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Abstract. An endocytoscope provides ultramagnified observation that
enables physicians to achieve minimally invasive and real-time diagno-
sis in colonoscopy. However, great pathological knowledge and clinical
experiences are required for this diagnosis. The computer-aided diagno-
sis (CAD) system is required that decreases the chances of overlooking
neoplastic polyps in endocytoscopy. Towards the construction of a CAD
system, we have developed texture-feature-based classification between
neoplastic and non-neoplastic images of polyps. We propose a feature-
selection method that selects discriminative features from texture fea-
tures for such two-category classification by searching for an optimal
manifold. With an optimal manifold, where selected features are dis-
tributed, the distance between two linear subspaces is maximised. We
experimentally evaluated the proposed method by comparing the classifi-
cation accuracy before and after the feature selection for texture features
and deep-learning features. Furthermore, we clarified the characteristics
of an optimal manifold by exploring the relation between the classifica-
tion accuracy and the output probability of a support vector machine
(SVM). The classification with our feature-selection method achieved
84.7% accuracy, which is 7.2% higher than the direct application of Har-
alick features and SVM.

Keywords: Feature selection, manifold learning, texture feature, convo-
lutional neural network, endocytoscopic images, automated pathological
diagnosis

1 Introduction

An endocytoscope was recently developed as a new endoscopic imaging modal-
ity for minimally-invasive diagnosis. Endocytoscopy enables direct observation
of the cells and their nuclei on the colon wall at a 500-time-maximum ultram-
agnification as shown in 1. However, great pathological knowledge and clinical
experiences are necessary to achieve accurate endocytoscopy. Automated patho-
logical diagnosis is required to prevent overlooking neoplastic lesions to support



2 H. Itoh, et al.
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Fig. 1. (a) Endocytoscopy (CF-H290ECI, Olympus, Tokyo). (b) Conventional endo-
scope observation of a polyp by an endocytoscope. (c) Ultramagnified view by an
endocytoscope. Small blue spots represent cell nuclei. In (b) and (c), a polyp’s surface
is stained by methylene blue.

(a) (b) (c)

Fig. 2. Typical examples of endocytoscopic images for neoplastic- and non-neoplastic
polyps. (a) and (b), and (c) are categorised to neoplastic and non-neoplastic polyps.

physicians [19, 18, 12]. This automated pathological diagnosis is achieved by ro-
bust two-category image classification. Figure 2 shows typical examples of neo-
plastic and non-neoplastic endocytoscopic images. The differences between the
two categories are observed as differences of textures as shown in Fig. 2.

Robust two-category classification is a fundamental problem in pattern recog-
nition, since multi-category classification is also based on a two-category classi-
fication concept. A robust classification can be achieved by an optimal pipeline
of feature extraction, feature selection, and the classification of the selected fea-
tures. A recent approach in image pattern recognition adopt deep learning archi-
tectures [16, 15, 23] as a full pipeline from feature extraction to the classification
of extracted features. This deep learning approach can achieve robust multi-
category classification with sufficiently large training dataset. However, deep
learning fails to find optimal parameters with a small dataset. In medical image
classification, collecting a large amount of training data with sufficient patient
cases is difficult. Therefore, we have to tackle this problem with medical image
classification, especially for a new medical modality, using a handcraft feature
and a robust classifier. Previous works [19, 18, 12, 26, 25] adopted texture-based
feature extraction and support-vector-machine classification without feature se-
lection.

Principal component analysis (PCA) is a fundamental methodology for anal-
ysis and compression in data processing [14]. PCA is also used for feature se-
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Fig. 3. Interpretation of relation between category subspace by canonical angles be-
tween them: (a) Linear separation by hyper plane for ideal features; (b) Before and
after feature selection.
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Fig. 4. Grassmann distance between two category subspaces. (a) and (b) show Grass-
mann distance between category subspaces in D-dimensional space for different feature
selections ψ and ψ̃. In (a), Grassmann distance for mL-dimensional subspace is longer
than the one for mS-dimensional subspace in (b). An optimal manifold gives largest
distance between two-category subspaces for classification.

lection [20, 2], through which finds a small number of principal components to
represent the patterns in a category. This feature selection is useful and opti-
mal for the representation of the distribution of a pattern with respect to the
mean square root error. However, this feature selection is not optimal for the
classification of patterns in different categories. The common or similar principal
components among patterns in different categories can lead to incorrect classi-
fication. Fukunaga and Koontz proposed feature selection methods using PCA
for clustering [7]. Their method removes the features shared by two categories
from the features. The validity of their method is experimentally presented with
phantom data, where the means of each category patterns are known. Fukui et
al. proposed a constraint mutual subspace method [5] with which they tried to
remove the common subspace among patterns of different categories. However,
this methods was only designed for the mutual subspace method [17].

We propose a new feature-selection method for the linear classification of
neoplastic and non-neoplastic lesions on endocytoscopic images. This selection
method is achieved by searching for an optimal manifold for classification. Figure
3 summarises the concept of our feature-selection method. Triangles L1 and L2

represent the linear category subspaces spanned by the features of each category.
The ideal discriminative feature gives a hyper-plane between the features of the
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Fig. 5. Processing flow of classification of an endocytoscopic image. We use texture
features for feature extraction. Classification is achieved by linear support vector ma-
chine with probability estimation. In the classification, we utilise rejection option with
estimated probabilities. To selection the discriminative features, we propose a new
selection method.

two categories, as shown in Fig. 3(a). This ideal feature extraction gives ro-
bust classification by a linear classifier. The difference between the two category
subspaces can be represented by the canonical angle between two subspaces.
If a feature contains worthless elements, it gives a common subspace for two
categories with small canonical angles. These worthless elements can lead to
classification errors. The overlap region of the triangles in Fig. 3(b) shows the
common subspace between two categories. For feature selection, we have to find
a map Ψ that maximises the canonical angles between two-category subspaces
on a manifold as shown in Fig. 3(b). By projection with Ψ , we obtained a dis-
criminative features as shown in Fig. 3(a). To find linear map Ψ , we used feature
normalisation [7] and the Grassmann distance [8, 4, 10, 22].

Feature normalisation clarifies the importance of each eigenvector for cate-
gory representations in PCA [7]. The Grassmann distance represents the differ-
ence of two linear subspaces by canonical angles [4, 8, 1, 22, 10, 24]. We obtained
discriminative features by selecting the eigenvectors of the normalised features,
which give the maximum Grassmann distance between two category subspaces
as shown in Fig. 4. Our proposed method can analyse the extracted features and
improve the classification accuracy. Furthermore, we integrated our proposed
method to the processing flow of the classification shown in Fig. 5 that output
the probabilities of each category for practical applications. In such practical
applications as computer-aided diagnosis, accurate probabilities for each cate-
gory are helpful information for physicians during a diagnosis. We evaluated the
proposed method and its classification procedure to the classify neoplastic and
non-neoplastic colorectal endocytoscopic images in numerical experiments.
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2 Mathematical Preliminaries

2.1 Linear Subspace of a Pattern

We have a set {xi}
N
i of N extracted D-dimensional features from observed

patterns {Xi}
N
i=1 of a category with the condition d ≪ N . These extracted

features span L = span(x1, . . . ,xN) for a category. We call this linear subspace
a category subspace, which is approximated by

L ≈ span(y1, . . . ,ym), (1)

where m ≤ D. In such standard approaches as subspace methods [11, 28, 20, 17],
we obtain bases yi, i = 1, 2, . . . ,m from the following eigendecomposition

My = ηy, M =
1

N

N
∑

i=1

xix
⊤
i . (2)

For this eigendecomposition, an eigenvector yi correspond to an eigenvalue ηi
with conditions η1 ≥ η2 ≥ . . . ηD and ηi ≥ 0. We project an input feature vector
x to a linear subspace span(y1, . . . ,ym) by Y ⊤x, where Y = [y1,y2, . . . ,ym].

2.2 Grassmannian and Canonical Angle

The Grassmannian manifold (Grassmannian) G(m,D) is the set ofm-dimensional
linear subspaces of RD [8]. An element of G(m,D) can be represented by an or-
thogonal matrix Y of size D by m, where Y is comprised of the m basis vectors
for a set of patterns in R

D.
Let Y1 and Y2 be the orthogonal matrices of size D ×m. Canonical angles

(principal angles) 0 ≤ θ1 ≤ · · · ≤ θm ≤ π
2 between two subspaces L1 = span(Y1)

and L2 = span(Y2) are defined by

cos θk = max
y1,k∈span(Y1)

max
y2,k∈span(Y2)

y⊤
1,ky2,k,

s.t. y⊤
1,ky1,i = 0, y⊤

2,ky2,i = 0,
(3)

where i = 1, 2, . . . , k − 1.
For two linear subspaces L1 and L2, we have projection matrices P = Y1Y

⊤
1

and Q = Y2Y
⊤
2 . We also have a set of canonical angles {θk}

m
i=1 between these

two linear subspaces with conditions θ1 ≤ θ2 ≤ . . . .θK . We obtain the canonical
angles from the solution of the eigendecomposition problem

PQPu = λu or QPQu = λu. (4)

The solutions of these eigendecomposition problems are coincident [17]. For the
practical computation of canonical angles, we have singular value decomposition

Y ⊤
1 Y2 = UΣV ⊤, (5)
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where Σ = diag(cos θ1, cos θ2, . . . , cos θm) is the diagonal matrix, and U ,V ∈
R

m×m are the orthogonal matrices. Note that we have the following relation,

λi = cos2 θi (6)

for eigenvalues λk, i = 1, 2, . . .m in the eigendecomposition in Eq. (4). Canonical
angles are used to define the geodesic distance on a Grassmannian.

2.3 Grassmannian Distances

For the two points represented by Y1 and Y2 on a Grassmann manifold, we have
the following seven distances on the Grassmannian,

1. dp(Y1,Y2): projection metric
2. dµ(Y1,Y2): mean distance
3. dmin(Y1,Y2): minimum canonical angle
4. dmax(Y1,Y2): maximum canonical angle
5. dBC(Y1,Y2): Binet-Caucy metric
6. dg(Y1,Y2): geodesic distance
7. dc(Y1,Y2): Procrustes (chordal) distance

These seven distances are defined using the canonical angles between two linear
subspaces. The projection metric and mean distance are defined by

dp(Y1,Y2) =

(

m
∑

i=1

sin2 θi

)1/2

=

(

m−

m
∑

i=1

λi

)1/2

(7)

and

dµ(Y1,Y2) =
1

m

m
∑

i=1

sin2 θi = 1−
1

m

m
∑

i=1

λi. (8)

Furthermore, the sines of the maximum and minimum canonical angles

dmin(Y1,Y2) = sin θ1 = (1− λ1)
1/2, (9)

dmax(Y1,Y2) = sin θm = (1− λm)1/2, (10)

are also used as distances on a Grassmannian. Moreover, the Binet-Caucy dis-
tance is defined by

dBQ(Y1,Y2) =
(

1−Πm
i=1 cos

2 θi
)

= (1−Πm
i=1λi) , (11)

where the product of cos θi represents the similarity between two linear sub-
spaces. Using canonical angles, we have geodesic distance

dg(Y1,Y2) =

(

m
∑

i=1

θ2i

)1/2

=

(

m
∑

i=1

(

arccosλ
1/2
i

)2
)1/2

(12)
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on a Grassmann manifold. We have two definitions of the Procrustes (chordal)
distance,

dc(Y1,Y2) = min
R1,R2∈O(m)

‖Y1R1 − Y2R2‖F = 2

(

m
∑

i=1

sin2(θi/2)

)1/2

, (13)

where ‖ · ‖F is the Frobenius norm.

2.4 Normalisation of Features

We project the extracted features onto the discriminative feature space for ac-
curate classification. We extract a set of features {xi ∈ R

D}Ni=1 from a set of
images with condition D ≪ N . Let µ = E(xi) be the mean of the features. By
setting x̄i = xi−µ, we obtain a set of centred features {x̄i}

N
i=1. We assume each

image belongs to either category C1 or C2. Therefore, set {x̄i}
N
i=1 is divided into

two sets {x
(1)
i }N1

i=1 and {x
(2)
i }N2

i=1, where N1 and N2, respectively, represent the
number of images in the first and second categories.

We define the autocorrelation matrices in the centred feature space as

A1 =
1

N1
X1X

⊤
1 , A2 =

1

N2
X2X

⊤
2 , (14)

where X1 = [x
(1)
1 ,x

(1)
2 , . . . ,x

(1)
N1

] and X2 = [x
(2)
1 ,x

(2)
2 , . . . ,x

(2)
N2

], for the two
categories. We define the covariance matrix of all the features as

C = P (C1)A1 + P (C2)A2, (15)

where we set P (C)1 = N1

N1+N2

and P (C)2 = N2

N1+N2

. Fukunaga [7] used the
autocorrelation matrix of all the features instead of C in Eq. (15). Fukunaga [6]
used covariance matrices C1 and C2 for the two categories instead of A1 and A2

in Eq. (15). In this manuscript, we adopt covariance matrix C for all features
to remove the common features of the two categories. Here, autocorrelation
matrices A1 and A2 include the gaps of the means between all the features and
each category. The covariance matrix gives the following eigendecomposition
problem CV = V Ξ, where Ξ = diag(ξ1, ξ2, . . . , ξD) consists of eigenvalues ξi
for i = 1, 2, . . . , D the condition ξ1 ≥ ξ2 ≥ · · · ≥ ξD. The eigendecomposition
results derive a whitening matrix W = Ξ− 1

2V ⊤.
Using this whitening matrix and Eq. (15), we obtain the following relation

WCW⊤ = WP (C1)A1W
⊤ +WP (C2)A2W

⊤ = Ã1 + Ã2 = I, (16)

where I is an identity matrix. The solutions of the eigenvalue problems

Ãjφ
(j)
i = λ

(j)
i φ

(j)
i , (17)

where we set j = 1, 2, give the bases of two category subspaces. From Eqs. (16)
and (17), we have

Ã2φ
(2)
i = (I − Ã1)λiφ

(2)
i . (18)
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This leads Ã1φ
(2)
i = (1− λ

(2)
i )φ

(2)
i . These relation give the following relations

φ
(2)
i = φ

(1)
D−i+1 (19)

and
λ
(2)
i = 1− λ

(1)
D−i+1. (20)

Equations (19) and (20) show that both eigenvalue problems give the same set of
eigenvectors, and corresponding eigenvalues. Note that the two sets of eigenvalues
are reversely ordered. The eigenvalue orders in Eq. (20) satisfy

1 ≥ λ
(1)
1 ≥ λ

(1)
2 ≥ · · · ≥ λ

(1)
D ≥ 0, (21)

0 ≤ 1− λ
(1)
1 ≤ 1− λ

(1)
2 ≤ · · · ≤ 1− λ

(1)
D ≤ 1. (22)

These relations imply that the eigenvectors corresponding to the large eigen-
values of Ã1 contribute to represent the subspace for C1, although they only
make minor contribution to the representation for C2. Therefore, we obtained
discriminative features by projecting the features to a linear subspace given by

span(φ
(1)
1 ,φ

(2)
1 ,φ

(1)
2 ,φ

(2)
2 , . . . ,φ

(1)
d ,φ

(2)
d ). We discuss how to decide number d in

the next section.

2.5 Linear Classification with Rejection Option

We use a linear support vector machine (SVM) as a classifier. SVM classifies an
input feature vector x ∈ R

D by sing(f(x)), where f(·) is a decision function.
The parameters and the hyperparameters of this decision function are optimised
by a training procedure with training data. We can estimate the probability
of belonging to each category with the optimised decision function. For two
categories with label L ∈ {0, 1}, we can approximately estimate the probabilities

P (L = 1|x) ≈ P (A,B, f(x)) =
1

1 + exp(Af(x) +B)
, (23)

where A,B are the parameters in Platt’s method [21] for category i. P (L = 0|x)
is obtained by 1 − P (L = 1|x). After the training for decision function, we
obtain A,B by maximum likelihood estimation with the training dataset. In our
method, we represent the non-neoplastic and neoplastic categories by 0 and 1.
SVM can output the probabilities [21] pnon and pnneo that satisfy pnon+pneo = 1
and pnon, pnon ∈ [0, 1], for non-neoplastic and neoplastic images. We adopt the
rejection option to remove low confident classification [2]. The rejection option
discards classifications with low probabilities such that max (pnon, pneo) < κ,
where criteria κ was decided from preliminary experiments.

3 Feature-Selection Method

We have a set {Xi}
N
i=1 of three-channel images. We extract a feature vector

xi ∈ R
D from each image Xi. As in the same manner of Section 2.4, we divide
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Algorithm 1: Feature-selection method for training data

Input: Two sets of feature vectors {x
(1)
i }N1

i=1 and {x
(2)
i }N2

i=1,
criteria τk = 1.0− 0.01 ∗ k, k = 1, 2, . . . , 50, a small value ε.

Output: Projected features {x̌
(1)
i }N1

i=1 and {x̌
(2)
i }N2

i=1, matrices P ∗ and W .

1. Compute two sets of eigenvectors {φ
(1)
i }di=1 and {φ

(2)
i }di=1.

2. For all τk:

2-1. Select eigenvectors {φ
(1)
i }

mk
i=1 and {φ

(2)
i }

mk
i=1 that

correspond to eigenvalues larger than τk.

2-2. Construct a matrix P (k) = [φ
(1)
1 ,φ

(2)
1 , . . . ,φ

(1)
mk
,φ

(2)
mk

]⊤.

2-3. Project all features by x̌
(j)
i = P (k)x

(j)
i , where i = 1, 2, . . . , Nj , j = 1, 2.

2-4. Compute eigenvectors Y
(k)
1 and Y

(k)
2 for two

categories by solving the eigenproblem in Eq. (2).

2-5. Compute Grassmann distance d(Y
(k)
1 ,Y

(k)
2 ) between two category subspaces.

2-6. If |d(Y
(k)
1 ,Y

(k)
2 )− d(Y

(k−1)
1 ,Y

(k−1)
2 )| < ε, set P ∗ = P (k), and iteration break.

3. Return projected feature vectors {x̌
(j)
i |x̌

(j)
i = P ∗Wx

(j)
i ∀i, j}, and P ∗ and W .

{xi}
N
i=1 to two sets {x

(1)
i }N1

i=1 and {x
(2)
i }N2

i=1, where N1 and N2 represent the
number of images in the first and second categories.

We find a linear map Ψ(x) = P ∗W (x− µ) by solving

arg min
P

(rank(PP⊤)) s.t. max
P

(d(Ψ(Y1), Ψ(Y2))) (24)

where d(·, ·) represents one of the seven Grassmann distances. In this equation,
max(·) returns one or more matrices that give the maximum distance, and min(·)
selects one matrix with the minimum rank from the matrices. The solution is
an orthogonal matrix P ∗ = [φ

(1)
1 ,φ

(2)
1 ,φ

(1)
2 ,φ

(2)
2 , . . . ,φ

(1)
m ,φ

(2)
m ]⊤, which is com-

prised of 2m eigenvectors. Algorithm 1, which summarises a procedure to find
the P ∗ using the training data, also returns the selected features for the training
data.

4 Numerical Experiments

We evaluated our feature-selection method by applying the image classification
of neoplastic and non-neoplastic images of a colon polyp. We used images of
the magnified surfaces of polyps captured by an endocytoscope (CF-H290ECI,
Olympus, Tokyo) with IRB approval. The neoplastic and non-neoplastic labels
of the images ware annotated by expert physicians. The number of images of
neoplastic and non-neoplastic polyps is summarised in Table 1. We extracted
two kinds of features from these images: the Haralick features [9] and the convo-
lutional neural network (CNN) features [15]. In this section, we first compare the
classification accuracy before and after the feature selection for the Haralick fea-
tures and next compare the classification accuracy before and after the feature
selection of the combined Haralick and CNN features. We finally analysed the
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Table 1. Dataset details: 14,840 training
and 4,126 test images.

Category ♯ training ♯ test ♯ total

Neoplasia 7,800 1,925 9,725

Non-neoplasia 7,040 2,201 9,241

Table 2. Dimension and classification ac-
curacy for extracted features with SVM.

Haralick CNN Haralick+CNN

Dimension 312 576 888

Accuracy [%] 77.3 75.6 78.3

Table 3. Dimension and classification ac-
curacy of selected features of Haralick fea-
ture for each Grassmann distance.

dg, dp, dc dBC, dmax, dmin dµ

Dimension
312 60 96

(τ = 0.5) (τ = 0.99) (τ = 0.77)

Accuracy [%] 77.5 76.4 78.0

Table 4. Dimension and classification ac-
curacy of selected features of combination
of Haralick and CNN features for each
Grassmann distance.

dg, dp, dc dBC, dmax dmin, dµ

Dimension
888 74 102

(τ = 0.5) (τ = 0.99) (τ = 0.97)

Accuracy [%] 79.7 78.4 77.7

relation between the output probability and the accuracy with rejection option.
The relation clarifies the validity of our feature-selection method as a manifold
optimisation. In the final analysis, we also show the performance of two-category
classification with a rejection option.

In these evaluations, we used a SVM [27] for the classifications and trained
it by the training data and the best hyperparameters. We obtained the best
hyperparameters of the SVM by five-fold cross validation with the training data.
For a practical computation of SVM, we used libsvm [3]. We note that kernel
SVM with a radius basis function gives less classification accuracy than the
linear SVM for the endocytoscopic images in our preliminary experiments. The
classification accuracy of the original Haralick, CNN and their combined features
without feature selection is summarised in Table 2.

4.1 Haralick Feature

The Haralick feature represents the texture information measured by fourteen
statistical categories of a gray-level co-occurrence matrix. In this case, we used
thirteen categories for eight directions with three scales. To compute the statis-
tics, we used contrast normalisation for each local region for the achievement
of robustness against illumination changes. We then extracted 312-dimensional
Haralick feature vector for an image, each element of which is normalised to a
range of [0, 1]. We applied the proposed feature-selection method to the nor-
malised Haralick features.

Figures 7(a), and (b) and (c) show the eigenvalues of the whitened auto-
correlation matrices for two categories, and the Grassmann distances. Table 3
summarises the dimensions and classification accuracy for each feature selection
with respect to seven Grassmann distances.
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Fig. 6. Architecture of convolutional neural network for feature extraction.

4.2 Combination of Haralick and CNN features

We combined the Haralick and CNN features into a single feature vector. Figure
6 illustrates the architecture of our CNN. Its settings were decided by prelimi-
nary experiments [12], where we compared the several parameter settings with
AlexNet [15], VGG Net [23], and their modified versions. Our shallow architec-
ture gave the best classification accuracy among them. Before the extraction
of the CNN features, we trained the CNN with training data from scratch. We
applied batch normalisation and drop out to convolutional layers and full con-
nected layers for the training. We used the values in full connection layer F7 in
Fig. 6 for the feature extraction. Each element of the extracted CNN feature was
normalised to a range of [0, 1]. For the CNN implementation, we used the Caffe
platform [13] and and combined the normalised Haralick and normalised CNN
features as 888-dimensional column vectors.

We applied the proposed method to these normalised combined features. Fig-
ures 7(d), and (e) and (f) show the eigenvalues of the whitened autocorrelation
matrices for two categories, and the Grassmann distances. Table 4 summarises
the dimensions of the selected feature and classification accuracy for the selection
with respect to seven Grassmann distances.

4.3 Analysis of an Optimal Manifold

We evaluated the classification accuracy with respect to the divided range of the
output probabilities. The relation between the classification accuracy and the
output probability represents the characteristics of the optimal manifold given
by our feature selection. Figure 8(a) illustrates the distributions of the output
probabilities for the original Haralick features and the selected features. Table
5 summarises the accuracy for each range of the output probabilities for the
original Haralick features and the selected features. We also evaluated the clas-
sification accuracy with the rejection option of κ ∈ {0.50, 0.55, . . . , 0.90}. The
rejection rate is the ratio of the rejected images in the test data. The classification
results with the rejection option are summarised in Fig. 8(b). We respectively
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Fig. 7. Eigenvalues and Grassmann distance in feature selection: Upper and lower rows
represent results for Haralick features and combined features, respectively. (a) and (d)
show eigenvalues of Ã1 and Ã1 for non-neoplastic and neoplastic images. Horizontal
and vertical axes represent indices of eigenvalues and eigenvalues. (b),(c),(e) and (f)
summarise Grassmann distance after projection with respect to P given by a criteria
τ . Horizontal and vertical axes represent τ and Grassmann distance.

obtained classification accuracy of 82.1%, 82.9% and 84.7% for the original Har-
alick feature, the selected features of the Haralick and the combined features
with the same rejection rate of about 20%. Note that the percentage of inappro-
priate images in practical diagnosis is close to 20-30%. In these cases, we set κ
to 0.70, 0.60 and 0.72 for them. Figure 9 shows examples of rejected images in
the classification.

5 Discussion

The curves shown in Fig. 7(a) imply that a small number of eigenvectors is
discriminative for classification, since almost all the eigenvalues are close to 0.5.
Figures. 7(b) and (c) imply that dµ gives the largest distance with the fewest
selected eigenvectors. The accuracy is improved after the selection based on dµ as
shown in Tab. 3. The dimension of the selected features is 30% of the dimension
of an original Haralick feature.

The curves shown in Fig. 7(d) imply that there are no particular discrim-
inative eigenvectors, since they are distributed almost uniformly from zero to
one. In Table 4, dg, dp, and dc give the largest distance with all the eigenvectors.
In this case, features are just whitened and used for classification. In both the
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Table 5. Classification accuracy with respect to output probability. This table sum-
marises classification accuracy for the original Haralick, the selected Haralick and the
Haralick+CNN features. Classification accuracy is computed for each range of output
probability p, where p represents max(pnon, pneo). Classification accuracy of selected
Haralick is almost coincident to mean of each range of output probability.

Original Haralick Selected Haralick Selected Haralick+CNN

p > 0.9 88.7% 95.4% 90.0%
0.9 ≥ p > 0.8 74.3% 87.1% 72.0%
0.8 ≥ p > 0.7 68.7% 84.7% 64.2%
0.7 ≥ p > 0.6 60.5% 72.5% 61.0%
0.6 ≥ p > 0.5 53.2% 58.4% 50.0%

(a) (b)

Fig. 8. Analysis of optimal manifold. (a) Distributions of output probabilities for origi-
nal and selected features: Figure illustrates probability distributions of the original Har-
alick, the selected Haralick and the Haralick+CNN features. Vertical axis represents
percentage of output probabilities for each range. Horizontal axis represent divided
rages. In this figure, p is given as max(pnon, pneo). (b) Receiver operating characteris-
tic (ORC) curves for classification accuracy and rejection rate: Vertical and horizontal
axes represent classification accuracy and rejection rate for original Haralick, selected
Haralick and Haralick+CNN features.

cases of the Haralick and the combined features, our proposed method found
discriminative features and improved the classification accuracy.

The results summarised in Fig. 8(b) indicate that the rejection option im-
proved the classification accuracy.The rejection option correctly removed the
low-confident classification in both the cases of the Haralick and the combined
features. Table 5 also supports the validity of the rejection option. We can ob-
serve low classification accuracy for low output probabilities. Figure 9 shows that
the rejected images are inappropriate due to bad observation conditions: over
staining, bad illumination, and a lack of discriminative texture.

The mean distance gives the best feature selection for the Haralick feature.
In this case, the distributions of the output probabilities were characteristic. We
have low distribution for p > 0.9 and medium distribution for 0.6 ≥ p > 0.5. The
highest distribution is given for 0.8 ≥ p > 0.7. For these distributions, the output
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(a) (b) (c)

Fig. 9. Examples of rejected endocytoscopic images in classification: (a) insufficient
texture for classification; (b) bad (too dark) illumination; (c) over staining of a polyp.
These images were labelled as inappropriate for practical diagnosis. In practice, medical
doctors also recognised them as inappropriate.

probability approximated the classification accuracy well, as shown gray in in
Table 5. This characteristic of the relation between classification accuracy and
output probability suggests the validity of the obtained manifold. In the case of
the combined features, we did not observe the same characteristic even though
the selected combined features achieved the highest classification accuracy.

6 Conclusions

We proposed a feature-selection method that improves the classification accuracy
of two categories by an optimal manifold search for classification. We experimen-
tally evaluated the proposed method by comparing the classification accuracy
before and after feature selection for about 19,000 endocytoscopic images. The
experimental results showed the validity of our proposed method with the im-
provement of classification accuracy. Furthermore, we experimentally demon-
strated the validity of the obtained optimal manifold by exploring the relation
between output probability and classification accuracy. The output probability is
helpful information for practical diagnosis. Moreover, we achieved robust classi-
fication with our feature-selection method and a linear classifier with a rejection
option. The classification accuracy was 84.7% with a rejection rate of 20%, in
which the classification accuracy was 7.2 % higher than the classification with
the original Haralick feature and SVM.
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