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Abstract. Convolutional networks optimized for accuracy on challeng-
ing, dense prediction tasks are often prohibitively slow to run on each
frame in a video. The spatial similarity of nearby video frames, however,
suggests opportunity to reuse computation. Existing work has explored
basic feature reuse and feature warping based on optical flow, but has
encountered limits to the speedup attainable with these techniques. In
this paper, we present a new, two part approach to accelerating inference
on video. First, we propose a fast feature propagation technique that uti-
lizes the block motion vectors present in compressed video (e.g. H.264
codecs) to cheaply propagate features from frame to frame. Second, we
develop a novel feature estimation scheme, termed feature interpolation,
that fuses features propagated from enclosing keyframes to render accu-
rate feature estimates, even at sparse keyframe frequencies. We evaluate
our system on the Cityscapes and CamVid datasets, comparing to both
a frame-by-frame baseline and related work. We find that we are able to
substantially accelerate semantic segmentation on video, achieving twice
the average inference speed as prior work at any target accuracy level.
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1 Introduction

Semantic segmentation, the task of assigning each pixel in an image to a semantic
object class, is a problem of long-standing interest in computer vision. Since
the first paper to suggest the use of fully convolutional networks to segment
images [7], increasingly sophisticated architectures have been proposed, with the
goal of segmenting more complex images, from larger, more realistic datasets,
at higher accuracy [1-3,6,9,10]. The result has been a ballooning in both model
size and inference times, as the core feature networks, borrowed from image
classification models, have grown in layer depth and parameter count, and as
the cost of a forward pass through the widest convolutional layers, a function of
the size and detail of the input images, has risen in step. As a result, state-of-
the-art networks today require between 0.5 to 3.0 seconds to segment a single,
high-resolution image (e.g. 2048 x 1024 pixels) at competitive accuracy [5,11].
At the same time, a new target data format for semantic segmentation has
emerged: video. The motivating use cases include both batch settings, where
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Fig. 1. Feature interpolation warps (W) and fuses the features of enclosing keyframes
to generate accurate feature estimates for intermediate frames, using the block motion
vectors in compressed (e.g. H.264) video.

video is segmented in bulk to generate training data for other models (e.g. au-
tonomous control systems), and streaming settings, where high-throughput video
segmentation enables interactive analysis of live footage (e.g. at surveillance
sites). Video here consists of long sequences of images, shot at high frame rates
(e.g. 30 frames per second) in complex environments (e.g. urban cityscapes) on
modern, high-definition cameras (i.e. multi-megapixel). Segmenting individual
frames at high accuracy still calls for the use of competitive image segmentation
models, but the inference cost of these networks precludes their naive deployment
on every frame in a multi-hour raw video stream.

A defining characteristic of realistic video is its high level of temporal conti-
nuity. Consecutive frames demonstrate significant spatial similarity, which sug-
gests the potential to reuse computation across frames. Building on prior work,
we exploit two observations: 1) higher-level features evolve more slowly than raw
pixel content in video, and 2) feature computation tends to be much more expen-
sive than task computation across a range of vision tasks (e.g. object detection,
semantic segmentation) [8,11]. Accordingly, we divide our semantic segmenta-
tion model into a deep feature network and a cheap, shallow task network [11].
We compute features only on designated keyframes, and propagate them to in-
termediate frames, by warping the feature maps with a frame-to-frame motion
estimate. The task network is executed on all frames. Given that feature warping
and task computation is much cheaper than feature extraction, a key parameter
we aim to optimize is the interval between designated keyframes.

Here we make two key contributions to the effort to accelerate semantic
segmentation on video. First, noting the high level of data redundancy in video,
we successfully utilize an artifact of compressed video, block motion vectors, to
cheaply propagate features from frame to frame. Unlike other motion estimation
techniques, which introduce extra computation on intermediate frames, block
motion vectors are freely available in modern video formats, making for a simple,
fast design. Second, we propose a novel feature estimation scheme that enables
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the features for a large fraction of the frames in a video to be inferred accurately
and efficiently (see Fig. 1). The approach works as follows: when computing
the segmentation for a keyframe, we also precompute the features for the next
designated keyframe. Features for all subsequent intermediate frames are then
computed as a fusion of features warped forward from the last visited keyframe,
and features warped backward from the incoming keyframe. This procedure thus
implements an interpolation of the features of the two closest keyframes.

We evaluate our framework on the Cityscapes and CamVid datasets. Our
baseline consists of running a state-of-the-art segmentation network, DeepLab
[3], on every frame, a setup that achieves published accuracy [4], and a through-
put of 1.3 frames per second (fps) on Cityscapes and 3.6 fps on CamVid. Our
improvements come in two phases. Firstly, our use of block motion vectors for
feature propagation allow us to cut inference time on intermediate frames by
53%, compared to approaches based on optical-flow, such as [11]. Second, our
bi-directional feature warping and fusion scheme enables substantial accuracy
improvements, especially at high keyframe intervals. Together, the two tech-
niques allow us to operate at twice the average inference speed as the fastest
prior work, at any target level of accuracy (see Figure 2). For example, if we are
willing to tolerate no worse than 65 mloU on our CamVid video stream, we are
able to operate at a throughput of 20.1 fps, compared to the 8.0 fps achieved by
the forward flow-based propagation from [11] (see Table 1). Overall, even when
operating in high accuracy regimes (e.g. within 3% mloU of the baseline), we
are able to accelerate segmentation on video by a factor of 2-6x.
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Fig. 2. Accuracy (avg.) vs. throughput on Cityscapes and CamVid for three schemes:
(1) optical-flow based feature propagation [11] (prop-flow), (2) motion vector-based
feature propagation (prop-mv), and (3) motion vector-based feature interpolation
(interp-mv).

References

1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. In: PAMI (2017)



4 S. Jain and J. E. Gonzalez

Table 1. Accuracy and throughput on CamVid for three schemes: (1) optical-flow
based feature propagation [11] (prop-flow), (2) motion vector-based feature propa-
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