed by

LMNN embedding. Global shape descriptors are learned by Long-Short Term Memory

(LSTM) network in [45] based on spectral descriptors. The eigen-shape and Fisher-

shape descriptors are learned by a modified auto-encoder based on spectral descriptors

in [12]. These works have shown impressive results in learning global shape descrip-

tors. Though these advances have been achieved, designing learning-based methods on

3D surface is still an emerging and challenging task, including how to design feature

aggregation and feature learning on 3D surface for non-rigid shape representation.

In this work, we propose a novel learning-based spectral transform network on 3D

surface to learn discriminative shape descriptor for non-rigid shape retrieval and classi-

fication. First, we define a second-order pooling operation on 3D surface which models

the second-order statistics of input raw descriptors on 3D surfaces. Second, consider-

ing that the pooled second-order descriptors lie on a manifold of symmetric positive

definite matrices (SPDM-manifold), we define a novel manifold transform for feature

learning by learning a mixture of power function on the singular values of the SPDM

descriptors. Third, by concatenating the stages of raw descriptor extraction, surface

second-order pooling, transform on SPDM-manifold and metric learning, we propose a

novel network architecture, dubbed as spectral transform network as shown in Fig. 1,

which can learn discriminative shape descriptors for non-rigid shape analysis.

To the best of our knowledge, this is the first paper that learns second-order pooling-

based shape descriptors on 3D surfaces using a network architecture. Our network struc-

ture is simple and easily to be trained, and is justified to be able to significantly improve

the discriminative ability of input raw descriptors. It is adaptive to various non-rigid

shapes such as watertight meshes, partial meshes and point cloud data. It achieved com-

petitive results on challenging benchmarks for non-rigid shape retrieval and classifica-

tion, e.g., 100% accuracy on SHREC’14 [32] dataset and the state-of-the-art accuracy

on the “range” subset of SHREC’17 [28] in metric of NN [38].
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2 Related Works

2.1 Learning approach for 3D shapes.

Deep learning is a powerful tool in computer vision, speech recognition, natural lan-

guage processing, etc. Recently, it has also been extended to 3D shape analysis and

achieves impressive progresses. One way for the extension is to represent the shapes

as volume data [44, 35] or multi-view data [3] and then send them to deep neural net-

works. The voxel and multi-view based shape representation have been successful in

rigid shape representation [35, 40] relying on a large training dataset. Due to the oper-

ations of voxelization and 3D to 2D projection, it may lose shape details especially for

non-rigid shapes with large deformations, e.g., human bodies with different poses. An

alternative way is to define the networks directly on 3D surface based on spectral de-

scriptors as in [45, 12, 5, 27]. These models benefit from the intrinsic properties of spec-

tral descriptors, and utilize surface convolution or deep nueral networks, e.g., LSTM,

auto-encoder, to further learn discriminative shape descriptors. PointNet [34, 36] is an-

other interesting deep learning approach that directly build network using the point

cloud representation of 3D shapes, which can also handle the non-rigid 3D shape clas-

sification using non-Euclidean metric. Compared with them, we build a novel network

architecture on 3D surface from the perspectives of second-order descriptor pooling

and spectrum transform on the pooled descriptors. It is justified to be able to effectively

learn surface descriptors on SPDM-manifold.

2.2 Second-order pooling of shape descriptors.

Second-order pooling operation was firstly proposed in [7] showing outstanding perfor-

mance in 2D vision tasks such as recognition [16] and segmentation [7]. The pooled de-

scriptors lie on a Riemannian SPDM-manifold. Due to non-Euclidean structure of this

manifold, many traditional machine learning methods based on Euclidean metrics can

not be used directly. As discussed in [1, 31], two popular metrics on SPDM-manifold

are affine-invariant metric and log-Euclidean metric. Considering the complexity, the

log-Euclidean metric and its variants [17, 15] that embed data into Euclidean space are

more widely used [7, 43]. The power-Euclidean transform [10] has achieved impressive

results which theoretically approximates the log-Euclidean metric when its power in-

dex approaches zero. The most related shape descriptors to ours for 3D shape analysis

are the covariance-based descriptors [9, 43]. In [9], they encoded the point descriptors

such as angular and texture within a 3D point neighbourhood by a covariance matrix.

In [43], the covariance descriptors were further incorporated into the Bag-of-Words

model to represent shapes for retrieval and correspondence. In our work, we present

a formal definition of second-order pooling of shape descriptors on 3D surface, and

define a learning-based spectral transform on SPDM-manifold, which can effectively

boost the performance of the pooled descriptors for 3D non-rigid shape analysis.

In the following sections, we first introduce our proposed spectral transform net-

work in Sect. 3. Then, in Sect. 4, we experimentally justify the effectiveness of the

proposed network on benchmark datasets for non-rigid shape retrieval and classifica-

tion. We finally conclude this work in Sect. 5.
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3 Spectral Transform Network on 3D Shapes

We aim to learn discriminative shape descriptors for 3D shape analysis by designing

a spectral transform network (ST-Net) on 3D surface. As illustrated in Fig. 1, our ap-

proach consists of four stages: raw descriptor extraction, surface second-order pooling,

SPDM-manifold transform and metric learning. In the followings, we will give detailed

descriptions of these stages.

3.1 Raw descriptor extraction

Let S denote the surface (either mesh or point cloud) of a given shape, in this stage, we

extract descriptors from S . For watertight surface, we select spectral descriptors, i.e.,

SIHKS [6] and WKS [2] as inputs, which are intrinsic and robust to non-rigid deforma-

tions. For partial surface and point cloud, we choose local geometric descriptors such as

Localized Statistical Features(LSF) [29]. All of them are dense descriptors represent-

ing multi-scale geometric features of the shape. Note that our framework is generic, and

other shape descriptors can also be used such as normals and curvatures.

Spectral descriptors. Spectral descriptors are mostly dependent on the spectral (eigen-

values and/or eigenfunctions) of the Laplace-Beltrami operator, and they are well suited

for the analysis of non-rigid shapes. Popular spectral descriptors include HKS [41],

SIHKS [6] and WKS [2]. Derived from heat diffusion process, HKS [41] reflects the

amount of heat remaining at a point after certain time. SIHKS [6] is derived from HKS

and it is scale-invariant. Both of them are intrinsic but lack spatial localization capabil-

ity. WKS [2] is another intrinsic spectral descriptor stemming from Schrödinger equa-

tion. It evaluates the probability of a quantum particle on a shape to be located at a point

under a certain energy distribution, and it is better for spatial localization.

Local geometric descriptors. Another kind of raw shape descriptor is local geomet-

ric descriptor, which encodes the local geometric and spatial information of the shape.

We select LSF [29] as input for partial and point cloud non-rigid shape analysis, and it

encodes the relative positions and angles locally on the shape. Assuming the selected

point is s1, its position and normal vector are p1 and n1, another point s2 with asso-

ciated position and normal vector as p2 and n2 is within the sphere of influence in a

radius r of s1. Then a 4-tuple (β1, β2, β3, β4) is computed as:

β1 = arctan(w · n1,u · n2), β2 = v · n2,

β3 = u · (p2 − p1)/||p2 − p1||, β4 = ||p2 − p1||.
(1)

where u = n1,v = (p2 − p1)× u/||(p2 − p1)× u||,w = u× v. For a local shape

of N points, a set of (N − 1) 4-tuples are computed for the center point, which are

collected into a 4-dimensional joint histogram. By dividing the histogram to 5 bins for

each dimension of the tuple, we have a 625-d descriptor for the center point, which

encodes the local geometric information around it.

Given the surface S , we extract either spectral or geometric shape descriptors called

as raw descriptors for each point s ∈ S , denoted as {h(s)}s∈S , which are taken as the

inputs of the following stage.
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3.2 Surface second-order pooling

In this stage, we generalize the second-order average-pooling operation [7] from 2D

image to 3D surface, and propose a surface second-order pooling operation. Given the

extracted shape descriptors {h(s)}s∈S , the surface second-order pooling is defined as:

H =
1

|S|

∫

S

hO2(s)ds, hO2(s) = h(s)h(s)⊤, (2)

where |S| denotes the area of the surface, hO2(s) is the second-order descriptor for a

point s, and H is a matrix of the pooled second-order descriptor on S , which is taken

as the output of this stage.

For the surface represented by discretized irregular triangular mesh, the integral

operation in Eq. (2) can be descretized considering the Voronoi area around each point:

H =
∑

s∈S

π(s)h(s)h(s)⊤, π(s) =
a(s)∑
p∈S a(p)

, (3)

where s denotes a discretized point on S with its Voronoi area as a(s). In our work,

we compute a(s) as in [33]. For the shapes composed of point cloud, Eq. (2) can be

descretized as average pooling of the second-order information:

H =
1

|S|
∑

s∈S

h(s)h(s)⊤, (4)

where |S| denotes the number of points on the surface.

The pooled second-order descriptors represent 2nd-order statistics of raw descrip-

tors over the 3D surfaces. It is obvious that H is a symmetric positive definite matrix

(SPDM), which lies on a non-Euclidean manifold of SPDM.

3.3 SPDM-manifold transform

This stage, i.e., SPDM-T stage, performs non-linear transform on the singular values of

the pooled second-order descriptors, and it is in fact a spectral transform on the SPDM-

manifold. This transform will be discriminatively learned for specific task enforced by

the loss in the next metric learning stage.

Forward computation. Assuming that we have a symmetric positive definite matrix

H , by singular value decomposition, we have:

H = UΛU⊤. (5)

We first normalize the singular values of H , i.e., the diagonal values of Λ, by L2-

normalization, achieving {Λ̃ii}NΛ

i=1, where NΛ is the number of singular values, then

perform non-linear transform on {Λ̃ii}NΛ

i=1. Inspired by polynomial function, we pro-

pose the following transform:

Λ′ = diag{fMPF (Λ̃11), · · · , fMPF (Λ̃NΛNΛ
)}, (6)
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where diag{·} is a diagonal matrix with input elements as its diagonal values, fMPF (·)
is a mixture of power function:

fMPF (x) =

Nm∑

i=0

γix
αi , αi ∈ [0, 1], (7)

where {αi}Nm

i=0 are Nm + 1 samples with uniform intervals in range of [0, 1], Γ =
(γ0, γ1, · · · , γNm

)⊤ is a vector of combination coefficients and required to satisfy:

Γ⊤1 = 1, Γ ≥ 0. (8)

To meet these requirements, the coefficients are defined as:

γi =
eωi

∑Nm

j=0 e
ωj

, i = 0, 1, · · · , Nm. (9)

Then we instead learn the parameters in Ω = (ω0, ω1, · · · , ωNm
)⊤ to determine Γ .

After this transform, a new singular value matrix Λ′ is derived. Combining it with

the original singular vector matrix U , we get the transformed descriptor H ′ as:

H ′ = UΛ′U⊤ = Udiag{fMPF (Λ̃11), · · · , fMPF (Λ̃NΛNΛ
)}U⊤. (10)

H ′ is also a symmetric positive definite matrix. Due to the symmetry of H ′, the ele-

ments of its upper triangular g(H ′) are kept as the output of this stage, where g(·) is an

operator vectorizing the upper triangular elements of a matrix.

Backward propagation. As proposed in [17], matrix back-propagation can be per-

formed for SVD decomposition. Let (·)diag denote an operator on matrix that sets all

non-diagonal elements to 0, (·)Gdiag be an operator of vectorizing the diagonal elements

of a matrix, g−1(·) be the inverse operator of g(·), ⊙ be the Hadamard product opera-

tor. For backward propagation, assuming the partial derivative of loss L with respect to

g(H ′) as ∂L
∂g(H′) , we have:

∂L

∂Λ′
= (U⊤g−1(

∂L

∂g(H ′)
)U)diag, (11)

(
∂L

∂Γ
)i = (Λ̃αi

∂L

∂Λ′
)⊤Gdiag1, i = 0, 1, ..., Nm, (12)

∂L

∂Ω
= (

∂L

∂Γ
− Γ⊤ ∂L

∂Γ
)⊙ Γ. (13)

The partial derivative of loss function L with respect to the parameter Ω can be derived

by successively computing Eqs. (11), (12), (13). Please refer to supplementary material

for gradient computations.

Analysis of SPDM-T stage. The pooled second-order descriptor H lies on the SPDM-

manifold, and the popular transform on this manifold is log-Euclidean transform [10],

i.e., H ′ = log(H). However, it is unstable when the singular values of H are near or

equal to zero. The logarithm-based transforms such as H ′ = log(H + ϵI) [17] and
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H ′ = log(max{H, ϵI}) [15] are proposed to overcome this unstability, but they need a

positive constant regularizer ϵ which is difficult to set. The power-Euclidean metric [10]

theoretically approximates the log-Euclidean metric when its power index approaches

zero while being more stable. Our proposed mixture of power function fMPF (·) is an

extension of power-Euclidean transform that takes it as a special case. The SPDM-

T stage learns an effective transform in the space spanned by the power functions

adaptively using a data-driven approach. Furthermore, the mixture of power function

fMPF (·) is constrained to be nonlinear and retains non-negativeness and order of the

eigenvalues (i.e., singular values of a symmetric matrix).

From a statistical perspective, H can be seen as a covariance matrix of input de-

scriptors on 3D surface. Geometrically, its eigenvectors in columns of U construct

a coordinate system, its eigenvalues reflect feature variances projected to eigenvec-

tors. By transforming these projected variances (eigenvalues), fMPF (·) implicitly tunes

the statistics distribution of input raw descriptors in pooling region when training.

Since the entropy of Gaussian distribution with covariance H ∈ Rd×d is E(H) =
1
2 (d+log(2π)+ log

∏
i Λii), transforming eigenvalues Λii by fMPF (·) implicitly tune

the entropy of distribution of raw descriptors on 3D surface.

3.4 Metric learning

With the transformed descriptors g(H ′) as input, we embed them into a low-dimensional

space where the descriptors are well grouped or separated with the guidance of la-

bels. To prove the effectiveness of the SPDM-T stage, we design a shallow neural

network to achieve the metric learning stage. We first normalize the input g(H ′) by

L2-normalization, achieving g̃(H ′), then add a fully connected layer:

F = Wg̃(H ′), (14)

where W is a matrix in size of Dm × Dp. F is the descriptor of the whole shape.

We further send F into loss function for specific shape analysis task to enforce the

discriminative ability of shape descriptor. In this work, we focus on shape retrieval and

classification. We next discuss the loss functions.

Shape retrieval. Given a training set of shapes, the loss for shape retrieval is defined

on all the possible triplets of shape descriptors TR = {Fi, F
Pos
i , FNeg

i }, where i is

the index of triplet, FPos
i and FNeg

i are two shape descriptors with same and different

labels w.r.t. the target shape descriptor Fi respectively:

L =

|TR|∑

i=1

(µ+ ||Fi − FPos
i || − ||Fi − FNeg

i ||)2+ + η||Fi − FPos
i ||, (15)

where |TR| is the number of triplets in TR, || · || is L2-norm, µ is the margin, (·)+ =
max{·, 0} and η is a constant to balance these two terms.

Shape classification. We construct the cross-entropy loss for shape classification. Given

the learned descriptor {Fi} with their corresponding labels as {yi}, we first add a fully

connected layer after Fi to map the features to scores for different categories, and then

followed by a softmax layer to predict the probability of a shape belonging to different
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categories, and the probabilities of all training shapes are denoted as TC = {F̃i}. The

loss function is defined as:

L =

|TC |∑

i=1

M∑

j=1

yji log(F̃ j
i ) + (1− yji )log(1− F̃ j

i ) (16)

where |TC | is the number of training shapes, i and j indicate the shape and category

respectively, and M is the total number of categories.

The combination of fully connected layer and loss function results in a metric learn-

ing problem. Minimizing the loss function embeds the shape descriptors into a lower-

dimensional space, in which the learned shape descriptors are enforced to be discrimi-

native for specific shape analysis task.

3.5 Network training

For the task of shape retrieval, each triplet of shapes {Fi, F
Pos
i , FNeg

i } is taken as a

training sample and multiple triplets are taken as a batch for training with mini-batch

stochastic gradient descent optimizer (SGD). For shape classification, the network is

also trained by mini-batch SGD. To train the network, the raw descriptor extraction

and second-order pooling stage as well as the SVD decomposition can be computed

off-line, and the learnable parameters in ST-Net are Ω in SPDM-T stage and W in

metric learning stage and the later fully connected layer (for classification). For the

non-linear transform in SPDM-T stage, we set Nm = 10, αi =
i
10 , i ∈ {0, 1, ..., 10}.

The gradients of loss are back-propagated to the SPDM-T stage.

4 Experiments

In this section, we evaluate the effectiveness of our ST-Net, especially the surface

second-order pooling and SPDM-T stages, for 3D non-rigid shape retrieval and clas-

sification. We test our model on watertight and partial mesh datasets as well as point

cloud dataset. We will successively introduce the datasets, evaluation methodologies,

quantitative results and the evaluation of our SPDM-T stage.

4.1 Datasets and evaluation methodologies

Considering that our network is designed for non-rigid shape analysis, we evaluate it for

shape retrieval on SHREC’14 [32] and SHREC’17 [28] datasets, and we test our archi-

tecture for shape classification on SHREC’15 [23] dataset. All of them are composed

of non-rigid shapes with various deformations.

SHREC’14. This dataset includes two datasets of Real and Synthetic human data re-

spectively, both of which are composed of watertight meshes. The Real dataset com-

prises of 400 meshes from 40 human subjects in 10 different poses. The Synthetic

dataset consists of 15 human subjects with 20 poses, resulting in a dataset of 300 shapes.

We will try three following experimental settings, which will be refered as “setting-i”
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Table 1. Retrieval results on SHREC’14 Synthetic and Real dataset in setting-1 (in %). We show

the results of ST-Net as well as the baselines and state-of-the-art CSDLMNN [8].

Method
Synthetic Real

NN 1-T 2-T DCG NN 1-T 2-T DCG

CSDLMNN [8] 99.7 98.0 99.9 99.6 97.9 92.8 98.7 97.6

Surf-O1 82.7 77.1 84.3 83.6 54.2 52.6 57.9 55.0

Surf-O2 87.3 84.2 89.2 87.8 61.1 57.2 64.0 63.2

Surf-O1-ML 100 96.9 99.9 99.7 96.7 91.9 98.3 96.9

Surf-O2-ML 100 100 100 100 98.8 96.1 99.6 99.9

ST-Net 100 100 100 100 100 99.8 100 99.9

(i = 1, 2, 3). In setting-1, 40% and 60% shapes are used for training and test respec-

tively as in [8]. In setting-2, an independent training set1 including unseen shape cat-

egories is taken as training set and the Real dataset of SHREC’14 is used for test. In

setting-3, 30% of the classes are randomly selected as the training classes and remain-

ing 70% classes are used for test as in Litman [32]. Both setting-2 and 3 are challenging

because the shapes in training and test sets are disjoint in shape categories.

SHREC’15. This dataset includes 1200 watertight shapes of 50 categories, each of

which contains 24 shapes with various poses and topological structures. To compare

with the state-of-the-art PointNet++ [36] on the dataset, we use the experimental setting

in [36], i.e., treating the shapes as point cloud data, and using 5-fold cross-validation to

test the accuracy for shape classification.

SHREC’17. This dataset is composed of two subsets, i.e., “holes” and “range”, which

contain meshes with holes and range data respectively. We use the provided standard

splits for training / test. The “holes” subset consists of 1216 training and 1078 test

shapes, and the “range” subset consists of 1082 training and 882 test shapes.

Evaluation methodologies. For non-rigid shape retrieval, we evaluate results by NN

(Nearest Neighbor), 1-T (First-Tier), 2-T (Second-Tier), and DCG (Discounted Cumu-

lative Gain) [38]. For non-rigid shape classification, the results are evaluated by classi-

fication accuracy, i.e., the percentage of correctly classified shapes.

4.2 Results for non-rigid shape retrieval on watertight dataset

For non-rigid shape retrieval on SHREC’14 datasets, we select SIHKS and WKS as

input raw descriptors. We discretize the Laplace-Beltrami operator as in [33], and com-

pute 50-d SIHKS and 100-d WKS. In the surface second-order pooling stage, the de-

scriptors are computed by Eq. (3). When training the ST-Net for shape retrieval, the

batch size, learning rate and margin µ are set as 5, 20 and 60 respectively. The descrip-

tor of every shape is 100-d, i.e., Dm = 100. In the loss function, η is set as 1.

To justify the effectiveness of our architecture, we compare the following differ-

ent variants of descriptors for shape retrieval. (1) Surf-O1: pooled raw descriptors on

surfaces. (2) Surf-O2: pooled second-order descriptors on surfaces. (3) Surf-O1-ML: de-

scriptors of Surf-O1 followed by a metric learning stage. (4) Surf-O2-ML: descriptors of

1 http://www.cs.cf.ac.uk/shaperetrieval/download.php
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Surf-O2 followed by a metric learning stage. For retrieval task, the descriptors of Surf-

O1 and Surf-O2 are directly used for retrieval based on Euclidean distance. In Table 1,

we report the results in experimental setting-1 of these descriptors as well as state-of-

the-art CSDLMNN [8] method. As shown in the table, the increased accuracies from

Surf-O1 to Surf-O2, and that from Surf-O1-ML to Surf-O2-ML indicate the effective-

ness of the surface second-order pooling stage. The improvements from Surf-O2-ML

to ST-Net demonstrate the advantage of the SPDM-T stage. Our full ST-Net achieves

100% accuracy in NN (i.e., the percentage of retrieved nearest neighbor shapes belong-

ing to the same class as queries) on SHREC’14 Synthetic and Real datasets. Compared

with state-of-the-art CSDLMNN [8] method, the competitive accuracies justify the ef-

fectiveness of our method.

Table 2 presents results in mean average precision (mAP) on SHREC’14 Real and

Synthetic datasets in setting-1 compared with RMVM [14], CSDLMNN [8], in which

CSDLMNN is a state-of-the-art approach for this task. For our proposed ST-Net, we

randomly split the training and test subsets five times and report the average mAP with

standard deviations shown in brackets. In the table, we also present the baseline results

of our ST-Net to justify the effectiveness of our architecture. Our ST-Net achieves high-

est mAP on both datasets, demonstrating its effectiveness for watertight non-rigid shape

analysis. In Table 3, we also show the results on SHREC’14 Real dataset using setting-2

and setting-3, which are more challenging since the training and test sets have disjoint

shape categories. ST-Net still significantly outperforms the baselines of Surf-O1-ML

and Surf-O2-ML, and achieves high accuracies. Our ST-Net significantly outperforms

Litman [32] using the experimental setting-3.

Table 2. Results for shape retrieval in setting-1 evaluated by mAP in % on SHREC’14 Synthetic

and Real datasets. Our ST-Net performs best on both datasets.

Dataset RMVM[14] CSDLMNN[8] Surf-O1 Surf-O2 Surf-O1-ML Surf-O2-ML ST-Net

Synthetic 96.3 99.7 82.7 85.3 93.6 97.1 100(0)

Real 79.5 97.9 50.8 59.4 90.5 95.3 99.9(0.1)

4.3 Results for non-rigid shape retrieval on partial dataset

We now evaluate our approach on non-rigid partial shapes in subsets of “holes” and

“range” of SHREC’17 dataset. Considering that the shapes are not watertight surface,

we use local geometric descriptors as raw descriptors. We select 3000 points uniformly

as in [30] for every shape and compute 625-d LSF as inputs. In the surface second-

order pooling stage, the descriptors are computed by Eq. (4). When training the ST-Net

for shape retrieval, the batch size, learning rate and margin µ are set as 5, 100 and

60 respectively. The descriptor of every shape is 300-d, i.e., Dm = 300. In the loss

function, the constant η is set as 1.

In Table 4, we first compare our ST-Net with the baselines, i.e., Surf-O1, Surf-O2,

Surf-O1-ML and Surf-O2-ML to show the effectiveness of our network architecture.



Spectral Transform Network 11

Table 3. Results for shape retrieval on SHREC’14 Real dataset in setting-2 and -3 (in %). ST-Net

achieves the best performance.

method NN 1-T 2-T EM DCG

Setting-2

Surf-O1-ML 45.75 35.25 59.08 34.76 63.84

Surf-O2-ML 80.25 63.94 78.39 40.94 80.21

ST-Net 85.75 71.33 88.92 43.20 88.29

Setting-3

Litman[32] 79.3 72.7 91.4 43.2 89.1

Surf-O1-ML 54.29 46.67 70.91 37.60 71.71

Surf-O2-ML 88.76 82.01 96.47 42.82 90.75

ST-Net 92.53(1.49) 84.78(2.43) 96.93(1.17) 43.86(0.36) 93.85(1.63)

The raw LSF descriptors after second-order pooling without learning, i.e., Surf-O2,

produces the accuracy of 69.0% and 71.7% in NN on “holes” and “range” subsets re-

spectively. With the metric learning stage, the results are increased to 75.9% and 77.6%

for these two subsets. The ST-Net with both SPDM-T stage and metric learning stage

increases the accuracies to be 96.1% and 97.3% respectively, with around 20 percent

improvement than the results of Surf-O2-ML. This clearly shows the effectiveness of

our defined SPDM-T stage for enhancing the discriminative ability of shape descriptors.

Moreover, the performance increases from Surf-O1 to Surf-O2 and from Surf-O1-ML

to Surf-O2-ML justify the effectiveness of surface second-order pooling stage over the

traditional first-order pooling (i.e., average pooling) on surfaces.

In Table 4, we also compare our results with the methods that participate to the

SHREC’17 track, i.e., DLSF [13], 2VDI-CNN, SBoF [25], and BoW+RoPS, BoW+HKS,

RMVM[14], DNA [37], etc., and the results of their methods are from [28]. In DLSF [13],

they design their deep network by first training a E-block and then training a AC-block.

The method of 2VDI-CNN is based on multi-view projections of 3D shapes and deep

GoogLeNet[42] for shape descriptor learning. The method of SBoF [25] trains a bag-of-

features model using sparse coding. The methods of BoW+RoPS, BoW+HKS combine

BoW model with shape descriptors of RoPS and HKS for shape retrieval. As shown

in the table, our ST-Net ranks second on the “holes” subset and achieves the highest

accuracy in NN, 2-T and DCG on the “range” subset, demonstrating its effectiveness

for partial non-rigid shape analysis. Compared with the deep learning-based methods of

DLSF [13], 2VDI-CNN, our network architecture is shallow and simple to implement

but achieves competitive performance.

In Figure 2, we show the top retrieved shapes with interval of 5 in ranking index

given query shapes on the leftmost column, and the examples in sub-figures (a) and (b)

are respectively from SHRES’17 “holes” and “range” subsets. These shapes are with

large non-rigid deformations. The examples show that ST-Net enables to effectively

retrieve the correct shapes even when the shapes are range data or with large holes.

4.4 Results for non-rigid shape classification on point cloud data

In this section, we mainly aim to compare our approach with state-of-the-art deep net-

work of PointNet++ [36] for non-rigid shape classification by point cloud representa-
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ST-O2-ML

ST-Net

ST-O2-ML

ST-Net

( )b

( )a

ST-O1-ML

ST-O1-ML

Retrieval results for a shape with holes

Retrieval results for a range data

Fig. 2. Instances of retrieved top ranked shapes with interval of 5 in ranking index. The wrongly

retrieved shapes are shown in red.

tion. We compare on SHREC’15 non-rigid shape dataset for classification, and Point-

Net++ reported state-of-the-art results on this dataset. For every shape, we uniformly

sample 3000 points as [30], and take the 625-d LSF as raw descriptors. The second-

order descriptors are pooled by Eq. (4). When training the ST-Net, the batch size, learn-

ing rate are set as 15 and 1.

We compare ST-Net with baseline architectures of Surf-O1, Surf-O2, Surf-O1-ML,

Surf-O2-ML in Table 5. For the ST-Net, we perform 5-fold cross-validation for 6 times

(each time using a different train/test split), and the average accuracy is reported with

standard deviation shown in bracket. For classification task, the descriptors are sent

to classification loss (see Sect. 3.4) for classifier training. The raw descriptors using

average pooling, i.e., Surf-O1, achieves 85.58% in classification accuracy. Our ST-Net

achieves 97.37% accuracy, which shows the effectiveness of our network architecture.

In Table 5, we also present the classification accuracies of deep learning-based

methods of DeepGM [26] and PointNet++ [36]. DeepGM [26] learns deep features

from geodesic moments by stacked autoencoder. PointNet++ [36] is pioneering work

for deep learning on point clouds based on a well designed PointNet [34] recursively

on a nested partition of the input point set. Compared with the state-of-the-art method

of PointNet++ [36], the classification accuracy of our ST-Net is higher.

4.5 Evaluation for SPDM-manifold transform

SPDM-T is an essential stage in our ST-Net. Besides the analysis in Sect. 3.3, we eval-

uate and visualize the learned SPDM-manifold transform in this subsection.
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Table 4. Shape retrieval results on SHREC’17 non-rigid datasets. The deep learning-based meth-

ods are signed with “*”. The values are formatted as percentage.

(a) The “holes” subset

Meshod NN 1-T 2-T DCG

DLSF* [13] 100 97.1 99.9 99.8

2VDI-CNN* 90.6 81.8 93.7 95.4

SBoF [25] 81.5 32.6 49.4 78.0

BoW+HKS 57.8 26.1 43.6 72.5

BoW+RoPS 60.7 91.8 97.0 96.8

RMVM[14] 39.2 22.6 40.2 67.9

DNA [37] 7.8 16.3 34.8 63.2

Surf-O1 66.8 23.6 37.5 71.3

Surf-O2 69.0 24.0 38.8 71.7

Surf-O1-ML 73.2 29.4 46.7 75.4

Surf-O2-ML 75.9 49.4 72.3 83.2

ST-Net 96.1 85.8 95.7 97.7

(b) The “range” subset

Meshod NN 1-T 2-T DCG

2VDI-CNN* 96.9 90.6 97.7 98.0

SBoF [25] 81.1 31.7 51.0 76.9

BoW+RoPS 51.5 91.5 95.9 96.0

BoW+HKS 51.9 32.6 53.7 73.6

DNA [37] 13.0 18.3 36.6 64.0

Surf-O1 69.8 26.1 39.4 71.3

Surf-O2 71.7 25.7 40.2 71.3

Surf-O1-ML 75.6 27.8 47.7 73.8

Surf-O2-ML 77.6 58.2 79.7 87.2

ST-Net 97.3 86.2 97.9 98.4

Table 5. Results for shape classification (in %) on SHREC’15. For ST-Net, we repeat 5-fold

cross-validation for 6 times and report the average accuracy with standard deviation in bracket.

DeepGM [26] PointNet++ [36] Surf-O1 Surf-O2 Surf-O1-ML Surf-O2-ML ST-Net

Acc 93.03 96.09 85.58 89.84 91.00 93.08 97.37(0.97)

We first evaluate the effects of different transforms in the SPDM-T stage quan-

titatively on SHREC’14 Real dataset in setting-3. These transforms include power-

Euclidean (1/2-pE) [10], i.e., y =
√
x, and logarithm-based transforms: y = log(x)

(L-E) [10], y = log(x+ ϵ) (L-R) [17] and y = log(max{x, ϵ}) (L-M-R) [15]. Besides

the transforms mentioned above, we also present the results of L2- Normalization (L2-

N) and Signed Squareroot +L2- Normalization (SSN) [24]. These compared results in

Table 6 are produced by ST-Net with fMPF (·) fixed as these transforms. The results

are measured by NN and 1-T. It is shown that our learned transform achieves the best

results. Some of these compared transforms, such as L-E, L-R, L-M-R, perform well in

the training set but worse in the test set, and our proposed transform prevents overfitting.

We then visually show the learned transform function fMPF (·) in Fig. 3. We draw

the curves of learned fMPF (·) and show examples of pooled second-order descrip-

tors before and after transform using fMPF (·) on SHREC’14 Real dataset for retrieval

(Fig. 3(a)) and SHREC’15 dataset for classification (Fig. 3(b)). As shown in the curves,

our learned fMPF (·) increases the eigenvalues and increases more on the smaller eigen-

values of the pooled second-order descriptors. According to the analysis in Sect. 3.3, the

learned transform fMPF (·) increases the entropy of distribution of input raw descrip-

tors, resulting in more discriminative shape descriptors using metric learning as shown

in the experiments. In each sub-figure of Fig. 3, compared with traditional fixed trans-

forms, our net can adaptively learn transforms fMPF (·) for different tasks by discrim-



14 R. Yu et al

Table 6. Results for shape retrieval on SHREC’14 Real dataset in setting-3 (in %). Our transform

performs the best in both of the training and test sets.

Metric L-E [10] L-R [17] L-M-R [15] L2-N SSN [24] 1/2-pE [10] Proposed

NN
train 100 93.33 95.00 95.83 97.50 99.17 98.33

test 61.07 65.00 65.36 82.14 84.64 88.57 92.50

1-T
train 93.15 82.04 83.61 87.69 95.37 96.48 96.67

test 53.17 49.40 50.36 70.20 75.32 77.30 85.20

inative learning. We also show the pooled second-order descriptors before (upper-right

images) and after (lower-right images) the transform of fMPF (·) in the sub-figures, and

the values around diagonal elements are enhanced after transform.
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Fig. 3. Illustrations of learned fMPF (·) in SPDM-T stage. Each sub-figure shows transform

curves including our learned fMPF (·) and an example of pooled second-order descriptors be-

fore (upper-right images) and after (lower-right images) transform using learned fMPF (·).

5 Conclusion

In this paper, we proposed a novel spectral transform network for 3D shape analysis

based on surface second-order pooling and spectral transform on SPDM-manifold. The

network is simple and shallow. Extensive experiments on benchmark datasets show

that it can significantly boost the discriminative ability of input shape descriptors, and

generate discriminative global shape descriptors achieving or matching state-of-the-art

results for non-rigid shape retrieval and classification on diverse benchmark datasets.

In the future work, we are interested to design an end-to-end learning framework

including the raw descriptor extraction on 3D meshes or point clouds. Furthermore, we

can also possibly pack the surface second-order pooling stage, SPDM-T stage and fully

connected layer as a block, and add multiple blocks for building a deeper architecture.
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