This ECCV 2018 workshop paper, provided here by the Computer Vision Foundation, is the author-created
version. The content of this paper is identical to the content of the officially published ECCV 2018
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccv

Targeted Kernel Networks: Faster Convolutions
with Attentive Regularization

Kashyap Chitta

The Robotics Institute, Carnegie Mellon University
kchitta@andrew.cmu.edu

Abstract. We propose Attentive Regularization (AR), a method to con-
strain the activation maps of kernels in Convolutional Neural Networks
(CNNs) to specific regions of interest (ROIs). Each kernel learns a loca-
tion of specialization along with its weights through standard backprop-
agation. A differentiable attention mechanism requiring no additional
supervision is used to optimize the ROIs. Traditional CNNs of different
types and structures can be modified with this idea into equivalent Tar-
geted Kernel Networks (TKNs), while keeping the network size nearly
identical. By restricting kernel ROIs, we reduce the number of sliding
convolutional operations performed throughout the network in its for-
ward pass, speeding up both training and inference. We evaluate our
proposed architecture on both synthetic and natural tasks across multi-
ple domains. TKNs obtain significant improvements over baselines, re-
quiring less computation (around an order of magnitude) while achieving
superior performance.

Keywords: Soft Attention - Region of Interest - Network Acceleration

1 Introduction

Convolutional Neural Networks (CNNs) have been largely responsible for the sig-
nificant progress achieved on visual recognition tasks in recent years [23,27,33].
By sharing weights to be used by convolutional kernels across the entire spatial
area of their input activations, CNNs use translated replicas of learned fea-
ture detectors, allowing them to translate knowledge about good weight values
acquired at one position in an image to all other positions. This leads to trans-
lational equivariance— a translated input to a convolutional layer will end up
producing an identically translated activation after passing through it.

Though it works well in nearly all situations, it is possible for this ’knowledge
translation’ to be a double-edged sword. By sharing weights across the whole
input, we bias the network to prioritize learning representations that would be
useful over the entire image area. Due to this, it may have to compromise on
learning some weights that are critical to the network’s final objective, simply
because these weights were useful only in a small area of the whole image. The
possibility of this happening increases if the inputs possess a uniform spatial
layout.

2 K. Chitta

Assuming that the network inputs are captured or preprocessed in a way
that provides some spatial structure, certain objects are more likely to be in
particular locations than others. For example, if the inputs are all upright faces
cropped with a face detector, it is far more likely to find an eye in one of the top
quadrants of the input than in the bottom ones. In images of outdoor scenes,
it is more likely to see blue skies at the top than the bottom. More often than
not, there is some such spatial structure associated with the inputs to any visual
recognition task. This means that based on what a kernel is supposed to look
for, independently learning weights at different spatial locations can potentially
generate better representations.

A locally connected layer takes this idea to the extreme- its forward pass
involves convolutions with no weight sharing at all, with a different kernel for
every spatial location in the input. By perfectly aligning facial images and then
learning representations using locally connected layers, human-level accuracy
was first achieved in face recognition [64]. Unfortunately, the feasibility of this
approach is limited due to the heavy dependence on perfect alignment of inputs
and drastic increase in parameter count, leading to a requirement of far more
training data (since there is no longer any ’knowledge translation’).

Only sharing weights over selected Regions of Interest (ROIs) is another
possibility that has been explored, implemented by training separate CNNs on
different ROIs and merging their representations at a point deeper in the net-
work [38, 39,60, 73]. The kernels are now specialized to their input ROIs, and
the parameter count increase is controlled by architectural choices. Finding the
right ROIs to use, however, is a tedious step usually requiring domain-specific
knowledge to be done effectively. Any manual selection, even by the best domain
experts, would almost certainly not lead to the most optimal choice of ROIs for
the given task and network topology.

An alternative approach would be to learn the most optimal ROI for each
kernel directly from the data, by end-to-end training. Trying to do this as a tuple
of the ROI center and spatial size results in models that are not differentiable and
require complex learning procedures [3]. We propose Attentive Regularization
(AR), a method to achieve this using a differentiable attention mechanism [21],
allowing our models to be trained end-to-end with simple backpropagation. The
key idea behind AR is to associate each rectangular ROI with the parameters of
a smooth differentiable attention function. The attention function helps generate
gradients of the loss with respect to the location and size of the ROI. Figure 1
illustrates the effect of AR, comparing it with a standard convolution and a fixed
ROI based approach. For the purpose of illustration, we use a "layer’ operating on
an RGB image with only four kernels, each looking for a semantically meaningful
part.

An attractive consequence of having ROIs for each kernel is computational
efficiency— computing convolutions over small ROIs for every kernel in a layer
greatly reduces redundant operations in the network, speeding up both training
and evaluation.

Targeted Kernel Networks 3

Fig. 1. (a) Input (b) Activations after a standard convolution with four kernels (actu-
ally correlation filters). These kernels are optimized to be activated by the left eye, right
eye, nose and mouth respectively. However, they give large, unpredictable responses
across the image. (¢) Manual ROI selection and activations after convolutions on these
selected ROIs. (d) The proposed approach, attention functions learned from data, and
activations after AR. We observe that through spatial specialization, even crude fea-
tures can become powerful, as they become independent of other spatial locations.

Our contribution is three-fold: First, we propose and describe AR and
its incorporation into existing CNN architectures, resulting in Targeted Kernel
Networks (TKNs). Second, we evaluate TKNs on digit recognition benchmarks
with coarse alignment in the form of digit centering, as well as synthetic set-
tings with more alignment, significantly outperforming CNN baselines. Finally,
we demonstrate their application for network acceleration on more complicated
structured data, like faces and road traffic signs.

2 Related Work

Regularizing CNNs. Deep CNNs have a vast potential to overfit data when
they have to be trained from scratch. Conventional machine learning approaches
to handle this like weight decay, data augmentation, and model ensembles alle-
viate the problem only to an extent. Dropout [57] was one of the most suc-
cessful methods for regularizing layers with very large parameter counts in
CNNs [33,55].

Most recent models have substituted this with some constraint on the acti-

vations [31], the most popular of which is batch normalization [28]. This uses
other images in the mini-batch along with learned scaling parameters to con-
strain the activations using computed statistics. We force the network to find
good weights without giving the kernels free access to all spatial locations in the
image during training, with a similar approach of applying constraints through
learned parameters.
Spatially specialized CNNs. Several approaches look into architectures that
operate on ROIs, specifically in object detection [19,20,48]. However, these meth-
ods typically propose ROI based object candidates for each input image, and
not for the network kernels. Additional bounding box supervision is also nec-
essary to learn these proposals. Unlike these methods, ROIs at a kernel level
have been used in facial action unit detection [14], but the regions are hand-
crafted [38,39,73].

4 K. Chitta

Attention. One of the most promising trends in research is the emergence of
attention based models. Early work in this area [10,34,51] was inspired by the
process of sequential recognition used by the biological vision system in humans.
Recent adaptations have leveraged the representational power of deep neural
networks with visual attention for a variety of tasks, some of which were image
classification [4,17,59,66], image generation [21], image captioning [5,25,42,68],
visual question answering [44, 53,67, 69], action recognition [18] and one-shot
learning [54]. More closely related approaches to AR are attempts at multi-
layer [52] and multi-channel [5] attention. Our main advantage over existing
soft attention methods is that we systematically remove computational process-
ing throughout the network while maintaining the fully differentiable property.
Other approaches require hard attention with reinforcement learning for network
acceleration.

Efficient CNNs. Cheng et al. [8] summarize model compression and accelera-
tion approaches into four categories— parameter pruning and sharing [7,22, 35,
46, 56], low-rank factorization [11,30,63], transferred or compact convolutional
filters [12,62,65], and knowledge distillation [6, 26,49, 70]. One of the primary
goals of early attention models was increasing efficiency [3]. This has resurfaced
recently in the form of various architectures for spatially restricting computation.

Spatial Computation Restriction in CNNs. Dynamic Capacity Networks
[2] define attention maps to apply sub-networks to only specific input patches
for fine representations, which they later combine with the representations of
a coarse network. Similarly, SBNet [47] uses a low resolution sub-network to
obtain a computation mask for the main deep network. A more recent idea
uses a learnable application of channel-wise sparsity to completely eliminate
certain kernels dynamically [13]. All these techniques restrict computation to
the uncertain regions of the current image, whereas in our work, we restrict
computation to certain (learnable) regions for all images. The two ideas are
orthogonal and computational gains could be observed by combining them.

PerforatedCNNs [16] study strategies for skipping calculation of convolutions
tied to certain spatial locations in a convolutional layer. These strategies are
loosely based on using grid-like lattices, where computations at the intermediate
points are approximated with interpolation. Our work removes computation in
a similar fashion, but no interpolation is required since we do not have any
intermediate values to recover.

3 Attentive Regularization

In its simplest form, AR can be considered an additional layer operating on
the activation of a convolutional layer using an attention window. We begin by
explaining the one-dimensional implementation in this form before moving on
to the generalized version and higher dimensional inputs.

Targeted Kernel Networks 5

3.1 AR in One Dimension

Consider the activation tensor A € RP*E resulting from a one dimensional

convolution of a sequence of length L with D different kernels. Let a® € RE
denote the row of this tensor corresponding to the C** kernel in the layer. The
objective of AR is to constrain each one of these activation vectors using a
differentiable attention function f,¢. The window for attention is constructed
as this function drops off numerically from 1 to 0. By sampling fu:(z) at L
equally spaced points, we obtain an equivalent attention vector representing our
function, f,;; € R, Element-wise multiplication can now be used to weigh the
original activation vector using its corresponding attention vector:

ag&t =a’o® fgtt (1)

where a$,, is the attentively regularized activation along the channel C, and ®
denotes the element-wise product.

The key to optimizing the area of specialization of the kernels is now a
problem of learning the right parameters to define the function fu:.

3.2 Differentiable Functions for Attention

The most obvious choice of f,4+ to create a smooth attention window is the
Gaussian function:

fatt(x;ﬂ,o') = e_(x_lt)z/QUZ (2)

This is completely parametrized by two variables, its mean p and variance
o2. Every time an update is applied to the convolutional layer weights during
backpropagation, we can also update these two parameters in the AR layer. By
varying p, the attention can translate to the optimal location in the sequence,
and varying o2 allows the layer to learn the optimal scale, i.e., the amount of
focus to pay at the chosen location.

We also experimented with Cauchy functions, which have distinctively heav-
ier tails than the corresponding Gaussians as shown in Figure 2. We premised
that this property would improve the gradient flow and help speed up the train-
ing of our layers, following [54]. The Cauchy function with mean p and scale
parameter o is given by:

Jate(@; p,0) = 3)
|

3.3 AR in Two Dimensions

The same logic used for one dimension can be generalized to images by consider-
ing two-dimensional attention maps associated with each kernel, instead of the
attention vectors used for sequences. The input tensor A € REXHXW hag slices
AY € RF*W We build the attention map by sampling FS,, from a bivariate

6 K. Chitta

/ \ n _
\
/ \
/ \
/ \
/ \
J \
/ AN
4 N

Fig. 2. Left: Gaussian (blue) and Cauchy (orange) attention functions and the equiva-
lent bivariate functions (Gaussian on top). The Cauchy function has more weight in the
tail of the distribution. Right: One slice of F, F, and F44 associated with a single 2D
kernel at initialization, using the Gaussian function as fq++. Due to linear seperability,
AR can be trained extremely efficiently.

Fatt(z,y) along both dimensions. While using the Gaussian function, this now
takes the form:

fatt(xay§ﬂx»ﬂy70zvay7p) = efa(w,y) (4)
where
a(z,y) = (f(2))” = 2pf (@) f(y) + (f(y))? (5)
fla) == (©
Iy) =+ (7)

The attentively regularized activation Agtt is now obtained by the same
procedure of element-wise multiplication as in Eq. (1).

In our experiments, we found that the correlation parameter p introduces an
unnecessary degree of freedom to the attention map, as all scales and translations
can be achieved by learning only g, iy, 05 and oy. Setting p = 0 allows for more
efficiency through a linearly separable implementation. Let the it" row of A¢
be denoted by a(®»»?). We initially compute an intermediate activation Aglt by
performing the following operation on all ¢ rows of AC:

aggt,i,:) — a(C,i,:) o fg (8)
and then follow up with an operation on each of the j columns of Aglt to get

our final activation AS,,:

ag ! =ap) of]. (9)

int

Here f, € RY and f, € RW are simply two separate one-dimensional attention
vectors sampled from:

Fol@s g, 0p) = e~ (0pe) /202 (10)

Targeted Kernel Networks 7

s 1y o) = e~ @mm)* /29 (11)

when using the Gaussian function.

3.4 Tensor-Based Implementation

While working with batch-sized tensors, it is more efficient to pre-compute the
entire tensor Fuy € REXHXW directly from the parameter vector of means
m € R® and the vector of scale parameters s € R® after using tile operations
to broadcast them to the required dimensions. The combined tensor of all C
attention vectors f,;; € RE*H (or RO*W) can be computed as:

Fure(x;m, 5) = ¢~ (x-m)*/2° (12)

Where x is a range vector (0 to H or 0 to W) scaled to lie in [0,1]. m is
initialized to a vector with each entry 0.5 so the window is initially centered. s
is initialized to a vector of ones, such that the window tapers off from a value
of 1 at the center to f(o = 1) at the image boundaries. For the two-dimensional
case, f, € RE*H and f, € RE*W are computed as in Eq. (12), broadcasted into
three dimensions (RE*H*W) ‘and F,; is computed as

Fouu=F,0F, (13)

This is illustrated in Figure 2. Every forward pass, an AR layer computes the
element-wise product of its input and this attention function. After the backward
pass, the function shifts slightly based on the updates to the vectors m and s.
The forward pass layer function is defined as:

Aatt =A ® Fatt- (14)

In this work, we limit ourselves to AR in two dimensions. Its extension to
higher dimensions is trivial, using linearly separable one-dimensional attention
windows along each input dimension.

3.5 Efficient Convolutions with Targeting

F .4+ multiplicatively scales A in the forward pass. Over training, as the values
in m and s change, a portion of the activation far enough away from the mean
on the attention window gets scaled down to very small values. This effect is
magnified when AR is used repeatedly, leading to a large number of near-zero
activations through the network.

We exploit the fact that these activations are all located far from the mean, by
performing the convolution operation for each kernel in only a rectangular ROI
around the mean. This is mathematically equivalent to using an approximation

8 K. Chitta

to Fuy for AR, with values below a certain threshold clipped down to zero. We
determine this ROI, given by its top-left and bottom-right coordinates:

roi¢ =[(m, — %) x W; (m, — %) x H;
Sz

Sy
ﬁ)xW;(my—i-ﬁ)xH}. (15)

This sliced ROI is used by a target layer that efficiently performs the com-
posite operation of both convolution and AR.

(m, +

C
Atar

[roi“] = A%[roi“] « K. (16)

Asit = Aper ©Faye (17)

where K€ is the C*" kernel in the target layer, A is the input activation, Ay, is
the intermediate result after the sliced convolution and A . is the layer output.
* denotes the single channel 2D convolution operation.

During training, the values of m and s are clipped such that the size of the
ROI never collapses to a value smaller than the kernel width. In addition, the
overall ROI values are clipped so as to not exceed the boundaries of the input
activation. At initialization, the ROI for all kernels is the entire input activation.

In all our experiments, convolutions are done after the required amount of
padding at the input boundaries so as to maintain constant spatial dimensions.
We do not use an additive bias term in any convolutional layer. Our models were
implemented with TensorFlow [1] and Keras [9].

4 Experiments

We empirically demonstrate the effectiveness of TKNs on four tasks: digit recog-
nition on the MNIST [36] and SVHN [45] datasets, traffic sign recognition on
the German Traffic Sign Recognition Benchmark [58], and facial analysis on the
UNBC-McMaster Pain Archive [43]. We also generate the tIMNIST dataset as a
sanity check for TKNs, which aids us in understanding the visualizations of the
learned attention mechanism.

4.1 Datasets

MNIST. The MNIST dataset contains 28 x 28 grayscale images of handwritten
numerical digits (0-9). The dataset is divided into 60,000 images for training
and 10,000 for testing. The number of images per digit is not uniformly dis-
tributed. We perform no data augmentation or preprocessing except division of
pixel values by 255 to place them in the range [0, 1].

tIMNIST. The tIMNIST dataset, short for top-left MNIST, is a set of 56x56
grayscale images generated directly from MNIST. The 60,000 training images
are created by placing each digit from the training partition of MNIST into the
top-left 28 x28 quadrant of the images, and selecting 3 other digits from the same

Targeted Kernel Networks 9

b4 R CE VA1 I EX4 AR ER K B
1172178/ §]lOo3]lo6)é 2|8 rl2H]I U
Fig. 3. tIMNIST data. The label assigned to each sample is that of the number in the
top-left quadrant. The other three numbers serve as distractors to vanilla CNNs.

partition randomly to place in the other 3 image quadrants. The 10,000 image
test set is similarly generated using only the test partition of MNIST. We use
identical settings for both MNIST and tIMNIST experiments. The idea behind
this task is to introduce a known synthetic 'alignment’ to the data, so that it
can be used as a sanity check for TKNs (kernels should focus on the top-left).
Figure 3 shows some image samples from this dataset.

SVHN. The SVHN dataset contains 32x32 RGB digit images, cropped from
pictures of house numbers. There are 73,257 images in the training set, 26,032
images in the test set, and 531,131 images for additional training. The digit of
interest is centered in the cropped images, but nearby digits and other distractors
are kept in the image. We train on only the 73,257 images in the training set,
and report performances on the test set. Following [71], we do no preprocessing
except pixel intensity scaling.

GTSRB. GTSRB contains RGB images of road traffic signs taken in Germany,
with bounding boxes provided for 43 different classes of signs. The main chal-
lenges of this dataset are low resolution and contrast. We follow the standard
split for evaluation, involving 39,209 training images and a test set of 12,630
images. We preprocess each cropped bounding box by resizing it to 32 x 32,
followed by pixel intensity scaling.

Pain. The Pain Archive is a major publicly available test bed for research in
facial analysis of induced pain expression. It consists of 200 video sequences of 25
subjects with 48,398 frames in total, each annotated with 66 facial landmarks
and pain intensity levels (on a scale of 0-16). We split off around 30% of the
data (sequences of 7 of the subjects) for validation and use the remaining 70%
for training. This is a challenging task, which is also well suited to TKNs as
we can preprocess the frames to create scale and viewpoint invariance. This
is done by using the 66 landmark annotations to warp the faces to a frontal
upright reference position before cropping and scaling to 48 x 48. We perform
data augmentation by adding a small Gaussian noise to the landmarks before
warping, and also randomly flipping the faces horizontally after warping.

4.2 Training

Our networks on the digit recognition tasks are trained using stochastic gradient
descent (SGD). On MNIST and tIMNIST we train using batch size 128 for 20
epochs. The initial learning rate is set to 0.1, and is divided by 10 at the epochs
10 and 15. On SVHN, we train our models for 40 epochs with a batch size of
64. The learning rate is set to 0.1 initially, and is lowered by a factor of 10

10 K. Chitta

Table 1. CNN baselines. Convolutional layers replaced in TKNs are marked in bold. 6
is the compression factor used to reduce the number of channels using a 1x1 convolution
at the transition blocks. The activation depths are reduced from C to (1 — 0)C at
these layers. LocNet is a small localization network used to perform a learnable affine
transform on the input. The final regression or classification layer is an FC layer with
dimensions based on the task (10 for MNIST/SVHN, 43 for GTSRB, and 1 for Pain).
The softmax cross entropy loss is used for classification, and a Euclidean loss is used
for regression.

Layers Output CNN6 DN10 [DN40 STN
3 X 3 conv LocNet
luti 1 5 5
Convolution (1)| n x n X 5 conv [3 x 3 conv]x 2 1 x 1 conv :| 6| 7 x 7 conv
3 X 3 conv
Transition (1) 2 X 2 max pool L x 1 conv 1 x 1 conv, § = 0.5 2 X 2 max pool
nyon 2 X 2 avg pool
. 2 2 1 X 1 conv
Convolution (2) 5 X 5 conv |[3 X 3 conv]x 2 X 6| 5 x 5 conv
3 X 3 conv
Transition (2) 2 X 2 max pool L x 1 conv 1 x 1 conv, § = 0.5 2 X 2 max pool
noyn 2 X 2 avg pool
. 4 4 1 X 1 conv
Convolution (3) 5 X 5 conv [[3 X 3 conv]x 2 X 6| 3 x 3 conv
3 X 3 conv
328D FC)) 2 X 2 max pool
Flatten 1x1 192D FC 4 X 4 global avg pool 06D FC

after 20 epochs. Following [27], we use a weight decay of 10~* and a Nesterov
momentum [61] of 0.9 without dampening.

On GTSRB and Pain, we use the Adam optimizer [32] with a learning rate of
0.001, and train for a total of 100 epochs with a batch size of 64. For GTSRB, we
use a higher weight decay of 0.05. We adopt the weight initialization introduced
by He et al. [24]. We checkpoint the models after every epoch of training and
report the error rates of the best single model. Test errors were only evaluated
once for each task and model setting.

4.3 Network Architectures

To show that the benefits of AR are model-agnostic, we use four different CNN
baselines across experiments. They are summarized in Table 1. The first is a
vanilla 6-layer CNN network with 3 convolutional layers (with 256, 256 and
128 kernels respectively) and 3 fully connected (FC) layers. The last layer is
regularized with a dropout [57] of 0.5, and the ReLU non-linearity is used for all
intermediate layers.

The second is a DenseNet [27] with 3 densely connected blocks of 2 lay-
ers each. We use a growth rate of 12 and do not perform compression at the
transition layers between blocks. We denote this model as DN10. Note that all
convolutions in DenseNets are actually performed as the composite function,
Batch Normalization [28] — ReLU — convolution.

We use a single baseline for our SVHN and Pain Archive experiments, a
DenseNet-BC architecture with 3 blocks of 12 layers each. There are 21 connec-
tions in each block. We use a growth rate of 36, dropout with probability 0.2

Targeted Kernel Networks 11

Table 2. Error rates (%) on the MNIST dataset. Our best results in bold. AR improves
both performance and efficiency.

Network Params|FLOPs|Error
Network in Network [41] - - 0.47
Deeply-Supervised Nets [37] - - 0.39
Competitive Multi-scale Convolution [40]| 4.48M | 632M | 0.33
CapsNet [50] 8.21M | 202M | 0.25
CNN6 4.59M | 368M | 0.42
TKNG6 (Gaussian, Ly = 107, 5 = 2) 4.59M | 52.9M | 0.48
TKN6 (Cauchy, L, = 107*, 5 = 4) 4.59M | 28.6M | 0.43
DN10 447K | 11.3M | 0.48
TDN10 (Gaussian, L = 10" %, 8 = 2) 45.0K | 6.93M | 0.42
TDN10 (Cauchy, Ly = 107%, 8 = 4) 45.0K |6.26M | 0.38

after each convolution, and a compression factor of 0.5 at the 2 transition layers.
We denote this model as DN40.

The final baseline is a Spatial Transformer Network (STN) [29] for GTSRB.
This network learns how to warp the inputs with an affine transformation such
that they are ideally aligned for the task. This meshes well with TKNs which
are designed for aligned data. The main network we use is a 5-layer CNN with 3
convolutional layers (with 128, 128 and 256 kernels respectively) and 2 FC layers.
We use batch normalization between all intermediate layers, and a dropout of 0.6
for the final FC layer. The localization network that computes warp parameters
is a smaller version of the same network, with 3 convolutional layers of the same
kernel size (with 16, 32 and 64 kernels respectively) and 3 FC layers (128, 64
and 6 units).

Given a CNN baseline, converting it to an equivalent TKN involves replac-
ing convolutional layers with target layers. For the CNN6 and STN baselines,
we simply replace all the convolutional layers in the main network, giving TKN6
and TSTN. For the DenseNet baselines, we replace the 3x3 convolutional layers
within the dense blocks, assuming that the bulk of the representation learning
happens in these layers. We keep the initial, transitional and bottleneck 1x1 con-
volutions as they are. We call these Targeted DenseNets (TDN10 and TDN40).

Further, there are three design choices within a target layer which we vary—
the choice of attention function (Gaussian or Cauchy); an Ly weight penalty on
scale parameters s, and s, to encourage more 'targeted’ or 'focused’ represen-
tations; and a multiplicative factor 8 we build up the Lo penalty by as we go
deeper into the network, based on the intuition that deeper layers benefit less
from weight sharing than shallow ones. This build up factor is applied by scaling
the Lo penalty by a factor of 8 for all layers in the Convolution (2) block, and
(3?2 for all layers in the Convolution (3) block of the network.

12 K. Chitta

Table 3. Error rates (%) on the tIMNIST dataset. Our best results in bold. With AR,
performance on tIMNIST becomes equivalent to the standard MNIST task.

Network Params|FLOPs|Error
CNN6 10.76M | 1470M | 0.83
TKN6 (Gaussian, Ly = 10715 = 2) | 10.76M | 145M | 0.48
TKN6 (Cauchy, Lo = 1074, 8= 2) 10.76M | 125M | 0.48
TKN6 (Cauchy, Ly = 1074, 8 = 4) 10.76M | 68.3M | 0.53
DN10 44.7K | 45.2M | 0.50
TDN10 (Gaussian, Lz = 10 %, 8 = 2)| 45.0K | 29.7M | 0.41
TDN10 (Cauchy, Lz = 1074,8 = 2) 45.0K |25.6M | 0.38

Table 4. Error rates (%) on the SVHN dataset. Our best results in bold. We obtain
state-of-the-art results on this reduced SVHN training set.

Network Params|FLOPs|Error
CapsNet [50] 1.00M | 41.3M | 4.25
DN40 0.83M | 357TM | 3.17
TDN40 (Cauchy, L2 = 1077, 8 = 2)| 0.83M | 205M | 3.11

4.4 Results

We compare our results on MNIST to other approaches that use single models
with no data augmentation in Table 2. Our best model does better than all
previous CNN based methods on MNIST except a competitive multi-scale con-
volutional approach [40]. We are also outperformed by CapsNets [50], a new kind
of neural network and not a drop in modification like AR. Both these network
types have far more parameters and computational expenses than ours.

The TKNs corresponding to the CNN6 baseline (TKN6) match its perfor-
mance, coupled with a huge boost in efficiency (13x less floating point oper-
ations in the forward pass). Introducing target layers benefits both the efficiency
and performance when used with the DN10 models (21% reduced error rate).

The results on tIMNIST are shown in Table 3. Since the input data is highly
"aligned’, we see significant improvement in results for both baselines. Another
interesting observation is that the performance of the best networks on tIMNIST
matches the MNIST results, showing that the effect of additional distractors has
been completely negated by AR.

The results on SVHN are shown in Table 4. Since models with the Gaussian
attention function were far more difficult to tune in experiments on MNIST, we
fix the Cauchy attention function for the remaining experiments. We obtain the
best reported results (to our knowledge) on the reduced SVHN dataset where
the extra training images are not used.

The classification errors on the GTSRB test set are shown in Table 5. We also
report the mean squared error (MSE) and mean average error (MAE) for regres-
sion on the validation partition of the Pain Archive in Table 6. On both tasks,

Targeted Kernel Networks 13

Table 5. Error rates (%) on the GTSRB dataset. We achieve comparable performance
with nearly a 3x reduction in #FLOPS.

Network Params|FLOPs|Error
STN 1.18M | 145M | 1.52
TSTN (Cauchy, L, = 0.001,5 =2)| 1.18M | 55.7M | 1.53

Table 6. Regression errors (on a scale of 0-16) on the UNBC-McMaster Pain Archive.
Here, we achive a 2x reduction in #FLOPS without loss in performance.

Network Params|FLOPs MSE|MAE
DN40 0.83M | 802M | 1.67 | 0.51
TDN40 (Cauchy, Lo = 1071, 8 = 4)| 0.83M | 391M | 1.67 | 0.50

we see distinctive benefits in terms of efficiency without loss in performance,
showing the applicability of AR to network acceleration on practical tasks. Be-
cause we adopted hyper-parameter settings optimized for the CNN baselines in
our study, we believe that further gains in accuracy of TKNs may be obtained
by more detailed tuning of hyper-parameters and learning rate schedules.

5 Discussion

Figure 4 shows the attention maps F,s learned by the TDN10 models corre-
sponding to each of the six target layers. Our experimental results combined
with these visualizations give us some insight into the role of attention in CNN
architectures.

Implicit attention in CNNs. A surprising observation is the near-identical
error rate of the DN10 baseline on both MNIST (0.48%) and tIMNIST (0.50%).
The network has no explicit way to pay more attention to any part of the in-
put images, since it has no max pooling or FC layers. This means that for the
tIMNIST task, the convolutional architecture itself learns to ’attend’ to only the
top-left portion of the image. This is possible because of the large convolutional
receptive fields of the deeper layers. Each unit in the final convolutional layer
has an effective receptive field larger than the entire input image. For tIMNIST,
these units can learn locations associated with a given handwritten digit by sim-
ply looking for not just the digit, but a formation of the digit and a pattern
associated with its location, such as the empty space to its bottom right and
some portion of the three random digits around it. This is still an inconvenient
task, which is why TKNs significantly improve the baseline (24% reduction in
error rate). The size of the receptive fields explains why the attention maps of
the deeper layers in Figure 4 (c), (d) and (e) are not all on the extreme top-left
portion of the image.

Fully Convolutional TKNs. Each TKN kernel location is parametrized by
m,, my, s, and s,, which are all relative values with respect to the absolute

14 K. Chitta

000 000 E%H Ii_l
BT 00T il .
30303 £36303 Ua |
DOOO00 A0I0I<AE
OOO0o0n0 EEEERL
OO0O0o0n e cmE
OO00O0n =SErEo
000000 QaAEEER
oooooo mamann
ooooon aaEes
Oooooono AErErd
OOOooono FamMEa:aE

(@)

o~

b)

Fig. 4. Attention maps using the Cauchy function. (a) Initialization. (b) After train-
ing on MNIST, L, = 1074, = 4. We notice large portions of the attention
maps are vacant, particularly in the deeper layers. (c) After training on tIMNIST,
Ly = 2x107% 8 = 1. (d) tIMNIST, L, = 107*,8 = 2. Though (c) and (d) have
similar computational costs, (d) obtains slightly better performance. (e) tIMNIST,
L, = 107%,8 = 4. Slightly better gains in efficiency can be obtained by scaling j
instead of Ls.

height and width of the image. Spatial structure in terms of layout is the crucial
ingredient in the performance of TKNs, and if this remains similar, they can be
applied to images of varying sizes and aspect ratios by using the same relative
learned parameters scaled as per the new input resolution. To apply a TKN in a
fully convolutional manner over a large image (for example, as a face detector),
we first convert the relative parameters to absolute parameters by choosing a
scaling for the attention layers in our fully convolutional TKN. This means a
TKN learned at any resolution can be specialized to any other resolution by
adjusting the chosen parameter scaling.

Network interpretability. In traditional CNNs, we have seen how a deeper
convolutional kernel may represent a mixture of patterns using its implicit at-
tention and large receptive field. For example, when dealing with facial images, a
kernel may learn to be activated by a certain combination of the eyes and mouth.
Such complex knowledge representations greatly decrease the interpretability of
the network [72]. By introducing attention explicitly, kernels in TKNs can be en-
couraged to look at tiny areas in the inputs by increasing Lo. This makes them
much more likely to be associated with single objects or parts, increasing the
network interpretability. This is of great value when we need humans to trust a
network’s predictions.

Network acceleration. Figure 5 shows the performance of TKN6 on MNIST
as the Ly penalty is varied. We see that a trade-off between speed and accuracy
can be tuned by adjusting this penalty term while training. We also see that
building up the Lo penalty gradually over depth using S improves performance

Targeted Kernel Networks 15

0.51

0.5
0.49
0.48

0.47

Error (%)

0.46 —8—12=0.0001

0.45 f=2 B=4 L2=0.0002

0.44

0.43 B=4

0.42
0 5 10 15 20 25

Relative Speedup Factor

Fig. 5. Effect of Ly and 8 on performance and efficiency. Relative speedup factor
is the ratio of #FLOPs between the network and the CNN6 baseline. Better speed-
performance tradeoffs are achieved through larger values of S.

in comparison to having a fixed penalty throughout the network. This validates
our assumption that deeper, more abstract features require less weight sharing.

6 Conclusion

We proposed a new regularization method for CNNs called Attentive Regular-
ization. It constrains the activation maps throughout the network to lie within
specific ROIs associated with each kernel. This is done through a simple yet pow-
erful modification of the convolutional layers, retaining end-to-end trainability
with backpropagation. In our experiments, TKNs give a consistent improvement
in efficiency over baselines in synthetic and natural settings, and competitive
results to the state-of-the-art on benchmark datasets. Our experiments validate
the idea that simplifying soft attention mechanisms to specific parametric dis-
tributions has potential for significant network acceleration.

In this study, we optimize for the attention parameters m and s for each
kernel directly during training. In future work, we aim to study the effect of
generating these parameters adaptively per image. Another extension to the
proposed variant of TKNs would be to model the attention with a more complex
function (like a mixture of Gaussians), or to use multiple kernels with different
attention maps for the same output channel, making them deformable [15]; to
handle complex images where a single ROI per kernel may be insufficient.

16

K. Chitta

References

11.

12.

13.

14.
15.

16.

17.

18.

19.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1.J., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jézefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan,
V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,
Zheng, X.: Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. CoRR abs/1603.04467 (2016)

Almahairi, A., Ballas, N.,; Cooijmans, T., Zheng, Y., Larochelle, H., Courville,
A.C.: Dynamic capacity networks. CoRR abs/1511.07838 (2015)

Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual atten-
tion. CoRR abs/1412.7755 (2014)

Cao, C., Liu, X., Yang, Y., Yu, Y., Wang, J., Wang, Z., Huang, Y., Wang, L.,
Huang, C., Xu, W., Ramanan, D., Huang, T.S.: Look and think twice: Capturing
top-down visual attention with feedback convolutional neural networks. In: ICCV
(2015)

Chen, L., Zhang, H., Xiao, J., Nie, L., Shao, J., Liu, W., Chua, T.S.: Sca-cnn:
Spatial and channel-wise attention in convolutional networks for image captioning.
In: CVPR (2017)

Chen, T., Goodfellow, I.J., Shlens, J.: Net2net: Accelerating learning via knowledge
transfer. CoRR abs/1511.05641 (2015)

Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick. CoRR abs/1504.04788 (2015)

Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A Survey of Model Compression and
Acceleration for Deep Neural Networks. ArXiv e-prints (2017)

Chollet, F.: keras. https://github.com/fchollet /keras (2015)

. Denil, M., Bazzani, L., Larochelle, H., de Freitas, N.: Learning where to attend

with deep architectures for image tracking. Neural Comput. (2012)

Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear struc-
ture within convolutional networks for efficient evaluation. CoRR abs/1404.0736
(2014)

Dieleman, S., Fauw, J.D., Kavukcuoglu, K.: Exploiting cyclic symmetry in convo-
lutional neural networks. CoRR abs/1602.02660 (2016)

Dong, X., Huang, J., Yang, Y., Yan, S.: More is less: A more compli-
cated network with less inference complexity. CoRR abs/1703.08651 (2017),
http://arxiv.org/abs/1703.08651

Ekman, P., Friesen, W., Hager, J.: Facs manual. In: A Human Face
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2010)

Figurnov, M., Vetrov, D.P., Kohli, P.: Perforatedcnns: Acceleration through
elimination of redundant convolutions. CoRR abs/1504.08362 (2015),
http://arxiv.org/abs/1504.08362

Fu, J., Zheng, H., Mei, T.: Look closer to see better: Recurrent attention convolu-
tional neural network for fine-grained image recognition. In: CVPR (2017)
Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. In: NIPS
(2017)

Girshick, R.B.: Fast R-CNN. CoRR abs/1504.08083 (2015)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

Targeted Kernel Networks 17

Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. CoORR abs/1311.2524 (2013)
Gregor, K., Danihelka, 1., Graves, A., Rezende, D.J., Wierstra, D.. DRAW: A
recurrent neural network for image generation. In: ICML (2015)

Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR abs/1510.00149
(2015)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. CoRR abs/1502.01852 (2015)
Hendricks, L.A., Venugopalan, S., Rohrbach, M., Mooney, R.J., Saenko, K., Dar-
rell, T.: Deep compositional captioning: Describing novel object categories without
paired training data. CoRR abs/1511.05284 (2015)

Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural Network.
ArXiv e-prints (2015)

Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (July 2017)

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoORR abs/1502.03167 (2015)

Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. CoRR abs/1506.02025 (2015)

Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. CoRR abs/1405.3866 (2014)

Kawaguchi, K., Pack Kaelbling, L., Bengio, Y.: Generalization in Deep Learning.
ArXiv e-prints (2017)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

Krizhevsky, A., Sutskever, 1., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: NIPS (2012)

Larochelle, H., Hinton, G.E.: Learning to combine foveal glimpses with a third-
order boltzmann machine. In: NIPS (2010)

Lebedev, V., Lempitsky, V.S.: Fast convnets using group-wise brain damage. CoRR
abs/1506.02515 (2015)

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-Supervised Nets. ArXiv
e-prints (2014)

Li, W., Abtahi, F., Zhu, Z.: Action unit detection with region adaptation, multi-
labeling learning and optimal temporal fusing. CoRR abs/1704.03067 (2017)
Li, W., Abtahi, F., Zhu, Z., Yin, L.: Eac-net: A region-based deep enhancing and
cropping approach for facial action unit detection. CoRR abs/1702.02925 (2017)
Liao, Z., Carneiro, G.: Competitive multi-scale convolution. CoRR
abs/1511.05635 (2015)

Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013)
Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: Adaptive attention
via a visual sentinel for image captioning. In: CVPR (2017)

Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Matthews, I.: Painful data:
The unbc-mcmaster shoulder pain expression archive database. In: Face and Ges-
ture 2011 (2011)

18

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

K. Chitta

Nam, H., Ha, J.W., Kim, J.: Dual attention networks for multimodal reasoning
and matching. In: CVPR (2017)

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. CoRR abs/1603.05279 (2016)
Ren, M., Pokrovsky, A., Yang, B., Urtasun, R.: Sbnet: Sparse blocks network for
fast inference. CoRR abs/1801.02108 (2018), http://arxiv.org/abs/1801.02108
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR abs/1506.01497 (2015)
Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. CoRR abs/1412.6550 (2014)

Sabour, S., Frosst, N., E Hinton, G.: Dynamic Routing Between Capsules. ArXiv
e-prints (2017)

Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for
target detection. International Journal of Neural Systems (1991)

Seo, P.H., Lin, Z., Cohen, S., Shen, X., Han, B.: Hierarchical attention networks.
CoRR abs/1606.02393 (2016)

Shih, K.J., Singh, S., Hoiem, D.: Where to look: Focus regions for visual question
answering. CoRR abs/1511.07394 (2015)

Shyam, P., Gupta, S., Dukkipati, A.: Attentive recurrent comparators. In: ICML
(2017)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks.
CoRR abs/1507.06149 (2015)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research (2014)

Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German Traffic Sign Recog-
nition Benchmark: A multi-class classification competition. In: IEEE International
Joint Conference on Neural Networks (2011)

Stollenga, M.F., Masci, J., Gomez, F.J., Schmidhuber, J.: Deep networks with
internal selective attention through feedback connections. CoRR abs/1407.3068
(2014)

Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting
10,000 classes. In: CVPR (2014)

Sutskever, 1., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: ICML (2013)

Szegedy, C., loffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact
of residual connections on learning. CoRR abs/1602.07261 (2016)

Tai, C., Xiao, T., Wang, X., E; W.: Convolutional neural networks with low-rank
regularization. CoRR abs/1511.06067 (2015)

Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: CVPR (2014)

Wu, B., landola, F.N., Jin, P.H., Keutzer, K.: Squeezedet: Unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. CoRR abs/1612.01051 (2016)

Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of
two-level attention models in deep convolutional neural network for fine-grained
image classification. CoRR abs/1411.6447 (2014)

67.

68.

69.

70.

71.

72.

73.

Targeted Kernel Networks 19

Xiong, C., Merity, S., Socher, R.: Dynamic memory networks for visual and textual
question answering. CoRR abs/1603.01417 (2016)

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel,
R.S., Bengio, Y.: Show, attend and tell: Neural image caption generation with
visual attention. CoRR abs/1502.03044 (2015)

Yang, Z., He, X., Gao, J., Deng, L., Smola, A.: Stacked attention networks for
image question answering. In: CVPR, (2016)

Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. CoRR
abs/1612.03928 (2016)

Zagoruyko, S., Komodakis, N.: Wide residual networks. CoRR abs/1605.07146
(2016)

Zhang, Q., Wu, Y.N., Zhu, S.: Interpretable convolutional neural networks. CoRR
abs/1710.00935 (2017)

Zhao, K., Chu, W.S., Zhang, H.: Deep region and multi-label learning for facial
action unit detection. In: CVPR (2016)

