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Abstract. We address the problem of identifying small abnormalities in
an imaged region, important in applications such as industrial inspection.
The goal is to label the pixels corresponding to a defect with a minimum
of false positives. A common approach is to run a sliding-window classifier
over the image. Recent Fully Convolutional Networks (FCNs), such as
U-Net, can be trained to identify pixels corresponding to abnormalities
given a suitable training set. However in many application domains it is
hard to collect large numbers of defect examples (by their nature they
are rare). Although U-Net can work in this scenario, we show that better
results can be obtained by replacing the final softmax layer of the network
with a Random Forest (RF) using features sampled from the earlier
network layers. We also demonstrate that rather than just thresholding
the resulting probability image to identify defects it is better to compute
Maximally Stable Extremal Regions (MSERs). We apply the approach to
the challenging problem of identifying defects in radiographs of aerospace
welds.

Keywords: Defect detection, non-destructive evaluation, CNN, local
features, random forests

1 Introduction

Inspection tasks, where one is looking for small defects in large regions, can be
challenging because (1) any useful system must have a very low false positive
rate and (2) since defects are rare it is not always easy to obtain large numbers
of examples to train a classifier or a region-based object detector. Given their
success in other areas [16], it is natural to try Fully Convolutional Networks
such as U-Net [21] to label each pixel in a region to indicate those that belong to
abnormalities of interest. In this paper we show that when only small numbers
of training examples are available, such techniques perform poorly. However, we
go on to show that the features that are learnt in the different U-Net layers are
useful for discriminating good from bad, and that a Random Forest, trained to
classify each pixel based on such features, achieves a much better result than the
usual final softmax layer in the U-Net.

The output of such an approach is a label image, giving the probability
that each pixel belongs to a defect. A natural approach to identifying defects
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using such an image is to apply a threshold, then select the connected regions
passing this threshold. This approach is prone to false positives. We show that
better results can be obtained by computing Maximally Stable Extremal Regions
(MSERs) [18] in the probability image, then identifying which are likely to be
true defects by examining the distribution of probabilities across the region.

We demonstrate the system on the task of identifying defects in radiographs
of welds in aerospace components a safety critical application where currently
visual inspection by a human expert is the norm. Figure 1 shows an example
of a region extracted along a typical weld [7], and an example of a defect that
should be detected. Note that this is a particularly obvious defect many are
much more subtle.

(a) Image covering region around a weld, with an example of a defect

(b) Patch

Fig. 1. Examples of a radiograph along a weld [7].

To inspect large regions, we first normalise them and then break them down
into patches. Each patch is fed to a U-Net [21]. The U-Net is trained only on
patches sampled around the defects in the training set to avoid the system being
overwhelmed with normal (non-defect) pixels which are in the vast majority.

The contributions of the work are (1) we describe a system for identifying
small defect regions in large images; (2) we show that using a Random Forest
at the end of the process significantly improves on the performance of U-Net in
this domain; and (3) false positives can be reduced by using MSER to identify
candidate regions, rather than a simple thresholding.

The rest of this paper is organised as follows. In the next section, we review
some existing work. Our methodology is introduced in Section 3. The experi-
ments are re-ported in Section 4. Our conclusions are drawn in Section 5.

2 Related Work

2.1 Defect Detection Using Images

Non-destructive evaluation (NDE) of manufactured components [7], [1], [14] is
critical in many industries such as aerospace. Even small defects can significantly
reduce the life of a component, potentially leading to failure and accidents. Hu-
man inspection by trained experts is still the norm in the industry, but can be
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inconsistent, subjective, tedious and time-consuming [14]. There is a need to de-
velop of automatic inspection systems to reduce the workload of inspectors and
provide more consistent, objective and efficient decisions.

Kehoe and Parker [11] applied a thresholding method to the statistics of
pixels for defect detection. Wang and Liao [25] detected defect candidates using
the background subtraction and histogram thresholding approaches. The two-
stage method that Wang et al. [26] introduced for line defect detection includes
defect detection and defect refinement. Yazid et al. [27] used the inverse sur-
face thresholding technique for defect detection. Using grayscale arranging pairs
(GAP) features, Zhao et al. [29] first constructed a model based on the pixel pairs
which own the stable intensity relationship. Defect detection was performed by
thresholding the difference in the intensity-difference signs between the novel im-
age and the model. A series of basic image processing operations were used by
Boaretto and Centeno [1]. Recently, Dong et al. [7] developed a weld defect de-
tection method using Haar-like features [24] and Random Forests [2]. Although
this method produced promising results, some defects were still missed.

2.2 CNN-Based Image Segmentation

The above approaches were normally implemented using either basic image pro-
cessing methods, or traditional features and classifiers. In contrast, Convolutional
Neural Network (CNN) techniques [13] have shown state-of-the-art performance
in many computer vision tasks. Training a CNN requires a large number of la-
belled examples. Alternatively, the fully-connected (FC) layer of a pre-trained
CNN can be used as a generic feature extractor [19]. Ren et al. [20] used the FC
features extracted from a set of image patches to train a classifier. The classifier
can be used to predict as to whether or not a patch contains defects. However,
extraction of FC features from patches is time-consuming. This issue limits the
practicability of the method in the real industrial inspection. Using a large image
patch set, Chen and Jahanshahi [3] trained a CNN classifier from scratch for de-
tecting cracks. Naive Bayes decision making was used to remove false positives.
However, where only few images are available for training, the system will not
work so well.

Using a sliding-window CNN classifier, Ciresan et al. [5] segmented the neu-
ronal membranes contained in electron microscopy images. Girshick et al. [8]
applied a region classifier to semantic segmentation. The FC features extracted
from a set of regions that were produced by region proposal were first fed into a
regressor. Then, the regressor was used to predict the quality score of each re-
gion in terms of a class. Hariharan et al. [10] proposed the hypercolumn features
that were extracted at multiple CNN layers in order to exploit both the local-
isation and semantic data. Instead of using a pre-trained CNN as the feature
extractor, Long et al. [16] adapted it into a Fully Convolutional Network (FCN)
and transferred its representations to semantic segmentation by fine-tuning this
CNN using a large domain-specific dataset.

However, such a large dataset may be unavailable in some fields, e.g. medical
image processing. To address this problem, Ronneberger et al. [21] developed a
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novel CNN architecture, U-Net. It comprises a contracting path encoding the
context information and a symmetric expanding path that captures the local-
isation data (see Figure 2). Using even a small dataset, U-Net can be trained
end-to-end from scratch and outperformed the method that Ciresan et al. [5]
proposed. For segmentation of neuronal cells in confocal microscopy images, it is
challenging to label the pixel-wise ground-truth. When only a relatively small set
of instance-wise ground-truth images are available, the direct training of FCNs
becomes impractical. Chen et al. [4] proposed a method to train pixel-wise Com-
plete Bipartite Networks (CB-Net) using these data. Zhang et al. [28] applied a
Deep Adversarial Network (DAN) model to biomedical image segmentation in
which the annotated or unannotated images were available.
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Fig. 2. The flowchart of the proposed small defect detection approach.

3 Methodology

We assume that we have a training set containing example images each con-
taining typical defects, together with binary label images indicating the pixels
belonging to each defect. Since defects are small and rare, the defect pixels are a
tiny minority of all pixels, making training difficult. To train a U-Net [21], each
image is first augmented with rotations, reflections and distortions, and is then
normalised by applying a linear transformation to zero the mean and arrange
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for the variance to be unity. Patches are further extracted around each defect.
We train a U-Net to predict the binary pixel labels using this set. We then train
a Random Forest to use features extracted at each pixel position in the U-Net
to predict the pixel label essentially replacing the final softmax layer of U-Net
with a Random Forest classifier. Random Forests are known to generalise well
from small numbers of samples [6], [15], so are suitable for this application.

Figure 2 shows the flowchart of the proposed approach to process a new
image. The output of the U-Net + RF is a probability image. We compute
Maximally Stable Extremal Regions (MSERs) in this probability image, and
analyse each to discard false positives. In the following we describe the steps
of the training and processing in detail, and show the results of experiments
evaluating the performance of the different parts of the system.

3.1 U-Net Training

Data Augmentation Data augmentation has been shown to improve the per-
formance of deep learning methods [23]. We apply a pipeline of augmentation
operations to the images and associated labels. This includes shearing, skewing,
flipping and elastic distortion operations in turn. The occurrence probabilities
for the four operations are 0.5, 0.5, 0.75 and 1.0 respectively.

Normalisation and Patch Sampling We enhance the contrast of each image,
and improve invariance to illumination effects, by applying z-normalisation [9]
to each image. At each pixel we apply a trans-formation

p
′

=
p− µ

σ
, (1)

where µ and σ are the mean and standard deviation computed in the W ×W

region centred at the pixel. We sample a P × P patch around each defect from
each image. The patch is taken at a randomly displaced position so that the
position of the defect is not centrally biased. Figure 3 shows examples of the
original and normalised patches.

Model Training We use the Adam [12] approach for parameter optimisation
in U-Net [21], training on the pre-processed patches.

3.2 Feature Extraction Using the Pre-trained U-Net

Using the pre-trained U-Net [21], one can extract features from an image at
different convolutional layers. We use the second convolutional layer at each
level on one path for feature extraction (see Figure 2 for more details). Given
the U-Net contains L levels, the second convolutional layer at the bottom level
(i.e. the L-th level) is denoted as LB . In terms of the contracting (left) and
expanding (right) paths at the j-th (j ∈ {1, · · · , L − 1}) level, we denote the
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(a) (b)

(c) (d)

Fig. 3. Examples of z-normalisation (W = 71). (Left: Original, Right: Normalised).
For display purposes, the image patches have been enlarged.

second convolutional layer as: LC
j and LE

j respectively. For an M ×N image, a

series of M
′ ×N

′ ×C (C is the number of filters) feature maps can be computed
at one of the LB , LC

j and LE
j layers. Each feature map is individually resized

to the size of M ×N using bilinear interpolation. In this context, each pixel is
represented by C features. Motivated by the use of hypercolumn features [10],
we also extracted features at multiple layers and concatenate these along the
feature channel axis. The feature vectors at each pixel are independently L2

normalised.

3.3 Image Segmentation Using a Random Forest

We apply the U-Net [21] to the (un-augmented) training set and obtain feature
vectors for each pixel. We create a training set of feature vectors by extracting
the vectors associated with every positive (defect) pixel and an equal number of
(randomly sampled) negative pixels. These samples are used to train a random
forest to estimate the pixel label based from the feature vector.

Given a new image, an output probability image is created by applying U-
Net, then using the random forest to estimate the defect probability at every
pixel.

3.4 Defect Candidate Detection Using the MSER Detector

We use the Maximally Stable Extremal Region (MSER) detector [18] to iden-
tify defect candidates from each probability image. The image is first linearly
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stretched to the range [0, 255]. Compared with applying a threshold to the im-
age, this method exploits the higher level characteristics encoded in connected
components. After MSER detection is complete, a set of defect candidates are
obtained for each test image.

3.5 False Positive Removal

To evaluate whether or not a region (identified by MSER) is a true positive we
calculate the number of pixels, np, which have a probability above a threshold
value, t. We remove any region in which fewer than k% of the pixels pass the
threshold.

4 Experiments

In this section, we first introduce the experimental setup and performance mea-
sures used in our experiments. Then, we report the results derived in the image
segmentation and defect detection experiments.

4.1 Setup

We used a set of 43 X-ray images and associated label images collected by Dong
et al. [7] from an aerospace manufacturing company. Each image had at least one
defect. Defects are rare in aerospace components, making it difficult to obtain
a large dataset. We used a 10-fold cross validation scheme for all experiments
reported. For each split, data augmentation leads to 10 extra images for each
training image. 64×64 patches sampled from the original and augmented images
were used for training a single U-Net [21]; while only the original images were
used for training an individual random forest classifier [2]. When testing, only
the original images were used for both U-Net and random forests. All images
(including those used for sampling patches) were processed using z-normalisation
with W = 71.

U-Net [21] was trained using different levels and numbers of filters (batch
size = 8, 100 epochs and 32 iterations per epoch). To train the random forest,
feature vectors were extracted from one or more U-Net layers and concatenated.
All images or patches were padded with zeros in order to generate the probability
map with the same size as the input. Given an F dimensional feature vector, a
subset of ⌈

√
F ⌉ features were randomly selected using the random forest classifier.

The Gini impurity measure [2] was used to choose the feature and threshold at
each node. The minimum number of samples at each terminal node was set to
0.01% of the training set size.

4.2 Performance Measures

We measure the per-pixel classification performance using the Receiver Operat-
ing Characteristic (ROC) curve, plotting the true positive against false positive
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fraction for each of a choice of probability threshold values, t. In order to derive
a single quantitative measure, we computed the Area under the Curve (AUC)
from a ROC curve. Since defect detection focuses on identifying defects rather
than single pixels we use an object level measure, i.e. Free Response Operating
Characteristic (FROC), plotting the proportion of defects detected against the
number of false positives per image. We consider a defect detected if more than
half of its area is included in a positive detection region. We used a threshold
of k = 59 (chosen empirically using pilot experiments) when discarding false
positive MSERs.

4.3 Image Segmentation

We first tested the impact of different experimental parameters on image seg-
mentation. Then, we compared the proposed feature set with other image feature
sets.

Impact of the Number of Levels We first trained U-Net [21] using between
1 and 4 levels. Figure 4 shows the ROC curves and AUC values derived using L

(L ∈ {1, · · · , 4}) levels U-Net alone. The best result for this data (AUC: 0.9825)
was obtained using three levels.
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1 Level (AUC: 0.7600)

2 Levels (AUC: 0.8861)

3 Levels (AUC: 0.9825)

4 Levels (AUC: 0.9430)

Fig. 4. ROC curves plotted using the results of different numbers of U-Net [21] levels
for weld image segmentation. (Only the top-left part of each curve is shown. See main
text for details).
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Impact of the Number of Filters We trained 3-level U-Nets using C (C ∈
{32, 64, 128}) filters see Figure 5. The highest AUC value: 0.9825 was produced
using 64 filters.
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32 Filters (AUC: 0.9579)

64 Filters (AUC: 0.9825)

128 Filters (AUC: 0.8449)

Fig. 5. ROC curves plotted using the results of the 3-level U-Net [21] with different
numbers of filters for weld image segmentation. (Only the top-left part of each curve
is shown. See main text for details).

Impact of Z-Normalisation We trained the U-Net with and without z-
normalisation [9] on the input patches. As shown in Figure 6, the use of z-
normalisation greatly boosted the performance, increasing the AUC from 0.88
to 0.98.

Softmax vs. Random Forests Since the softmax layer is immediately placed
behind the convolutional layer: LE

1
in U-Net, we examined the performance of

the random forest classifier [2] along with the features extracted at this layer.
We used 25 and 200 trees for the classifier individually. The results are compared
with that generated by the softmax layer in Figure 7. Although softmax yielded
the slightly higher AUC value than those obtained using random forests, the
latter produced higher true positive rates when false positive rates were below
11%.

Impact of Different Layers of the Pre-trained U-Net Given three levels
were used for U-Net we tested features from five different convolutional layers,
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Without z−Norm (AUC: 0.8804)

With z−Norm (AUC: 0.9825)

Fig. 6. ROC curves plotted using the results of the end-to-end trained U-Nets [21] with
and without z-normalisation for weld image segmentation. (Only the top-left part of
each curve is shown. See main text for details).
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U−Net + Softmax (AUC: 0.9825)

U−Net + RF (25) (AUC: 0.9785)

U−Net + RF (200) (AUC: 0.9802)

Fig. 7. ROC curves plotted using the results of the end-to-end trained U-Net [21] and
the features extracted using this U-Net and random forests for weld image segmenta-
tion. (Only the top-left part of each curve is shown. See main text for details).
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LC
1
, LC

2
, LB , LE

2
and LE

1
(see Figure 2). For each layer, features were extracted

and used to train a single random forest classifier. The results are displayed in
Figure 8. Features from the bottom convolutional layer, LB , produced the best
results.
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E

1
) + RF (AUC: 0.9802)

Fig. 8. ROC curves plotted using the results of the different layers of a pre-trained
3-level U-Net [21] for weld image segmentation. (Only the top-left part of each curve
is shown. See main text for details).

Single-Layer vs. Multi-layer of the Pre-trained U-Net Inspired by the
application of hypercolumn features [10], we extracted features at multiple layers
of U-Net. Table 1 reports the AUC values obtained using the convolutional
layer: LB and nine different combinations of U-Net layers. As can be seen, the
single layer LB produced superior results to those generated by its multi-layer
counterparts.

Comparison with Existing Feature Sets Finally, we compared the results
obtained using the features extracted at the bottom layer LB of U-Net [21] with
those derived using two existing feature sets, (1) SIFT features [17] and (2)
features extracted at the last convolutional layer of a pre-trained VGG-VD-16
[22] model. As presented in Figure 9, the U-Net features outperformed both the
SIFT and VGG-VD-16 features with large margins.
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Table 1. The AUC values obtained using an RF on features from various layers of
U-Net [21]

Layers L
B

L
E
1 + L

E
2 L

B + L
E
1 L

C
1 + L

B + L
E
1 L

C
2 + L

B + L
E
2 L

C
1 + L

C
2 + L

B

AUC 0.998 0.973 0.996 0.997 0.995 0.997

Layers L
B + L

E
2 L

C
1 + L

B
L

B + L
E
2 + L

E
1 L

C
1 + L

C
2 + L

B + L
E
2 + L

E
1

AUC 0.995 0.997 0.994 0.994
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SIFT + RF (AUC: 0.9509)

VGG−VD−16 + RF (AUC: 0.9708)

U−Net (L
B
) + RF (AUC: 0.9979)

Fig. 9. ROC curves plotted using the results of random forests [2] and the SIFT [17]
features, the local convolutional features extracted from the pre-trained VGG-VD-16
[22] and the features extracted from the pre-trained 3-level U-Net [21] for weld image
segmentation. (Only the top-left part of each curve is shown. See main text for details).
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4.4 Defect Detection

Figure 10 shows the FROC curves (proportion of defects detected vs. number of
false positives per image) obtained using a hand-crafted method [25], the end-
to-end trained U-Net with softmax, the U-Net features plus random forests, and
the Haar-like features [24] plus random forests. We also compared the proposed
MSER [18] based defect detection method with that implemented by thresh-
olding the probability image for the two U-Net approaches. It can be seen that
(1) the MSER-based defect detection performed better than the thresholding
method; and (2) our approach (U-Net+RF) produced superior results to the
other methods. Specifically, 84.5% of defects were detected when in average 2.4
false positives were detected per image. In contrast, the two digits are 83% and
2.7 for the Haar-like features plus random forests that Dong et al. [7] used. On
the other hand, 72.4% of defects were detected using our approach with in aver-
age 0.5 false positives were obtained per image; while only 65.5% of defects were
detected by the Haar-like features plus random forests. A more traditional im-
age processing technique proposed by Wang and Liao [25] achieves much worse
results; 34.5% of defects were detected when in average 31.2 false positives per
image were generated.
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Fig. 10. The FROC curves obtained using four methods: a hand-crafted method [25],
the end-to-end trained U-Net with softmax [21], the features extracted from the pre-
trained U-Net plus random forests [2], and the Haar-like features [24] plus random
forests. (See main text for details).
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5 Conclusions

We described an approach for detecting rare, small abnormalities in imaging
data, with a focus on defects visible in X-ray images of welds. The method
augments U-Net with a Random Forest (RF), with the RF being trained to
classify each pixel using features extracted from the U-Net. End-to-end training
of U-Net leads to useful features, but the RF can make better use of them
when only relatively small numbers of training examples are available. Instead
of thresholding the probability map produced by the classifier, we identify defect
candidates using the Maximally Stable Extremal Region (MSER) detector. This
uses the higher level characteristics contained in connected components rather
than simple pixel-wise thresholding. Some false positive regions can be removed
by studying the pixel probabilities across the regions. The best performance
obtained using our approach was superior to a variety of alternatives tested.

Although our approach was restricted by the limited number of training data,
it still produced promising results. While all the learning based methods explored
are likely to benefit from larger training sets, it is useful to identify techniques
which will work well when few examples are available.
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