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Abstract. We present a new fully-automatic non-rigid 3D shape regis-
tration (morphing) framework comprising (1) a new 3D landmarking and
pose normalisation method; (2) an adaptive shape template method to
improve the convergence of registration algorithms and achieve a better
final shape correspondence and (3) a new iterative registration method
that combines Iterative Closest Points with Coherent Point Drift (CPD)
to achieve a more stable and accurate correspondence establishment than
standard CPD. We call this new morphing approach Iterative Coherent

Point Drift (ICPD). Our proposed framework is evaluated qualitatively
and quantitatively on three datasets: Headspace, BU3D and a synthetic
LSFM dataset, and is compared with several other methods. The pro-
posed framework is shown to give state-of-the-art performance.
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1 Introduction

The goal of non-rigid shape registration is to align and morph a source point set
to a target point set. By using some form of template shape as the source, mor-
phing is able to reparametrise a collection of raw 3D scans of some object class
into a consistent form. This facilitates full dataset alignment and subsequent 3D
Morphable Model (3DMM) construction. In turn, the 3DMM constitutes a use-
ful shape prior in many computer vision tasks, such as recognition and missing
parts reconstruction.

Currently, methods that deform a 3D template to all members of a specific
3D object class in a dataset use the same template shape. However, datasets
representative of global object classes often have a wide variation in terms of the
spatial distribution of their constituent parts. Our object class in this paper is
that of the human face/head, where the relative positions of key parts, such as
the ears, mouth, and nose are highly varied, particularly when trying to build
3DMMs across a wide demographic range of age, gender and ethnicity. Using a
single template shape means that often key parts of the template are not at the
same relative positions as those of the raw 3D scan. This causes slow convergence
of shape morphing and, worse still, leads to end results that have visible residual
errors and inaccurate correspondences in salient local parts.
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Template                3D scan                  Proposed             CPD-affine     CPD-affine + LBRP     CPD-nonrigid    CPD-nonrigid + LBRP      

Fig. 1. Proposed method compared with standard CPD. Ground truth points on target
raw 3D data shown in red, corresponding template points shown in cyan.

To counter this, we propose an adaptive template approach that provides
an automatically tailored template for each raw 3D scan in the dataset. The
adaptive template is obtained from the original template using sparse shape
information (typically point landmarks), thereby locally matching the raw 3D
scan very specifically. Although this is a pre-process that involves template shape
adaptation, we do not consider it as part of the main template morphing process,
which operates over dense shape information.

We present a new pipeline in fully-automatic non-rigid 3D shape registra-
tion by integrating several powerful ideas from the computer vision and graph-
ics. These include Mixture-of-Trees 2D landmarking [1], Iterative Closest Points
(ICP) [2], Coherent Point Drift (CPD) [3], and mesh editing using the Laplace-
Beltrami (LB) operator [4]. We also provide comparisons of the latter approach
with the use of Gaussian Processes (GPs) [5]. Our contributions include: 1) a new
3D landmarking and pose normalisation method; 2) an adaptive shape template
method to accelerate the convergence of registration algorithms and achieve a
better final shape correspondence; 3) a new iterative registration method that
combines ICP with CPD to achieve a more stable and accurate correspondence
establishment than standard CPD. We call this approach Iterative Coherent

Point Drift (ICPD).

Our proposed pipeline is evaluated qualitatively and quantitatively on three
human face/head datasets: Headspace [6–8], BU3D [9] and LSFM-synthetic [10],
and is compared with several other methods. Note that this latter dataset are 100
faces generated randomly from the Large Scale Face Model [10] where samples
lie within ±3SDs.The pipelineel achieves state-of-the-art performance. Fig. 1 is
a qualitative illustration of a typical result where our method achieves a more
accurate correspondence than standard CPD. Note that the landmarks on our
method are almost exactly the same position as their corresponding ground-
truth points on the raw 3D scan. Even though standard CPD-affine is aided by
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Laplace-Beltrami regularised projection (LBRP, a component of our proposed
pipeline), the result shows a ”squeezed” face around the eye and mouth regions
and the landmarks are far away from their corresponding ground-truth positions.

The rest of the paper is structured as follows. After presenting related work,
we give a technical background on our template adaptation approach. In Sec.
3 we describe our non-rigid registration framework, while the following section
evaluates it over three datasets. Lastly we present conclusions.

2 Related work

Here we provide background literature to our pipeline, in the order in which the
processes are required.

2.1 Data to template alignment

All template morphing methods need to align the raw data to be sufficiently
close to the template, which is in some canonical position (eg frontal for a human
face/head). Thus the template is brought within the convergence basin of the
global minimum of alignment and morphing. To this end, we use a 2D landmarker
and project the detected landmarks to 3D. In particular, Zhu and Ramanan [1]
use a Mixture of Trees model of the face, which both detects faces and locates
facial landmarks. One of the major advantages of their approach is that it can
handle extreme head poses even at relatively low image resolutions.

2.2 Template adaptation

By template adaptation, we mean the ability to adapt the shape of a template us-
ing sparse shape information before applying dense morphing. Here we overview
the two methods evaluated in our pipeline: (i) Laplace-Beltrami mesh manipula-
tion and (ii) the posterior model (PM) of a Gaussian Process Morphable Model
(GPMM).

Laplace-Beltrami mesh manipulation The Laplace-Beltrami (LB) operator
is widely used in 3D mesh manipulation. The LB term regularises the landmark-
guided template adaptation in two ways: 1) the landmarks on the template are
manipulated towards their corresponding landmarks on the raw 3D scan; 2) all
other points in original template are moved As Rigidly As Possible (ARAP [11])
regarding the landmarks’ movement, according to an optimised cost function,
described later. Following Sorkine et al. [11], the idea for measuring the rigidity
of a deformation of the whole mesh is to sum up over the deviations from rigidity.
Thus, the energy functional can be formed as:

E(S′) =

n
∑

i=1

wi

∑

j∈N(i)

wij‖(p
′

i − p′

j)−Ri(pi − pj)‖, (1)



4 Hang Dai, Nick Pears and William Smith

where we denote a mesh by S, with S′ its deformed mesh and R is a rotation.
Mesh topology is determined by n vertices andm triangles. AlsoN(i) is the set of
vertices connected to vertex i; these are the one-ring neighbours. The parameters
wi, wij are fixed cell and edge weights. Note that E(S′) depends solely on the
geometries of S, S′, i.e., on the vertex positions p, p′. In particular, since the
reference mesh (our input shape) is fixed, the only variables in E(S′) are the
deformed vertex positions p′

i. The gradient of E(S′) is computed with respect
to the positions p′. The partial derivatives w.r.t. p′

i can be computed as:

dE(S′)

dp′
i

=
∑

j∈N(i)

4wij

(

(p′

i − p′

j)−
1

2
(Ri +Rj)(pi − pj)

)

(2)

Setting the partial derivatives to zero w.r.t. each p′

i gives the following sparse
linear system of equations:

∑

j∈N(i)

wij(p
′

i − p′

j) =
∑

j∈N(i)

wij

2
(Ri +Rj)(pi − pj) (3)

The linear combination on the left-hand side is the discrete Laplace-Beltrami
operator applied to p′, hence the system of equations can be written as:

Lp′ = b, (4)

where b is an n-vector whose i-th row contains the right-hand side expression
from (3). We also need to incorporate the modeling constraints into this system.
In the simplest form, those can be expressed by some fixed positions

p′

j = ck, k ∈ F , (5)

where F is the set of indices of the constrained vertices. In our case, these
are the landmark positions, automatically detected on the raw 3D data, with
the corresponding points known a priori on the template. Incorporating such
constraints into (4) requires substituting the corresponding variables, erasing
respective rows and columns from L and updating the right-hand side with the
values ck.

Gaussian process morphable model A Gaussian Process Morphable Model
(GPMM) uses manually defined arbitrary kernel functions to describe the de-
formation’s covariance matrix. This enables a GPMM to aid the construction
of a 3DMM, without the need for training data. The posterior models (PMs)
of GPMMs are regression models of the shape deformation field. Given partial
observations, such posterior models are able to determine what is the potential
complete shape. A posterior model is able to estimate other points’ movements
when some set of landmarks and their target positions are given.

Instead of modelling absolute vertex positions using PCA, GPMMs model a
shape as a deformation vector field u from a reference shape X ∈ R

p×3, i.e. a
shape X′ can be represented as

X′ = X+ u(X) (6)



Non-rigid 3D Shape Registration using an Adaptive Template 5

for some deformation vector field u ∈ R
p×3. We model the deformation as a

Gaussian process u ∼ GP (µ,k) where µ ∈ R
p×3 is a mean deformation and

k ∈ R
3×3 a covariance function or kernel.

The biggest advantage of GPMMs compared to statistical shape models (eg
3DMMs) is that we have much more freedom in defining the covariance function.
GPMMs allow expressive prior models for registration to be derived, by lever-
aging the modeling power of Gaussian processes. By estimating the covariances
from example data GPMMs becomes a continuous version of a statistical shape
model.

2.3 Dense shape registration

The Iterative Closest Points (ICP) algorithm [12, 2] is the standard rigid-motion
registration method. Several extensions of ICP for the nonrigid case were pro-
posed [13, 10, 14–17]. Often these have good performance in shape difference
elimination but have problems in over fitting and point sliding. Another ap-
proach is based on modelling the transformation with thin plate splines (TPS)
[18] followed by robust point matching (RPM) and is known as TPS-RPM [19].
However, it is slow in large-scale point set registration [20–23]. Amberg et al.
[13] defined the optimal-step Nonrigid Iterative Closest Points (NICP) frame-
work. Recently Booth et al. [10] built a Large Scale Facial Model (LSFM), using
the same NICP template morphing approach with error pruning, followed by
Generalised Procrustes Analysis (GPA) for alignment, and Principal Compo-
nent Analysis (PCA) for the model construction. Li et al. [24] show that using
proximity heuristics to determine correspondences is less reliable when large
deformations are present. Their Global Correspondence Optimization approach
solves simultaneously for both the deformation parameters and correspondences
[24].

Myronenko et al. consider the alignment of two point sets as a probability
density estimation [3] and they call the method Coherent Point Drift (CPD).
There is no closed-form solution for this optimisation, so it employs an EM al-
gorithm to optimize the Gaussian Mixture Model (GMM) fitting. Algorithms
are provided to solve for several shape deformation models such a affine (CPD-
affine) and generally non-rigid (CPD-nonrigid). Their ‘non-rigid’ motion model
employs anM×M Gaussian kernelG for motion field smoothing, and the M-step
requires solving for an M×3 matrix W that generates the template deformation
(GMM motion field) as GW. Such motion regularisation is related to motion
coherence, and inspired the algorithm’s name. The CPD method was has been
extended by various groups [25–28]. Compared to TPS-RPM, CPD offers supe-
rior accuracy and stability with respect to non-rigid deformations in presence of
outliers. A modified version of CPD imposed a Local Linear Embedding topo-
logical constraint to cope with highly articulated non-rigid deformations [29].
However, this extension is more sensitive to noise than CPD. A non-rigid regis-
tration method used Students Mixture Model (SMM) to do probability density
estimation [30]. The results are more robust and accurate on noisy data than
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Fig. 2. Adaptive template registration framework, using ICPD based morphing.

CPD. Dai et al. [8] proposed a hierarchical parts-based CPD-LB morphing frame-
work to avoid under-fitting and over-fitting. It overcomes the sliding problem to
some extent, but the end result still has a small tangential error.

Marcel et al. [31] model shape variations with a Gaussian process (GP), which
they represent using the leading components of its Karhunen-Loeve expansion.
Such Gaussian Process Morphable Models (GPMMs) unify a variety of non-
rigid deformation models. Gerig et al. [5] present a novel pipeline for morphable
face model construction based on Gaussian processes. GPMMs separate problem
specific requirements from the registration algorithm by incorporating domain-
specific adaptions as a prior model.

3 Non-rigid shape registration framework

The proposed registration framework is shown in Fig. 2 and includes four high-
level stages: 1) data preprocessing of raw 3D image: landmarking and pose nor-
malisation; 2) template adaptation: global alignment and adapting the template
shape; 3) template morphing using Iterative Coherent Point Drift (ICPD); 4)
point projection regularised by the Laplace-Beltrami operator (LBRP). These
are detailed in the following four subsections.

3.1 Data preprocessing

Data preprocessing of the raw 3D scan serves to place the data in a frontal pose,
which allows us to get a complete and accurate set of automatic 3D landmark
positions, for every 3D image, that correspond to a set of manually-placed (once)
landmarks on the template. This preprocessing comprises five sub-stages: (i)
2D landmarking, (ii) projection to 3D landmarks, (iii) pose normalisation (iv)
synthetic frontal 2D image landmarking and (v) projection to 3D landmarks.
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We use the ‘Mixture of Trees’ method of Zhu and Ramanan [1] to localise 2D
facial landmarks. In particular, the mixture we use has 13 landmark tree models
for 13 different yaw angles of the head.

We apply the detector to the composite 2D image that contains all 5 view-
points of the capture system, see 2, top left. Two face detections are found, of
approximately 15 degrees and 45 degrees yaw from the frontal pose, correspond-
ing to the left and right side of the face respectively. The detected 2D landmarks
are then projected to 3D using the OBJ texture coordinates in the raw data.

Given that we know where all of these 3D landmarks should be for a frontal
pose, it is possible to do standard 3D pose alignment in a scale-normalised setting
[8].

In around 1% of the dataset, only one tree is detected and that is used for
pose normalisation, and in the rest 2-3 images are detected. In the cases where
3 trees are detected, the lowest scoring tree is always false positive and can
be discarded. For the remaining two trees, a weighted combination of the two
rotations is computed using quaternions, where the weighting is based on the
mean Euclidean error to the mean tree, in the appropriate tree component.

After we have rotated the 3D image to canonical frontal view, we wish to
generate a set of landmarks that are accurate and correspond to the set marked
up on the template. This is the set related to the central tree (0 degrees yaw) in
the mixture. After these 2D landmarks are extracted, they are again projected
to 3D using the raw OBJ texture coordinates.

3.2 Template adaptation

As shown in Fig. 2, template adaptation consists of two sub-stages: (i) global
alignment followed by (ii) dynamically adapting the template shape to the data.
For global alignment, we manually select the same landmarks on the template
as we automatically extract on the raw data (i.e. using the zero yaw angle tree
component from [1]). Note that this needs to be done once only for some object
class and so doesn’t impact on the autonomy of the online operation of the
framework. Then we align rigidly (without scaling) from the 3D landmarks on
raw 3D data to the same landmarks on the template. The rigid transformation
matrix is used for the raw data alignment to the template.

The template is then adapted to better align with the raw scan. A better
template helps the later registration converge faster and gives more accurate
correspondence at the beginning and end of registration. A good template has
the same size and position of local facial parts (e.g. eyes, nose, mouth and ears)
as the raw scan. This cannot be achieved by mesh alignment alone. We propose
two method to give a better template that is adapted to the raw 3D scan: (1)
Laplace-Beltrami mesh editing; (2) Template estimation via posterior GPMMs.
For both methods, three ingredients are needed: landmarks on 3D raw data, the
corresponding landmarks on template, and the original template.

Laplace-Beltrami mesh manipulation: We decompose the template into
several facial parts: eyes, nose, mouth, left ear and right ear. We rigidly align
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(1)                    (2)                 (3)                      (4)                 (5)                      (6)                  (7)        

Fig. 3. Template comparison with raw data: (1) raw scan; (2) template with global
rigid alignment; (3) 2 compared with the raw scan; (4) adaptive template via LB
mesh editing; (5) 4 compared with the raw scan; (6) the mean template estimation via
posterior models; (7) 6 compared with the raw scan in (7)

landmarks on each part separately to their corresponding landmarks on 3D raw
data. These rigid transformation matrices are used for aligning the decomposed
parts to 3D raw data. The rigidly transformed facial parts tell the original tem-
plate where it should be. We treat this as a mesh manipulation problem. We use
Laplace-Beltrami mesh editing to manipulate the original template towards the
rigidly transformed facial parts, as follows: (1) the facial parts (fp) of the orig-
inal template are manipulated towards their target positions - these are rigidly
transformed facial parts; (2) all other parts of the original template are moved
as rigidly as possible [11].

Given the vertices of a template stored in the matrix XT ∈ R
p×3 and a better

template obtained whose vertices are stored in the matrixXbT ∈ R
p×3, we define

the selection matrices Sfp ∈ [0, 1]l×p as those that select the l vertices (facial
parts in XT and XbT) from the raw template and a better template respectively.
This linear system can be written as:

(

λL

Sfp

)

XbT =

(

λLXT

Xfp

)

(7)

where L ∈ R
p×p is the cotangent Laplacian approximation to the LB opera-

tor and XbT is the better template that we wish to solve for. The parameter
λ weights the relative influence of the position and regularisation constraints,
effectively determining the ‘stiffness’ of the mesh manipulation. As λ → 0, the
facial parts of the original template are manipulated exactly to the rigidly trans-
formed facial parts. As λ → ∞, the adaptive template will only be at the same
position as the original template XT.

Template estimation via posterior models: A common task in shape mod-
elling is to infer the full shape from a set of measurements of the shape. This
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task can be formalised as a regression problem. The posterior models of Gaussian
Process Morphable Models (GPMMs) are regression models of the deformation
field. Given partial observations, posterior models are able to answer what is
the potential full shape. Posterior models show the points’ potential movements
when the landmarks are fixed to their target position.

In a GPMM, let {x1, ..., xl} ∈ R
l×3 be a fixed set of input 3D points and

assume that there is a regression function f0 → R
p×3, which generates a new

vector field yi ∈ R
p×3 according to

yi = f0(xi) + ǫi, (i = 1, ..., n). (8)

where ǫi is independent Gaussian noise, i.e. ǫi ∼ N(0, δ2). The regression problem
is to infer the function f0 at the input points {x1, ..., xl}. The possible deforma-
tion field yi is modelled using a Gaussian process model GP (µ, k) that models
the shape variations of a given shape family.

In our case, the reference shape is the original template, the landmarks on
the original template are the fixed set of input 3D points. The same landmarks
on 3D raw data are the target position of the fixed set of input 3D points.
Given a GPMM GP (µ, k) that models the shape variations of a shape family,
the adaptive template is

Xi
bT = XT + yi, (i = 1, ..., n). (9)

The mean of Xi
bT is shown in Fig. 3 (6) and (7).

3.3 Iterative coherent point drift

The task of non-rigid 3D registration (shape morphing) is to deform and align
the template to the target raw 3D scan. Non-rigid Coherent Point Drift (CPD)
[3] has better deformation results when partial correspondences are given and
we have found that it is more stable and converges better when the template
and the raw data have approximately the same number of points. However, the
correspondence is often not known before registration. Thus, following an Iter-
ative Closest Points (ICP) scheme [2], we supply CPD registration with coarse
correspondences using ‘closest points’. We refine such correspondences through-
out iterations of the Iterative Coherent Point Drift (ICPD) approach described
here.

We use the original code package of CPD available online as library calls for
ICPD. Other option parameters can be found in the CPD author’s release code.
The global affine transformation is used as a small adjustment of correspondence
computation. A better correspondence (idx2 in the pseudocode) is used as the
priors for CPD non-rigid registration. The qualitative output of ICPD is very
smooth, a feature inherited from standard CPD. A subsequent regularised point
projection process is required to capture the target shape detail, and this is
described next.
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3.4 Laplace-Beltrami regularised projection

When ICPD has deformed the template close to the scan, point projection is
required to eliminate any (normal) shape distance error. Again, we overcome
this by treating the projection operation as a mesh editing problem with two in-
gredients. First, position constraints are provided by those vertices with mutual
nearest neighbours between the deformed template and raw scan. Using mutual
nearest neighbours reduces sensitivity to missing data. Second, regularisation
constraints are provided by the LB operator which acts to retain the local struc-
ture of the mesh. We call this process Laplace-Beltrami regularised projection

(LBRP), as shown in the registration framework in Fig. 2.
We write the point projection problem as a linear system of equations. Given

the vertices of a scan stored in the matrix Xscan ∈ R
n×3 and the deformed

template obtained by CPD whose vertices are stored in the matrix Xdeformed ∈
R

p×3, we define the selection matrices S1 ∈ [0, 1]m×p and S2 ∈ [0, 1]m×n as
those that select the m vertices with mutual nearest neighbours from deformed
template and scan respectively. This linear system can be written as:

(

λL

S1

)

Xproj =

(

λLXdeformed

S2Xscan

)

(10)

where L ∈ R
p×p is the cotangent Laplacian approximation to the LB operator

and Xproj ∈ R
p×3 are the projected vertex positions that we wish to solve for.

The parameter λ weights the relative influence of the position and regularisation
constraints, effectively determining the ‘stiffness’ of the projection. As λ → 0, the
projection tends towards nearest neighbour projection. As λ → ∞, the deformed
template will only be allowed to rigidly transform.

4 Evaluation

We evaluated the proposed registration framework using three datasets: Headspace
[6–8], BU3D (neutral expression) [9] and LSFM-synthetic. The latter two have
ground-truth information. We use error to manually-defined landmark and the
average nearest point distance error for evaluation on the Headspace dataset.
Recently, two registration frameworks have become publicly available for com-
parison: Basel’s Open Framework (OF) [31] and the LSFM pipeline [10].

For reproducibility of our results, parameters used are as follows: 1) when
doing the 3D automatic face landmarking, we manually select the same land-
marks on template mesh only for once across the whole dataset; 2) λ is set to
0.1; 3) the iteration limitation of CPD-affine is 200 and CPD-non-rigid is 300.
4) the Gaussian kernels in GPMM are defined as the same as that in [5].

4.1 Internal comparison of approaches

We validate the effectiveness of each step in the proposed registration pipeline
qualitatively and quantitatively. The results of registration over children data
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(1)Target scan                   (2) proposed                               (3) no template adaptation          (4) no LB regularised projection

Fig. 4. (1) target scan; (2) proposed method (3) remove template adaptation; (4)
remove LB regularised projection. Error map (mm).

Table. Convergence of ICPD

ICPD              LB             PM

ICP loops      6.47            3.52           3.74 

Time (s)      831.35       426.13      434.53    

Fig. 5. Improvement in correspondence and convergence performance when using adap-
tive templates: 1) ICPD without an adaptive template (cyan) ; 2) ICPD with LB-based
adaptive template (blue); 3).ICPD with adaptive PM-based template (blue dashed).

in Headspace are shown in Fig.4. After pure rigid alignment without template
adaptation, the nose of template is still bigger than the target. As can be seen
in Fig. 4 (3), the nose ends up with a bad deformation result. The same problem
happened in the ear. Without LB regularised projection shown in Fig. 4 (4), it
fails in capturing the shape detail compared with the proposed method.

Using the BU3D dataset for quantitative validation, we compared the per-
formance of (i) the proposed ICPD registration, (ii) ICPD with an adaptive
template using LB mesh manipulation and (iii) ICPD with an adaptive tem-
plate, using a posterior model (PM). The mean per-vertex error is computed
between the registration results and their ground-truth. The number of ICPD
iterations and computation time is recorded, when using the same computa-
tion platform. The per-vertex error plot in Fig. 5 illustrates that the adaptive
template improves the correspondence accuracy of ICPD. The number of ICPD
iterations and computation time is significantly decreased by the adaptive tem-
plate method. In particular adaptive template using LB mesh manipulation has
better performance than adaptive template using a posterior model. Thus, we
employ an adaptive template approach using LB mesh manipulation for later
experiments.
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Scan

(1)                               (2)                               (3)                              (4)

Fig. 6. First row - correspondence results and their landmarks compared with ground-
truth on raw scan; Second row - the color map of per-vertex nearest point error. (1)
proposed method with LB template adaptation; (2) proposed method without adaptive
template; (3) Open Framework morphing [31]; (4) LSFM morphing [10].

Fig. 7. Mean per-vertex in morphed template nearest point distance error, higher is
better.

4.2 Correspondence comparison

Headspace: We evaluate correspondence accuracy both qualitatively and quan-
titatively. 1212 scans from Headspace are used for evaluation. A typical regis-
tration result is shown in Fig. 6. Apart from the proposed method, there are
clearly significant errors around the ear region, the eye region, or even multiple
regions. We use per-vertex nearest point error for quantitative shape registra-
tion evaluation. The per-vertex nearest point error is computed by measuring
the nearest point distance from the morphed template to raw scan and aver-
aging over all vertices. As can be seen in Fig. 7, the proposed method has the
best performance, when compared to Basel’s Open Framework (OF) [31] and
the LSFM [10] registration approach. The OF method has a smoothed output
without much shape detail. The LSFM method captures shape detail, but it
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Ground-truth

(1)                                  (2)                              (3)                              (4)

Fig. 8. First row - correspondence results and their landmarks; Second row - the
color map of per-vertex error against ground-truth. (1) proposed method; (2) proposed
method without adaptive template; (3) OF registration; (4) LSFM registration.

Fig. 9. Mean per-vertex error: (1) left - BU3D dataset, (2) right - LSFM dataset

has greater landmark error and per-vertex nearest point error. The quantitative
evaluation in Fig. 7 validates that the proposed method outperforms the other
two contemporary methods.

BU3D: For the BU3D dataset, 100 scans with neutral expression are used
for evaluation. We use 12 landmarks to perform adaptive template generation.
Qualitatively from Fig. 8 (1) and (2), the adaptive template can be seen to
improve the registration performance. As shown in Fig. 9 (1), compared with
the ground-truth data, over 90% of the registration results have less than 2 mm
per-vertex error. The proposed method has the best performance in face shape
registration.

LSFM: The synthetic LSFM dataset are 100 faces generated randomly from
the Large Scale Face Model [10] where samples lie within ±3SDs. The pipeline
achieves state-of-the-art performance. we use the same 14 landmarks in [32]
for the adaptive template generation. Since the synthetic data is already in
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correspondence, the 14 landmarks have the same indices across the dataset. As
shown in Fig. 9 (2), compared with the ground-truth data, over 83% of the
registration results have less than 1 mm per-vertex error. The proposed method
has the best performance in synthetic data registration.

5 Conclusions

We proposed a new fully-automatic shape registration framework with an adap-
tive template initialisation. Although there is a prior one-shot manual markup of
landmarks on a generic template, this does not prevent our online process being
fully-automatic. The adaptive template accelerated the convergence of regis-
tration algorithms and achieved a more accurate correspondence. We provided
two methods: LB mesh manipulation and the posterior model of the GPMM
to achieve template adaptation. In particular, an adaptive template using LB
mesh manipulation has a better performance than an adaptive template using a
GP posterior model. We proposed a new morphing method that combined the
ICP and CPD algorithms that is both more stable and accurate in correspon-
dence establishment. We evaluated the proposed framework on three datasets:
Headspace, BU3D and LSFM-synthetic. The proposed framework has better
performance than other methods across all datasets.
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