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Abstract. We examine and evaluate adaptive attention [17] (which bal-
ances the focus on visual features and focus on textual features) in gen-
erating image captions in end-to-end neural networks, in particular how
adaptive attention is informative for generating spatial relations. We
show that the model generates spatial relations more on the basis of tex-
tual rather than visual features and therefore confirm the previous ob-
servations that the learned visual features are missing information about
geometric relations between objects.
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1 Introduction

End-to-end neural networks are commonly used in image description tasks [28,29,17].
Typically, a pre-trained convolutional neural network is used as an encoder which
produces visual features, and a neural language model is used as a decoder that
generates descriptions of scenes. The underlying idea in this representation learn-

ing scenario [5] is that hidden features are learned from the observable data with
minimum engineering effort of background knowledge. For example in word se-
quence generation only some general properties of a sequence structure [26] are
given to the learner while the learner learns from the observed data what word to
choose in a sequence together with a representation of features. Recent models
such as [29,17] also add to the neural language model a model of visual attention
over visual features which is inspired by the attention mechanism for alignment
in neural machine translation [4]. It may be argued that the attention mecha-
nism introduces modularity to representation learning in the sense of inception
modules [27] and neural module networks [2]. The visual attention is intended to
detect the salient features of the image and align them with words predicted by
the decoder. In particular, it creates a sum of the weighted final visual features
at different regions of an image:

ct =

k∑

i=1

αtivi (1)
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where at time t, ct represents the pooled visual features, i corresponds to k

different regions of image, vi is the visual representation of a particular region,
and αti represent the amount of attention on the specific region of the image.
This representation provides the features for grounding the prediction of next
word:

logPr(wt+1 = yt+1|w1:t = y1:t, I = v1:k) ≈ f(y1:t, ct) (2)

where f represents the end-to-end neural network for approximating the predic-
tion of the next word in sentence.

However, not all words in natural language descriptions are directly grounded
in visual features which leads [17] to extend the attention model [29] with an
adaptive attention mechanism which learns to balance between the contribution
of the visual signal and the language signal when generating a sequence of words.

ĉt = βtst + (1− βt)ct (3)

where at time t, ĉt is a combined representation of language features and visual
features in addition to ct of the visual features from Equation 2. st is obtained
from the memory state of the language model, and βt ranging between [0, 1] is the
adaptive attention balancing the combination of vision and language features.

The performance of the image captioning systems when evaluated on the
acceptability of the generated descriptions is impressive. However, in order to
evaluate the success of learning we also need to understand better what the sys-
tem has learned especially because good overall results may be due to the dataset
artefacts or the system is simply learning from one modality only, ignoring the
other [1]. Understanding the representations that have been learned also gives us
an insight into building better systems for image captioning, especially since we
do not have a clear understanding of the features in the domain. An example of
work in this area is [15] which evaluates visual attention on objects localisation.
[25] developed the FOIL dataset as a diagnostic tool to investigate if models look
at images in caption generation. In [24] they examine the FOIL diagnostic for
different parts-of-speech and conclude that the state of the art models can locate
objects but their language models do not perform well on other parts-of-speech.

The current paper focuses on generation of spatial descriptions, in partic-
ular locative expressions such as “the chair to the left of the sofa” or “people
close to the statue in the square”. Spatial relations relate a target (“people”)
and landmark objects (“the statue”) with a spatial relation (“close to”). They
depend on several contextual sources of information such as scene geometry
(“where” objects are in relation to each other), properties or function of ob-
jects and their interaction (“what” is related) as well as the interaction be-
tween conversational participants [11,13,21,8,10]. The features that are relevant
in computational modelling of spatial language are difficult to determine simply
by manually considering individual examples and they are normally identified
through experimental work. The representation learning models are therefore
particularly suited for their computational modelling.
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However, the end-to-end vision and language models with attention are im-
plemented in a way to recognise objects and localise their area in an image [3,18].
To generate spatial relations, [20] propose a combination of visual representations
from convolutional neural networks and manually designed geometric represen-
tation of targets and landmarks. On quick examination, the representation of
attention over images as in [29] gives an impression that attention captures both
“what” and “where”, especially because the attention graphs resemble spatial

templates [16]. However, [12] argue that due to the design properties of image
captioning networks, attention does not capture “where” as these models are
built to identify objects but not geometric relations between them which they
examine at the level of qualitative evaluation of attention on spatial relations.

In this paper we quantitatively evaluate the model of adaptive attention of
[17] in predicting spatial relations in image descriptions. The resources used in
our evaluation are described in Section 2. In Section 3 we examine the grounding
of different parts-of-speech in visual and textual part of attention. Furthermore,
in Section 4 we investigate the attention on spatial relations, targets and land-
marks. We conclude by providing the possible directions for future studies and
improvements.

2 Datasets and Pre-trained Models

As a part of their implementation [17] provide two different pre-trained image
captioning models: Flickr30K [30] and MS-COCO [14].1 We base our experiments
on spatial descriptions of 40,736 images in the MS-COCO test corpus.

3 Visual Attention and Word Categories

Hypothesis Our hypothesis is that visual attention in the end-to-end image cap-
tioning systems works as an object detector similar to [3,18]. Therefore, we
expect the adaptive attention to prefer to attend to visual features rather than
the language model features when predicting categories of words found in noun
phrases that refer to objects, in particular head nouns. [24] measure to what
degree the neural language model alone can predict different parts of a sentence
(the blind test). In their classification task, given an image and a caption, the
model has to predict whether the caption is correct or incorrect for that image.
They show that different part of speech have different predictability from the
neural language model. As shown in Equation 3 visual attention and language
model attention are complementary in the model of [17] as well as other mod-
els. We expect that both scores will be reversed: more predictable words by the
language model in the blind test receive less visual attention.

1 https://filebox.ece.vt.edu/∼jiasenlu/codeRelease/AdaptiveAttention.

https://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention
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Method We use the pre-trained model of adaptive attention 2 to generate a
description for each of the 40,736 images in the MS-COCO-2014 test. All the
attention values are logged (α, β). We apply universal part-of-speech tagger from
NLTK [6] on the generated sentences and report the average visual attentions
on each part-of-speech. We match our results with results on the degree of pre-
dictability of each part-of-speech from the language model without looking at
the image from the blind test of [24]. Note that we do not investigate the over-
all quality of the model on the test set (this has already been evaluated by its
authors) but what kind of attention this model gives to vision and language
features used to generate a word of each category. The evaluaiton code:
https://github.com/GU-CLASP/eccv18-sivl-attention

Results Table 1 indicates that the highest degree of visual attentions is on
numbers (NUM), nouns (NOUN), adjectives (ADJ) and determiners (DET) re-
spectively. Pronouns (PRON) and particles (PRT) receive the lowest degree
of visual attention. Verbs (VERB) and adverbs (ADV) are placed in the mid-
dle of this sorted list. Spatial relations which are mainly annotated as preposi-
tions/adpositions (ADP) receive the second lowest visual attention, higher only
than pronouns (PRON) and particles (PRT). Our results are different from the
accuracy scores of detecting mismatch descriptions in the FOIL classification
task [24]. For example, the model assigns predicts the mismatch on ADJ easier
than mismatch on ADV. As hypothesised, the part-of-speech that make up noun
phrases receive the highest visual attention (and the lowest language model at-
tention). The results also indicate that the text is never generated by a single
attention alone but a combination of visual and language model attentions. Since
some spatial relations are often annotated as adjectives (e.g. “front”), a more
detailed comparison on spatial terms is required.

Table 1. The average visual attention (1 − β) for predicting words on each part-of-
speech. The scores from the blind test indicate the accuracy of detecting a mismatch
description in the FOIL-classification task [24].

POS Count Mean± std Blind test

NUM 1882 0.81± 0.08 -
NOUN 134332 0.78± 0.12 0.23
ADJ 23670 0.77± 0.14 0.76
DET 96641 0.73± 0.12 -
VERB 38381 0.70± 0.11 0.57
CONJ 6755 0.70± 0.13 -
ADV 184 0.69± 0.12 0.18
ADP 64332 0.62± 0.15 0.54
PRON 2347 0.53± 0.14 -
PRT 6462 0.52± 0.21 -

2 https://filebox.ece.vt.edu/∼jiasenlu/codeRelease/AdaptiveAttention/model/
COCO/coco challenge/model id1 34.t7

https://github.com/GU-CLASP/eccv18-sivl-attention
https://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention/model/COCO/coco_challenge/model_id1_34.t7
https://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention/model/COCO/coco_challenge/model_id1_34.t7
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4 Visual Attention when Grounding Spatial Descriptions

In generation of a sequence of words that make up a spatial description, which
type of features or evidence is taken into consideration by the model as the
description unfolds?

Hypothesis In Section 3, we argued that the generation of spatial relations
(prepositions/adpositions) is less dependent on visual features compared to noun
phrases due to the fact that the learned visual features are used for object recog-
nition and not recognition of geometric spatial relations between objects. More-
over, the visual clues that would predict the choice of spatial relation are not in
one specific region of an image; this is dependent on the location of the target,
the landmark and the configuration of the environment as a whole. Therefore,
our hypothesis is that when generating spatial relations the visual attention is
more spread over possible regions rather than being focused on a specific object.

Method The corpus tagged with POS from the previous section was used. In
order to examine the attention on spatial relations, a list of keywords from [11,13]
was used to identify them, provided that they have a sufficient frequency in the
corpus. The average adaptive visual attention for each word can be compared
with the scores in Table 1 for different parts-of-speech. In each sentence, the
nouns before the spatial relation and the nouns after the spatial relations are
taken as the most likely targets and landmarks respectively. The average adaptive
visual attention on targets, landmarks and and spatial relations is recorded.

Results In Table 2 we report for each spatial relation and its targets and land-
marks the average adaptive visual attention. The adaptive attentions for triplets
are comparable with the figures for each part-of-speech in Table 1. In the cur-
rent table, the variance of visual attentions is reported with the max − min

measure which is the difference between maximum and minimum attentions on
a 7x7 plane representing the visual regions in the model. Lower values indicate
either a low attention or a wider spread of attended area, hence less visual focus.
Higher values indicate that there there is more visual focus. For each spatial
relation, the triplets must be compared with each other. In all cases, our hy-
pothesis is confirmed: (1) the adaptive visual attention is lower on predicting
spatial relations which means that they receive overall less visual attention, (2)
with the exception of “under”, the difference between maximum and minimum
visual attentions are lower with spatial relations which means that the attention
is spread more over the 7x7 plane. Figure 1 shows a visualisation of these results
for “under” and “over”. The results also show that landmarks in most cases
receive less visual attention in comparison to targets. This indicates that after
providing a target and a spatial relation, the landmark is more predictable from
the language model (for a similar observation see [9]).
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Table 2. The average score of adaptive visual attention for target (TRG) relation
(REL) landmark (LND) triplets per each relation in the first column and the average
difference between the highest and the lowest value of visual attention for the same
items in the second column.

Descriptions Average (1− βt) Average (max(α̂t)−min(α̂t))
Spatial Relations TRG, REL, LND TRG, REL, LND

under 0.84, 0.73, 0.79 0.0252, 0.0151, 0.0139
front 0.83, 0.70, 0.82 0.0230, 0.0136, 0.0154
next 0.82, 0.68, 0.78 0.0224, 0.0136, 0.0138
back 0.85, 0.68, 0.84 0.0332, 0.0186, 0.0272
in 0.82, 0.68, 0.77 0.0250, 0.0149, 0.0164
on 0.81, 0.68, 0.75 0.0249, 0.0154, 0.0175
near 0.80, 0.67, 0.76 0.0221, 0.0133, 0.0169
over 0.77, 0.62, 0.75 0.0205, 0.0133, 0.0193
above 0.73, 0.64, 0.77 0.0167, 0.0134, 0.0231

Fig. 1. Each square in a box in the first row represents an averaged attention for a
location in the 7x7 grid over all n generated samples (α̂). The colours fade to white with
lower values. The bottom graphs show their average over the entire plane, indicating
the degree of adaptive visual attention (1− β), also reported in Table 2.
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5 Discussion and Conclusion

In this paper we explored to what degree adaptive attention is grounding spatial
relations. We have shown that adaptive visual attention is more important for
grounding objects but less important for grounding spatial relations which are
not directly represented with visual features. As a result the visual attention is
diffused over a larger space. The cause for a wider attended area can be due to
high degree of noise in visual features or lack of evidence for visual grounding.

This is a clear shortcoming of the image captioning model, as it is not able to
discriminate spatial relations on the basis of geometric relations between the ob-
jects, for example between relations such as “left” and “right”. The future work
on generating image descriptions therefore requires models where visual geome-
try between objects is explicitly represented as in [7]. The study also shows that
when generating spatial relations, a significant part of the information is pre-
dicted by the language model. This is not necessarily a disadvantage. The success
of distributional semantics shows that language models with word embeddings
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can learn a surprising amount of semantic information without access to visual
grounding. As mentioned in the introduction, spatial relations do not depend
only on geometric arrangement of objects but also functional properties of ob-
jects. For example, [9] demonstrate that neural language models encode such
functional information about objects when predicting spatial relations. Since,
each spatial relation has different degree of functional and geometric bias [8],
the adaptive attention considering visual features and textual features is also
reflective of this aspect. Models for explaining language model predictions such
as [19] are also related to this study and its future work.

Our study focused on the adaptive attention in [17] which explicitly models
attention as a focus on visual and language features. However, further investi-
gations of other types of models of attention could be made and this will be the
focus of our future work. We expect that different models of attention will be-
have similarly in terms of attending visual features on spatial relations because
the way visual features are represented: they favour detection of objects and not
their relative geometric arrangement. Our future work we will therefore focus
on how to formulate a model to be able to learn such geometric information in
an end-to-end fashion. Methodologies such as [22] and [23] which investigate the
degree of effectiveness of features without attention are also possible directions
of the future studies.
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