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Abstract. Pooling layers are an essential part of any Convolutional
Neural Network. The most popular pooling methods, as max pooling
or average pooling, are based on a neighborhood approach that can be
too simple and easily introduce visual distortion. To tackle these prob-
lems, recently a pooling method based on Haar wavelet transform was
proposed. Following the same line of research, in this work, we explore
the use of more sophisticated wavelet transforms (Coiflet, Daubechies) to
perform the pooling. Additionally, considering that wavelets work sim-
ilarly to filters, we propose a new pooling method for Convolutional
Neural Network that combines multiple wavelet transforms. The results
achieved demonstrate the benefits of our approach, improving the per-
formance on different public object recognition datasets.
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1 Introduction

Neural networks, the main tool of deep learning, are a before-and-after in the
history of computer science. Pooling layers are one of the main components of
Convolutional Neural Networks (CNNs). They are designed to compact informa-
tion, i.e. reduce data dimensions and parameters, thus increasing computational
efficiency. Since CNNs work with the whole image, the number of neurons in-
creases and so does the computational cost. For this reason, some kind of control
over the size of our data and parameters is needed. However, this is not the only
reason to use pooling methods, as they are also very important to perform a
multi-level analysis. This means that rather than the exact pixel where the ac-
tivation happened, we look for the region where it is located. Pooling methods
vary from deterministic simple ones, such as max pooling, to probabilistic more
sophisticated ones, like stochastic pooling. All of these methods have in common
that they use a neighborhood approach that, although fast, introduce edge halos,
blurring and aliasing. Specifically, max pooling is a basic technique that usually
works, but perhaps too simple since it neglects substantial information applying
just the max operation on the activation map. On the other hand, average pool-
ing is more resistant to overfitting, but it can create blurring effects to certain
datasets. Choosing the right pooling method is key to obtain good results.
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Fig. 1. Overview of multiple wavelet pooling

Recently, wavelets have been incorporated in deep learning frameworks for
different purposes [4, 3, 8], among them as pooling function [8]. In [8], the authors
propose a pooling function that consists in performing a 2nd order decomposi-
tion in the wavelet domain according to the fast wavelet transform (FWT).
The authors demonstrate that their proposed method outperforms or performs
comparatively with traditional pooling methods.

In this article, inspired by [8], we explore the application of different wavelet
transforms as pooling methods, and then, we propose a new pooling method
based on the best combination of them. Our work differs with [8] mainly in three
aspects: 1.- We perform 1st order decomposition in the wavelet domain according
to the discrete wavelet transform (DWT), and therefore, we can extract directly
the images from the low-low (LL) sub-band, 2.- We explore different wavelets
transforms instead of using only Haar wavelet, and 3.- We propose a new pooling
method based on the combination of different wavelet transforms.

The organization of the article is as follows. In section 2, we present the
Multiple Wavelet Pooling methodology and in section 3, we present the datasets,
the experimental setup, discuss the results and describe the conclusion.

2 Multiple Wavelet Pooling

Wavelet transform is a representation of the data, similar to the Fourier trans-
form, that allows us to compact information. Given a smooth function f(t), the
continuous case is defined as

CWTnf = s*l/Q/f(t);z; (tsl> dt.

where 1(t) is a mother wavelet and s € Z is the scale index and | € Z is the
location index. Given an image A of size (n,n, m), the finite Discrete Wavelet
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Transform (DWT) can be achieved building a matrix, as explained in [2]:
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Note that H and G are submatrices of size (5,7, m) and WAW T HH) .

The original image A is transformed into 4 subbands: the LL subband is the
low resolution residual which consists of low frequency components, which means
that it is an approximation of our original image; and thee subbands HL, LH
and HH give horizontal, vertical and diagonal details, respectively.

In this article, we propose to form the pooling layer by combining different
wavelets: Haar, Daubechie and the Coiflet [1] one. Haar basis is formed by h =
(1/v/2,1//2) and g = (1/+/2,—1/4/2); the Daubechies basis is formed by h =
V3)/4v/2, (—3+/3)/4v2, (3+/3)/4v/2, (=1 —/3) /4y/2); and finally the Coiflet
basis is formed by h = (—0.0157,—0.0727,0.3849, 0.8526, 0.3379, —0.0727) and
g = (—0.0727,—-0.3379, 0.8526, —0.3849, —0.0727, —0.0157). From these, you can
populate the wavelet matrix following the Lemma 3.3 and Theorem 3.8 in [2].

The algorithm for multiple wavelet pooling is as follows:

1. Choose two different wavelet bases and compute their associated matrices,
W1 and WQ.

2. Present the image feature F' and perform, in parallel, the two associated
discrete wavelet transforms Wi FW{ and Wo FW{ .

3. Discard HL, LH, HH from every matrix, thus only tacking into account
the approximated image LL; and LLy by the two different basis.

4. Concatenate both results and pass on to the next layer.

In Fig. 1, we can see an example of how this pooling method works within a
CNN architecture.

3 Results and Conclusions

We used three different datasets for our testing: MNIST [6], CIFAR-10 [5] and
SVHN [7]. In order to compare the convergence, we use the categorical entropy
loss function; as a metric, we use the accuracy. For the MNIST dataset, we used
a batch size of 600, we performed 20 epochs and we used a learning rate of 0.01.
For the CIFAR-10 dataset, we performed two different experiments: one without
dropout, with 45 epochs and one with dropout, with 75 epochs. For both cases,
we used a dynamic learning rate. For the SVHN dataset, we performed a set of
experiments with 45 epochs and a dynamic learning rate. All CNN structures
are taken from [8] for the respective datasets. In this case, we test algorithms
without dropout to observe the pooling method’s resistance to overfit. Only in
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the case of CIFAR-10, we take into account both performances with and without
dropout.

Table 1 shows the accuracies obtained for each pooling method together
with their position on the ranking; additionally, we highlight in bold the best
performance for each dataset. We will denote ”d” the case when we perform
the model training with dropout. For the MNIST data-set, the choice of the
Daubechie basis improves the accuracy, compared to the Haar basis. For CIFAR-
10 and SVHN, we can see that the multiple wavelet pooling performed evenly or
better than max and average pooling. Specially, for the case with dropout, the
multiple wavelet pooling algorithm outperformed all other pooling algorithms.

Table 1. Accuracy obtained for each pooling method together with the ranking po-
sition. We highlight with boldface the three best results for each dataset. The last
column represents the mean rank of each pooling method across all datasets

MNIST CIFAR-10 CIFAR-10 (d) SVHN Rank

Max 98.93% (1) 73.35% (8) 70.50% (8) 88.51% (6)] Hth
Average 98.36% (3) 76.40% (1) 78.49% (5) 88.27% (8)| 3rd
Haar 98.15% (5) 74.79% (7) 77.80% (6) 89.23% (4)| 4th
Daubechie 98.29% (4) 76.12% (2)  78.45% (3) 88.20% (7)| 2nd
Coiflet 98.08% (7) 74.94% (6) 77.36% (7) 89.20% (5)| 6th
Haar+Daubechie 98.41% (2) 75.39% (4) 79.33% (1) 91.01% (1)| 1st
Haar+Coiflet 98.18% (6) 75.43% (3) 78.80% (4) 90.61% (3)| 2nd
Daubechie+Coiflet  97.80% (8) 75.13% (5)  79.19% (2) 90.88% (2)| 3rd

In Fig 2 (left), we present an example of the convergence of every pool-
ing method compared. In general lines, the multiple wavelet algorithm always
converges faster or comparatively to max and average pooling. Simple wavelet
pooling, for any of its variants, is always the second fastest convergence method.
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Fig. 2. SVHN loss function (left) and Multiple wavelet Haar+Daubechie results (right)



Multiple Wavelet Pooling 5

In Fig. 2 (right), we show an example of predictions for the SVHN dataset
with Haar and Daubechie basis. The first row represents correct predictions, the
second row represents wrong predictions. The network has trouble distinguishing
images where more than one digit appears. Still, it is very consistent: the first,
second, third and fifth images could be considered to be correct.

In conclusion, we proved that multiple wavelet pooling are capable of com-
peting and outperforming the well-known max and average pooling: yielding
better results and at the same time converging faster.
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